1
|
Sprague DJ, Park SK, Gramberg S, Bauer L, Rohr CM, Chulkov EG, Smith E, Scampavia L, Spicer TP, Haeberlein S, Marchant JS. Target-based discovery of a broad-spectrum flukicide. Nat Struct Mol Biol 2024; 31:1386-1393. [PMID: 38714890 DOI: 10.1038/s41594-024-01298-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/28/2024] [Indexed: 05/21/2024]
Abstract
Diseases caused by parasitic flatworms impart a considerable healthcare burden worldwide. Many of these diseases-for example, the parasitic blood fluke infection schistosomiasis-are treated with the drug praziquantel (PZQ). However, PZQ is ineffective against disease caused by liver flukes from the genus Fasciola because of a single amino acid change within the target of PZQ, a transient receptor potential ion channel in the melastatin family (TRPMPZQ), in Fasciola species. Here, we identify benzamidoquinazolinone analogs that are active against Fasciola TRPMPZQ. Structure-activity studies define an optimized ligand (BZQ) that caused protracted paralysis and tegumental damage to these liver flukes. BZQ also retained activity against Schistosoma mansoni comparable to PZQ and was active against TRPMPZQ orthologs in all profiled species of parasitic fluke. This broad-spectrum activity manifests as BZQ adopts a pose within the binding pocket of TRPMPZQ that is dependent on a ubiquitously conserved residue. BZQ therefore acts as a universal activator of trematode TRPMPZQ and a first-in-class, broad-spectrum flukicide.
Collapse
Affiliation(s)
- Daniel J Sprague
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Program in Chemical Biology, Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sang-Kyu Park
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Svenja Gramberg
- BFS, Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Lisa Bauer
- BFS, Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Claudia M Rohr
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Evgeny G Chulkov
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Emery Smith
- The Herbert Wertheim UF Scripps Institute Molecular Screening Center, Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA
| | - Louis Scampavia
- The Herbert Wertheim UF Scripps Institute Molecular Screening Center, Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA
| | - Timothy P Spicer
- The Herbert Wertheim UF Scripps Institute Molecular Screening Center, Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA
| | - Simone Haeberlein
- BFS, Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
2
|
Chiu WJ, Chu TY, Sun CM. Combinatorial synthesis of substituted pyrazolo-fused quinazolines by the Rh(III)-catalyzed [5 + 1] annulation of phenyl-1 H-pyrazol-5-amine with alkynoates and alkynamides. Org Biomol Chem 2024; 22:6841-6846. [PMID: 39118462 DOI: 10.1039/d4ob00516c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A Rh(III)-catalyzed C-H activation/cyclization cascade was developed for the first divergent synthesis of pyrazolo[1,5-a]quinazolines through a [5 + 1] annulation reaction exclusively. The one-pot procedure is recognized for its broad substrate scope, functional group tolerance, and high atom economy. Mechanistic studies reveal the reaction pathway, addressing current limitations. Notably, this catalytic transition metal-assisted tandem annulation smoothly proceeds through the reaction of substituted phenyl-1H-pyrazol-5-amine with an alkyne ester or amide, where a one ring carbon is provided by the alkynoate building block. This transformation highlights the potential of transition metal-catalyzed methods for synthesizing diverse pyrazolo[1,5-a]quinazoline frameworks.
Collapse
Affiliation(s)
- Wei-Jung Chiu
- Department of Applied Chemistry, 1001 Ta-Hseuh Road, National Yang-Ming Chiao-Tung University, Hsinchu 300-10, Taiwan.
| | - Ting-Yen Chu
- Department of Biological Science & Technology, 1001 Ta-Hseuh Road, National Yang Ming Chiao Tung University, Hsinchu 300-10, Taiwan
| | - Chung-Ming Sun
- Department of Applied Chemistry, 1001 Ta-Hseuh Road, National Yang-Ming Chiao-Tung University, Hsinchu 300-10, Taiwan.
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 807-08, Taiwan
| |
Collapse
|
3
|
Ghoneim MM, Abdelgawad MA, Elkanzi NAA, Parambi DGT, Alsalahat I, Farouk A, Bakr RB. A literature review on pharmacological aspects, docking studies, and synthetic approaches of quinazoline and quinazolinone derivatives. Arch Pharm (Weinheim) 2024; 357:e2400057. [PMID: 38775630 DOI: 10.1002/ardp.202400057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 08/06/2024]
Abstract
Quinazoline and quinazolinone derivatives piqued medicinal chemistry interest in developing novel drug candidates owing to their pharmacological potential. They are important chemicals for the synthesis of a variety of physiologically significant and pharmacologically useful molecules. Quinazoline and quinazolinone derivatives have anticancer, anti-inflammatory, antidiabetic, anticonvulsant, antiviral, and antimicrobial potential. The increased understanding of quinazoline and quinazolinone derivatives in biological activities provides opportunities for new medicinal products. The present review focuses on novel advances in the synthesis of these important scaffolds and other medicinal aspects involving drug design, structure-activity relationship, and action mechanisms of quinazoline and quinazolinone derivatives to help in the development of new quinazoline and quinazolinone derivatives.
Collapse
Affiliation(s)
- Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Nadia A A Elkanzi
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | | | - Izzeddin Alsalahat
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - Amr Farouk
- Flavour and Aroma Chemistry Department, National Research Centre, Cairo, Dokki, Egypt
| | - Rania B Bakr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
4
|
Chen M, Cheng S, Dai X, Yu J, Wang H, Xu B, Luo H, Xu G. Design, Synthesis, and Biological Evaluation of Novel Quinazoline Derivatives Possessing a Trifluoromethyl Moiety as Potential Antitumor Agents. Chem Biodivers 2024; 21:e202301776. [PMID: 38602834 DOI: 10.1002/cbdv.202301776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
A novel series of trifluoromethyl-containing quinazoline derivatives with a variety of functional groups was designed, synthesized, and tested for their antitumor activity by following a pharmacophore hybridization strategy. Most of the 20 compounds displayed moderate to excellent antiproliferative activity against five different cell lines (PC3, LNCaP, K562, HeLa, and A549). After three rounds of screening and structural optimization, compound 10 b was identified as the most potent one, with IC50 values of 3.02, 3.45, and 3.98 μM against PC3, LNCaP, and K562 cells, respectively, which were comparable to the effect of the positive control gefitinib. To further explore the mechanism of action of 10 b against cancer, experiments focusing on apoptosis induction, cell cycle arrest, and cell migration assay were conducted. The results showed that 10 b was able to induce apoptosis and prevent tumor cell migration, but had no effect on the cell cycle of tumor cells.
Collapse
Affiliation(s)
- Mingxiu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Xing Dai
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - HuiDi Wang
- The Affiliated Hospital of Wuhan Sports University, Wuhan, 430079, China
| | - BiXue Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Guangcan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| |
Collapse
|
5
|
Nguyen HT, Van KT, Pham-The H, Braire J, Thi PH, Nguyen TA, Nguyen Thi QG, Dang Thi TA, Le-Nhat-Thuy G, Le Thi TA, Ngoc DV, Nguyen Van T. Synthesis, molecular docking analysis and in vitro evaluation of new heterocyclic hybrids of 4-aza-podophyllotoxin as potent cytotoxic agents. RSC Adv 2024; 14:1838-1853. [PMID: 38192320 PMCID: PMC10772362 DOI: 10.1039/d3ra07396c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024] Open
Abstract
Two different synthetic approaches to novel heterocyclic hybrid compounds of 4-azapodophyllotoxin were investigated. The obtained products were characterized by infrared spectroscopy, nuclear magnetic resonance spectroscopy, and high-resolution mass spectrometry. MTT protocol was then performed to examine the cytotoxic activity of these products against KB, HepG2, A549, MCF7, and Hek-293 cell lines. The cytotoxic assessment indicated that all products displayed moderate to high cytotoxicity against all tested cancer cell lines. The most active compound 13k containing the 2-methoxypyridin-4-yl group exhibited selective cytotoxicity against KB, A549, and HepG2 cell lines with the IC50 values ranging from 0.23 to 0.27 μM, which were between 5- to 10-fold more potent than the positive control ellipticine. Compounds 13a (HetAr = thiophen-3-yl) and 13d (HetAr = 5-bromofuran-2-yl) displayed high cytotoxic selectivity for A549 and HepG2 cancer cell lines when compared to the other cancer cell lines and low toxicity to the normal Hek-293 cell line. Molecular docking study was conducted to evaluate the interaction of new synthesized compounds with the colchicine-binding-site of tubulin. Besides that, physicochemical and pharmacokinetic properties of the most active compounds 13h,k were predicted.
Collapse
Affiliation(s)
- Ha Thanh Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Ket Tran Van
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Military Technical Academy 236 Hoang Quoc Viet, Bac Tu Liem Hanoi Vietnam
| | - Hai Pham-The
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Julien Braire
- Université de Rennes 1 2 Av. du Professeur Léon Bernard 35042 Rennes France
| | - Phuong Hoang Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Tuan Anh Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Quynh Giang Nguyen Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Tuyet Anh Dang Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Giang Le-Nhat-Thuy
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Tu Anh Le Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Doan Vu Ngoc
- Military Technical Academy 236 Hoang Quoc Viet, Bac Tu Liem Hanoi Vietnam
| | - Tuyen Nguyen Van
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| |
Collapse
|
6
|
Sprague DJ, Park SK, Gramberg S, Bauer L, Rohr CM, Chulkov EG, Smith E, Scampavia L, Spicer TP, Haeberlein S, Marchant JS. Target-based discovery of a broad spectrum flukicide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559026. [PMID: 37790347 PMCID: PMC10542552 DOI: 10.1101/2023.09.22.559026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Diseases caused by parasitic flatworms impart a considerable healthcare burden worldwide. Many of these diseases - for example, the parasitic blood fluke infection, schistosomiasis - are treated with the drug praziquantel (PZQ). However, PZQ is ineffective against disease caused by liver flukes from the genus Fasciola. This is due to a single amino acid change within the target of PZQ, a transient receptor potential ion channel (TRPMPZQ), in Fasciola species. Here we identify benzamidoquinazolinone analogs that are active against Fasciola TRPMPZQ. Structure-activity studies define an optimized ligand (BZQ) that caused protracted paralysis and damage to the protective tegument of these liver flukes. BZQ also retained activity against Schistosoma mansoni comparable to PZQ and was active against TRPMPZQ orthologs in all profiled species of parasitic fluke. This broad spectrum activity was manifest as BZQ adopts a pose within the binding pocket of TRPMPZQ dependent on a ubiquitously conserved residue. BZQ therefore acts as a universal activator of trematode TRPMPZQ and a first-in-class, broad spectrum flukicide.
Collapse
Affiliation(s)
- Daniel J. Sprague
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Program in Chemical Biology, Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sang-Kyu Park
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Svenja Gramberg
- BFS, Institute of Parasitology, Justus Liebig University Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Lisa Bauer
- BFS, Institute of Parasitology, Justus Liebig University Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Claudia M. Rohr
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Evgeny G. Chulkov
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Emery Smith
- UF Scripps Molecular Screening Center, Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, 33458, USA
| | - Louis Scampavia
- UF Scripps Molecular Screening Center, Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, 33458, USA
| | - Timothy P. Spicer
- UF Scripps Molecular Screening Center, Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, 33458, USA
| | - Simone Haeberlein
- BFS, Institute of Parasitology, Justus Liebig University Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Jonathan S. Marchant
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|