1
|
Chen L, Yang J, Su F, Liu Z, Huang S, Zhang J, Li J, Mao W. A novel cyanine photosensitizer for sequential dual-site GSH depletion and ROS-potentiated cancer photodynamic therapy. Eur J Med Chem 2025; 283:117165. [PMID: 39689415 DOI: 10.1016/j.ejmech.2024.117165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024]
Abstract
The efficacy of photodynamic therapy (PDT) is often limited by the reductive microenvironment in tumor cells due to the high level of glutathione (GSH) and glutathione peroxidase 4 (GPX4), which maintain redox homeostasis. Therefore, designing a GSH-responsive photosensitizer that depletes intracellular GSH is a promising strategy to enhance PDT selectivity and efficacy. Herein, we present a GSH-selective sequentially responsive theranostic photosensitizer, Cy-Res. This cyanine agent targeting mitochondria effectively depletes two GSH molecules, leading to the generation of abundant ROS and exacerbating oxidative stress. Additionally, it achieves an 80-fold fluorescence enhancement upon response to GSH, enabling selective imaging of tumor cells. By mitigating GSH's impact on PDT, Cy-ResNPs achieves synergistic and efficient PDT treatment of invasive melanoma under low-power irradiation (808 nm, 80 mW/cm2). The inhibitory processes downregulate GPX4, increase apoptotic proteins like Bax, and promote mixed cell death involving both ferroptosis and apoptosis. Overall, this study offers new insights and strategies for the development of GSH-responsive theranostic agents, highlighting their potential for application in tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital of Sichuan University, Chengdu, 610041, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jun Yang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Feijing Su
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Zihang Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Jinqi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Mokhtari Tabar MM, Ghasemian A, Kouhpayeh A, Behmard E. Computational discovery of novel GPX4 inhibitors from herbal sources as potential ferroptosis inducers in cancer therapy. Arch Biochem Biophys 2025; 764:110231. [PMID: 39603376 DOI: 10.1016/j.abb.2024.110231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Ferroptosis, a cell death regulation process dependent on iron levels, represents a promising therapeutic target in cancer treatment. However, the scarcity of potent ferroptosis inducers hinders advancement in this area. This study addresses this gap by screening the PubChem database for compounds with favorable ADMET properties to identify potential GPX4 inhibitors. A structure-based virtual screening was conducted to compare binding affinities of selected compounds to that of RSL3. The candidates-isochondrodendrine, hinokiflavone, irinotecan, and ginkgetin-were further analyzed through molecular dynamics (MD) simulations to assess their stability within the GPX4-ligand complexes. The computed binding free energies for RSL3, isochondrodendrine, hinokiflavone, irinotecan and ginkgetin were -80.12, -107.31, -132.03, and -137.52 and -91.11 kJ/mol, respectively, indicating their significantly higher inhibitory effects compared to RSL3. These findings highlight the potential for developing novel GPX4 inhibitors to promote ferroptosis, warranting further experimental validation.
Collapse
Affiliation(s)
- Mohammad Mahdi Mokhtari Tabar
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; Department of Biochemistry, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
3
|
Yang X, Wu L, Xu S. An overview of GPX4-targeting TPDs for cancer therapy. Bioorg Med Chem 2025; 118:118046. [PMID: 39693712 DOI: 10.1016/j.bmc.2024.118046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Ferroptosis is a newly identified form of regulated, non-apoptotic cell death caused by iron-dependent phospholipid peroxidation. Glutathione peroxidase 4 (GPX4) inactivation-induced ferroptosis is an efficient antitumor treatment. Currently, several GPX4 inhibitors have been identified. However, these inhibitors exhibit low selectivity and poor pharmacokinetic properties that preclude their clinical use. Targeted protein degradation (TPD) is an efficient strategy for discovering drugs and has unique advantages over target protein inhibition. Given GPX4's antitumor effects and the potential of TPD, researchers have explored GPX4-targeting TPDs, which outperform conventional inhibitors in several aspects, such as increased selectivity, strong anti-proliferative effects, overcoming drug resistance, and enhancing drug-like properties. In this review, we comprehensively summarize the progress in GPX4-targeting TPDs. In addition, we reviewed the changes and challenges related to the development of GPX4-targeting TPDs for cancer therapy.
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China.
| | - Liqiang Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Shaohong Xu
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China.
| |
Collapse
|
4
|
Qian JY, Lou CY, Chen YL, Ma LF, Hou W, Zhan ZJ. A prospective therapeutic strategy: GPX4-targeted ferroptosis mediators. Eur J Med Chem 2025; 281:117015. [PMID: 39486214 DOI: 10.1016/j.ejmech.2024.117015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
As a crucial regulator of oxidative homeostasis, seleno-protein glutathione peroxidase 4 (GPX4) represents the primary defense system against ferroptosis, making it a promising target with important clinical application prospects. From the discovery of covalent and allosteric sites in GPX4, substantial advancements in GPX4-targeted small molecules have been made through diverse discovery and design strategies in recent years. Moreover, as an emerging hotspot in drug development, seleno-organic compounds can functionally mimic GPX4 to reduce hydroperoxides. To facilitate the further development of selective ferroptosis mediators as potential pharmaceutical agents, this review comprehensively covers all GPX4-targeted small molecules, including inhibitors, degraders, and activators. In addition, seleno-organic compounds as GPX mimics are also included. We also provide perspectives regarding challenges and future research directions in this field.
Collapse
Affiliation(s)
- Jia-Yu Qian
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Chao-Yuan Lou
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yi-Li Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Lie-Feng Ma
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Wei Hou
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Zha-Jun Zhan
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| |
Collapse
|
5
|
Tu S, Zou Y, Yang M, Zhou X, Zheng X, Jiang Y, Wang H, Chen B, Qian Q, Dou X, Bao J, Tian L. Ferroptosis in hepatocellular carcinoma: Mechanisms and therapeutic implications. Biomed Pharmacother 2025; 182:117769. [PMID: 39689515 DOI: 10.1016/j.biopha.2024.117769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024] Open
Abstract
Ferroptosis is a novel form of oxidative cell death, in which highly expressed unsaturated fatty acids on the cell membrane are catalyzed by divalent iron or ester oxygenase to promote liposome peroxidation. This process reduces cellular antioxidant capacity, increases lipid reactive oxygen species, and leads to the accumulation of intracellular ferrous ions, which disrupts intracellular redox homeostasis and ultimately causes oxidative cell death. Studies have shown that ferroptosis induces an immune response that has a dual role in liver disease, ferroptosis also offers a promising strategy for precise cancer therapy. Ferroptosis regulators are beneficial in maintaining cellular homeostasis and tissue health, have shown efficacy in treating diseases of the hepatic system. However, the mechanisms of action and molecular regulatory pathways of ferroptosis in hepatocellular carcinoma (HCC) have not been fully elucidated. Therefore, deciphering the role of ferroptosis and its mechanisms in HCC progression is crucial for treating the disease. In this review, we introduce the morphological features and biochemical functions of ferroptosis, outline the molecular regulatory pathways of ferroptosis, and highlights the therapeutic potential of ferroptosis inhibitors and modulators to target it in HCC.
Collapse
Affiliation(s)
- Shanjie Tu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Yuchao Zou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Meiqi Yang
- Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, Liaoning, PR China
| | - Xinlei Zhou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Xu Zheng
- The First Affiliated Hospital of Henan University of TCM, Zhengzhou, Henan, PR China
| | - Yuwei Jiang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Haoran Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Buyang Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Qianyu Qian
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| | - Jianfeng Bao
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| | - Lulu Tian
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
6
|
Aishajiang R, Liu Z, Liang Y, Du P, Wei Y, Zhuo X, Liu S, Lei P, Wang T, Yu D. Concurrent Amplification of Ferroptosis and Immune System Activation Via Nanomedicine-Mediated Radiosensitization for Triple-Negative Breast Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2407833. [PMID: 39721034 DOI: 10.1002/advs.202407833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Radiation therapy (RT) is one of the core therapies for current cancer management. However, the emergence of radioresistance has become a major cause of radiotherapy failure and disease progression. Therefore, overcoming radioresistance to achieve highly effective treatment for refractory tumors is significant yet challenging. Here, pH-responsive DSPE-PEoz modified hollow Bi2Se3-RSL3/diABZi (DP-HBN/RA) nanomedicine is designed as a radiation sensitizer for efficient treatment of triple-negative breast cancer by simultaneously amplifying ferroptosis and immune system activation. DP-HBN/RA can efficiently concentrate X-ray radiation energy inside the tumor, thereby promoting precise ionizing radiation exposure in tumor cells to produce large amounts of reactive oxygen species (ROS), leading to lipid peroxidation-induced ferroptosis. Meanwhile, ferroptotic cell death is intensified through the inactivation of GPX4 by RSL3 released from DP-HBN/RA to acidic conditions in the tumor microenvironment. Additionally, DP-HBN/RA enhances RT efficacy to exacerbate unrepairable DNA damage and release DNA fragments that activate the cGAS-STING signal pathway, evoking a systematic immune response. Ingeniously, the released diABZi reinforces cGAS-STING activation to boost the immunology antitumor effect. This work links the induction of ferroptosis and the initiation of systematic immune response to achieve highly effective tumor suppression, which opens up new avenues for future treatments of refractory tumors.
Collapse
Affiliation(s)
- Reyida Aishajiang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, 130022, China
| | - Zhongshan Liu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, 130022, China
| | - Yuan Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Pengye Du
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yi Wei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xiqian Zhuo
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, 130022, China
| | - Shuyu Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Tiejun Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, 130022, China
| | - Duo Yu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, 130022, China
| |
Collapse
|
7
|
Lam B, Kajderowicz KM, Keys HR, Roessler JM, Frenkel EM, Kirkland A, Bisht P, El-Brolosy MA, Jaenisch R, Bell GW, Weissman JS, Griffith EC, Hrvatin S. Multi-species genome-wide CRISPR screens identify conserved suppressors of cold-induced cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605098. [PMID: 39091747 PMCID: PMC11291167 DOI: 10.1101/2024.07.25.605098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Cells must adapt to environmental changes to maintain homeostasis. One of the most striking environmental adaptations is entry into hibernation during which core body temperature can decrease from 37°C to as low at 4°C. How mammalian cells, which evolved to optimally function within a narrow range of temperatures, adapt to this profound decrease in temperature remains poorly understood. In this study, we conducted the first genome-scale CRISPR-Cas9 screen in cells derived from Syrian hamster, a facultative hibernator, as well as human cells to investigate the genetic basis of cold tolerance in a hibernator and a non-hibernator in an unbiased manner. Both screens independently revealed glutathione peroxidase 4 (GPX4), a selenium-containing enzyme, and associated proteins as critical for cold tolerance. We utilized genetic and pharmacological approaches to demonstrate that GPX4 is active in the cold and its catalytic activity is required for cold tolerance. Furthermore, we show that the role of GPX4 as a suppressor of cold-induced cell death extends across hibernating species, including 13-lined ground squirrels and greater horseshoe bats, highlighting the evolutionary conservation of this mechanism of cold tolerance. This study identifies GPX4 as a central modulator of mammalian cold tolerance and advances our understanding of the evolved mechanisms by which cells mitigate cold-associated damage-one of the most common challenges faced by cells and organisms in nature.
Collapse
|
8
|
Ning Y, Zhu Z, Wang Y, Fan X, Wang J, Qian H, Qiu X, Wang Y. Design, synthesis, and biological evaluation of RSL3-based GPX4 degraders with hydrophobic tags. Eur J Med Chem 2024; 277:116719. [PMID: 39094276 DOI: 10.1016/j.ejmech.2024.116719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Ferroptosis is a new type of programmed cell death characterized by iron-dependent lipid peroxidation, during which glutathione peroxidase 4 (GPX4) plays an essential role and is well-recognized as a promising therapeutic target for cancer treatment. Although some GPX4 degradation molecules have been developed to induce ferroptosis, the discovery of GPX4 degraders with hydrophobic tagging (HyT) as an innovative approach is more challenging. Herein, we designed and synthesized a series of HyT degraders by linking the GPX4 inhibitor RSL3 with a hydrophobic and bulky group of adamantane. Among them, compound R8 is a potent degrader (DC50, 24h = 0.019 μM) which can effectively degrade GPX4 in a dose- and time-dependent manner. Furthermore, compound R8 exhibited superior in vitro antitumor potency against HT1080 and MDA-MB-231 cell lines with IC50 values of 24 nM and 32 nM respectively, which are 4 times more potent than parental compound RSL3. Mechanistic investigation evidenced that R8 consumes GPX4 protein mainly through the ubiquitin proteasome (UPS) and enables to induce the accumulation of LPO, thereby triggering ferroptosis. Our work presented the novel GPX4 degrader of R8 by HyT strategy, and provided a promising pathway of degradation agents for the treatment of ferroptosis relevant diseases.
Collapse
Affiliation(s)
- Yao Ning
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| | - Zeqi Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| | - Yicheng Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| | - Xuejing Fan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| | - Jing Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| | - Huimei Qian
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| | - Xue Qiu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| | - Yong Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China.
| |
Collapse
|
9
|
Ma W, Jiang X, Jia R, Li Y. Mechanisms of ferroptosis and targeted therapeutic approaches in urological malignancies. Cell Death Discov 2024; 10:432. [PMID: 39384767 PMCID: PMC11464522 DOI: 10.1038/s41420-024-02195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024] Open
Abstract
The prevalence of urological malignancies remains a significant global health concern, particularly given the challenging prognosis for patients in advanced disease stages. Consequently, there is a pressing need to explore the molecular mechanisms that regulate the development of urological malignancies to discover novel breakthroughs in diagnosis and treatment. Ferroptosis, characterized by iron-ion-dependent lipid peroxidation, is a form of programmed cell death (PCD) distinct from apoptosis, autophagy, and necrosis. Notably, lipid, iron, and glutathione metabolism intricately regulate intracellular ferroptosis, playing essential roles in the progression of various neoplasms and drug resistance. In recent years, ferroptosis has been found to be closely related to urological malignancies. This paper provides an overview of the involvement of ferroptosis in the pathogenesis and progression of urological malignancies, elucidates the molecular mechanisms governing its regulation, and synthesizes recent breakthroughs in diagnosing and treating these malignancies. We aim to provide a new direction for the clinical treatment of urological malignancies.
Collapse
Affiliation(s)
- Wenjie Ma
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaotian Jiang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| | - Yang Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Dong J, Ma F, Cai M, Cao F, Li H, Liang H, Li Y, Ding G, Li J, Cheng X, Qin JJ. Heat Shock Protein 90 Interactome-Mediated Proteolysis Targeting Chimera (HIM-PROTAC) Degrading Glutathione Peroxidase 4 to Trigger Ferroptosis. J Med Chem 2024; 67:16712-16736. [PMID: 39230973 DOI: 10.1021/acs.jmedchem.4c01518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Targeted protein degradation (TPD) is an emerging therapeutic paradigm aimed at eliminating the disease-causing protein with aberrant expression. Herein, we report a new approach to inducing intracellular glutathione peroxidase 4 (GPX4) protein degradation to trigger ferroptosis by bridging the target protein to heat shock protein 90 (HSP90), termed HSP90 interactome-mediated proteolysis targeting chimera (HIM-PROTAC). Different series of HIM-PROTACs were synthesized and evaluated, and two of them, GDCNF-2/GDCNF-11 potently induced ferroptosis via HSP90-mediated ubiquitin-proteasomal degradation of GPX4 in HT-1080 cells with DC50 values of 0.18 and 0.08 μM, respectively. In particular, GDCNF-11 showed 15-fold more ferroptosis selectivity over GPX4 inhibitor ML162. Moreover, these two degraders effectively suppress tumor growth in the mice model with relatively low toxicity as compared to the combination therapy of GPX4 and HSP90 inhibitors. In general, this study demonstrated the feasibility of degrading GPX4 via HSP90 interactome, and thus provided a significant complement to existing TPD strategies.
Collapse
Affiliation(s)
- Jinyun Dong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Furong Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Maohua Cai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fei Cao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Haobin Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hui Liang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yulong Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guangyu Ding
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Juan Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xiangdong Cheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| |
Collapse
|
11
|
Ma R, Sun X, Liu Z, Zhang J, Yang G, Tian J, Wang Y. Ferroptosis in Ischemic Stroke and Related Traditional Chinese Medicines. Molecules 2024; 29:4359. [PMID: 39339354 PMCID: PMC11433924 DOI: 10.3390/molecules29184359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Stroke is a severe neurological disorder resulting from the rupture or blockage of blood vessels, leading to significant mortality and disability worldwide. Among the different types of stroke, ischemic stroke (IS) is the most prevalent, accounting for 70-80% of cases. Cell death following IS occurs through various mechanisms, including apoptosis, necrosis, and ferroptosis. Ferroptosis, a recently identified form of regulated cell death characterized by iron overload and lipid peroxidation, was first described by Dixon in 2012. Currently, the only approved pharmacological treatment for IS is recombinant tissue plasminogen activator (rt-PA), which is limited by a narrow therapeutic window and often results in suboptimal outcomes. Recent research has identified several traditional Chinese medicines (TCMs) that can inhibit ferroptosis, thereby mitigating the damage caused by IS. This review provides an overview of stroke, the role of ferroptosis in IS, and the potential of certain TCMs to inhibit ferroptosis and contribute to stroke treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yunjie Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China; (R.M.); (X.S.); (Z.L.); (J.Z.); (G.Y.); (J.T.)
| |
Collapse
|
12
|
Nakamura T, Conrad M. Exploiting ferroptosis vulnerabilities in cancer. Nat Cell Biol 2024; 26:1407-1419. [PMID: 38858502 DOI: 10.1038/s41556-024-01425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/17/2024] [Indexed: 06/12/2024]
Abstract
Ferroptosis is a distinct lipid peroxidation-dependent form of necrotic cell death. This process has been increasingly contemplated as a new target for cancer therapy because of an intrinsic or acquired ferroptosis vulnerability in difficult-to-treat cancers and tumour microenvironments. Here we review recent advances in our understanding of the molecular mechanisms that underlie ferroptosis and highlight available tools for the modulation of ferroptosis sensitivity in cancer cells and communication with immune cells within the tumour microenvironment. We further discuss how these new insights into ferroptosis-activating pathways can become new armouries in the fight against cancer.
Collapse
Affiliation(s)
- Toshitaka Nakamura
- Institute of Metabolism and Cell Death, Molecular Targets & Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Molecular Targets & Therapeutics Center, Helmholtz Munich, Neuherberg, Germany.
| |
Collapse
|
13
|
Li B, Cheng K, Wang T, Peng X, Xu P, Liu G, Xue D, Jiao N, Wang C. Research progress on GPX4 targeted compounds. Eur J Med Chem 2024; 274:116548. [PMID: 38838547 DOI: 10.1016/j.ejmech.2024.116548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Blocking the System Xc-_ GSH_GPX4 pathway to induce ferroptosis in tumor cells is a novel strategy for cancer treatment. GPX4 serves as the core of the System Xc-/GSH/GPX4 pathway and is a predominant target for inducing ferroptosis in tumor cells. This article summarizes compounds identified in current research that directly target the GPX4 protein, including inhibitors, activators, small molecule degraders, chimeric degraders, and the application of combination therapies with other drugs, aiming to promote further research on the target and related diseases.
Collapse
Affiliation(s)
- Bingru Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Keguang Cheng
- School of Chemistry and Pharmaceutical Sciences, State/Ministry of Education of China Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China
| | - Tzumei Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xing Peng
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ping Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Guoquan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing, China
| | - Chao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
14
|
Liu J, Tang D, Kang R. Targeting GPX4 in ferroptosis and cancer: chemical strategies and challenges. Trends Pharmacol Sci 2024; 45:666-670. [PMID: 38866667 DOI: 10.1016/j.tips.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Selenoprotein glutathione peroxidase 4 (GPX4) serves as a crucial suppressor of oxidative stress-induced ferroptosis, making it an attractive target for disease therapy. Here, we discuss recent strategies and challenges associated with targeting GPX4 through covalent inhibitors, proteolysis targeting chimera (PROTAC) degraders, and cell-type-specific degraders in the context of cancer.
Collapse
Affiliation(s)
- Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
15
|
Renner N, Schöb F, Pape R, Suciu I, Spreng AS, Ückert AK, Cöllen E, Bovio F, Chilian B, Bauer J, Röpcke S, Bergemann J, Leist M, Schildknecht S. Modeling ferroptosis in human dopaminergic neurons: Pitfalls and opportunities for neurodegeneration research. Redox Biol 2024; 73:103165. [PMID: 38688061 PMCID: PMC11070765 DOI: 10.1016/j.redox.2024.103165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/17/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
The activation of ferroptosis is being pursued in cancer research as a strategy to target apoptosis-resistant cells. By contrast, in various diseases that affect the cardiovascular system, kidneys, liver, and central and peripheral nervous systems, attention is directed toward interventions that prevent ferroptotic cell death. Mechanistic insights into both research areas stem largely from studies using cellular in vitro models. However, intervention strategies that show promise in cellular test systems often fail in clinical trials, which raises concerns regarding the predictive validity of the utilized in vitro models. In this study, the human LUHMES cell line, which serves as a model for human dopaminergic neurons, was used to characterize factors influencing the activation of ferroptosis. Erastin and RSL-3 induced cell death that was distinct from apoptosis. Parameters such as the differentiation state of LUHMES cells, cell density, and the number and timing of medium changes were identified as determinants of sensitivity to ferroptosis activation. In differentiated LUHMES cells, interventions at mechanistically divergent sites (iron chelation, coenzyme Q10, peroxidase mimics, or inhibition of 12/15-lipoxygenase) provide almost complete protection from ferroptosis. LUHMES cells allowed the experimental modulation of intracellular iron concentrations and demonstrated a correlation between intracellular iron levels, the rate of lipid peroxidation, as well as the sensitivity of the cells to ferroptotic cell death. These findings underscore the importance of understanding the various factors that influence ferroptosis activation and highlight the need for well-characterized in vitro models to enhance the reliability and predictive value of observations in ferroptosis research, particularly when translating findings into in vivo contexts.
Collapse
Affiliation(s)
- Nadine Renner
- Albstadt-Sigmaringen University, Faculty of Life Sciences, 72488, Sigmaringen, Germany
| | - Franziska Schöb
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Regina Pape
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Ilinca Suciu
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Anna-Sophie Spreng
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Anna-Katharina Ückert
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Eike Cöllen
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Federica Bovio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milano, Italy
| | - Bruno Chilian
- TRI Thinking Research Instruments GmbH, Große Freiheit 77, 22767, Hamburg, Germany
| | - Johannes Bauer
- TRI Thinking Research Instruments GmbH, Große Freiheit 77, 22767, Hamburg, Germany
| | - Stefan Röpcke
- Stemick GmbH, Byk-Gulden Str. 2, 78467, Konstanz, Germany
| | - Jörg Bergemann
- Albstadt-Sigmaringen University, Faculty of Life Sciences, 72488, Sigmaringen, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Stefan Schildknecht
- Albstadt-Sigmaringen University, Faculty of Life Sciences, 72488, Sigmaringen, Germany.
| |
Collapse
|
16
|
Luo Y, Bai XY, Zhang L, Hu QQ, Zhang N, Cheng JZ, Hou MZ, Liu XL. Ferroptosis in Cancer Therapy: Mechanisms, Small Molecule Inducers, and Novel Approaches. Drug Des Devel Ther 2024; 18:2485-2529. [PMID: 38919962 PMCID: PMC11198730 DOI: 10.2147/dddt.s472178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Ferroptosis, a unique form of programmed cell death, is initiated by an excess of iron accumulation and lipid peroxidation-induced damage. There is a growing body of evidence indicating that ferroptosis plays a critical role in the advancement of tumors. The increased metabolic activity and higher iron levels in tumor cells make them particularly vulnerable to ferroptosis. As a result, the targeted induction of ferroptosis is becoming an increasingly promising approach for cancer treatment. This review offers an overview of the regulatory mechanisms of ferroptosis, delves into the mechanism of action of traditional small molecule ferroptosis inducers and their effects on various tumors. In addition, the latest progress in inducing ferroptosis using new means such as proteolysis-targeting chimeras (PROTACs), photodynamic therapy (PDT), sonodynamic therapy (SDT) and nanomaterials is summarized. Finally, this review discusses the challenges and opportunities in the development of ferroptosis-inducing agents, focusing on discovering new targets, improving selectivity, and reducing toxic and side effects.
Collapse
Affiliation(s)
- YiLin Luo
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Xin Yue Bai
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Lei Zhang
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Qian Qian Hu
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Ning Zhang
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Jun Zhi Cheng
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Ming Zheng Hou
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Xiao Long Liu
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| |
Collapse
|
17
|
Mokhtarpour K, Razi S, Rezaei N. Ferroptosis as a promising targeted therapy for triple negative breast cancer. Breast Cancer Res Treat 2024:10.1007/s10549-024-07387-7. [PMID: 38874688 DOI: 10.1007/s10549-024-07387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE Triple negative breast cancer (TNBC) is a challenging subtype characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Standard treatment options are limited, and approximately 45% of patients develop distant metastasis. Ferroptosis, a regulated form of cell death triggered by iron-dependent lipid peroxidation and oxidative stress, has emerged as a potential targeted therapy for TNBC. METHODS This study utilizes a multifaceted approach to investigate the induction of ferroptosis as a therapeutic strategy for TNBC. It explores metabolic alterations, redox imbalance, and oncogenic signaling pathways to understand their roles in inducing ferroptosis, characterized by lipid peroxidation, reactive oxygen species (ROS) generation, and altered cellular morphology. Critical pathways such as Xc-/GSH/GPX4, ACSL4/LPCAT3, and nuclear factor erythroid 2-related factor 2 (NRF2) are examined for their regulatory roles in ferroptosis and their potential dysregulation contributing to cancer cell survival and resistance. RESULTS Inducing ferroptosis has been shown to inhibit tumor growth, enhance the efficacy of conventional therapies, and overcome drug resistance in TNBC. Lipophilic antioxidants, GPX4 inhibitors, and inhibitors of the Xc- system have been demonstrated to be potential ferroptosis inducers. Additionally, targeting the NRF2 pathway and exploring other ferroptosis regulators, such as ferroptosis suppressor protein 1 (FSP1), and the PERK-eIF2α-ATF4-CHOP pathway, may offer novel therapeutic avenues. CONCLUSION Further research is needed to understand the mechanisms, optimize therapeutic strategies, and evaluate the safety and efficacy of ferroptosis-targeted therapies in TNBC treatment. Overall, targeting ferroptosis represents a promising approach to improving treatment outcomes and overcoming the challenges posed by TNBC.
Collapse
Affiliation(s)
- Kasra Mokhtarpour
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Imunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
| | - Nima Rezaei
- Research Center for Imunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
18
|
Huang X, Li G, Li H, Zhong W, Jiang G, Cai J, Xiong Q, Wu C, Su K, Huang R, Xu S, Liu Z, Wang M, Wang H. Glycyrrhetinic Acid as a Hepatocyte Targeting Ligand-Functionalized Platinum(IV) Complexes for Hepatocellular Carcinoma Therapy and Overcoming Multidrug Resistance. J Med Chem 2024; 67:8020-8042. [PMID: 38727048 DOI: 10.1021/acs.jmedchem.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Promising targeted therapy options to overcome drug resistance and side effects caused by platinum(II) drugs for treatment in hepatocellular carcinoma are urgently needed. Herein, six novel multifunctional platinum(IV) complexes through linking platinum(II) agents and glycyrrhetinic acid (GA) were designed and synthesized. Among them, complex 20 showed superior antitumor activity against tested cancer cells including cisplatin resistance cells than cisplatin and simultaneously displayed good liver-targeting ability. Moreover, complex 20 can significantly cause DNA damage and mitochondrial dysfunction, promote reactive oxygen species generation, activate endoplasmic reticulum stress, and eventually induce apoptosis. Additionally, complex 20 can effectively inhibit cell migration and invasion and trigger autophagy and ferroptosis in HepG-2 cells. More importantly, complex 20 demonstrated stronger tumor inhibition ability than cisplatin or the combo of cisplatin/GA with almost no systemic toxicity in HepG-2 or A549 xenograft models. Collectively, complex 20 could be developed as a potential anti-HCC agent for cancer treatment.
Collapse
Affiliation(s)
- Xiaochao Huang
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Guimei Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Huifang Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Wentian Zhong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Guiyang Jiang
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jinyuan Cai
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qingping Xiong
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Chuang Wu
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Kangning Su
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Rizhen Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Shiliu Xu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Zhikun Liu
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Meng Wang
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
19
|
Wang FY, Yang LM, Wang SS, Lu H, Wang XS, Lu Y, Ni WX, Liang H, Huang KB. Cycloplatinated (II) Complex Based on Isoquinoline Alkaloid Elicits Ferritinophagy-Dependent Ferroptosis in Triple-Negative Breast Cancer Cells. J Med Chem 2024; 67:6738-6748. [PMID: 38526421 DOI: 10.1021/acs.jmedchem.4c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The development and optimization of metal-based anticancer drugs with novel cytotoxic mechanisms have emerged as key strategies to overcome chemotherapeutic resistance and side effects. Agents that simultaneously induce ferroptosis and autophagic death have received extensive attention as potential modalities for cancer therapy. However, only a limited set of drugs or treatment modalities can synergistically induce ferroptosis and autophagic tumor cell death. In this work, we designed and synthesized four new cycloplatinated (II) complexes harboring an isoquinoline alkaloid C∧N ligand. On screening the in vitro activity of these agents, we found that Pt-3 exhibited greater selectivity of cytotoxicity, decreased resistance factors, and improved anticancer activity compared to cisplatin. Furthermore, Pt-3, which we demonstrate can initiate potent ferritinophagy-dependent ferroptosis, exhibits less toxic and better therapeutic activity than cisplatin in vivo. Our results identify Pt-3 as a promising candidate or paradigm for further drug development in cancer treatment.
Collapse
Affiliation(s)
- Feng-Yang Wang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Liang-Mei Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Shan-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Hui Lu
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Xu-Sheng Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Yuan Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Wen-Xiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| |
Collapse
|
20
|
Ma F, Li Y, Cai M, Yang W, Wu Z, Dong J, Qin JJ. ML162 derivatives incorporating a naphthoquinone unit as ferroptosis/apoptosis inducers: Design, synthesis, anti-cancer activity, and drug-resistance reversal evaluation. Eur J Med Chem 2024; 270:116387. [PMID: 38593589 DOI: 10.1016/j.ejmech.2024.116387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Activating apoptosis has long been viewed as an anti-cancer process, but recently increasing evidence has accumulated that induction of ferroptosis has emerged as a promising strategy for cancer therapeutics. Glutathione peroxidase 4 (GPX4) is one of the pivotal factors regulating ferroptosis that targeted inhibition or degradation of GPX4 could effectively trigger ferroptosis. In this study, a series of ML162-quinone conjugates were constructed by using pharmacophore hybridization and bioisosterism strategies, with the aim of obtaining more active anticancer agents via the ferroptosis and apoptosis dual cell death processes. Of these compounds, GIC-20 was identified as the most active one that exhibited promising anticancer activity both in vitro and in vivo via ferroptosis and apoptosis dual-targeting processes, without obvious toxicity compared with ML162. On one hand, GIC-20 could trigger ferroptosis in cells by inducing intracellular lipid peroxide and ROS accumulation, and destroying mitochondrial structure. In addition to GPX4 inhibition, GIC-20 can also trigger ferroptosis via proteasomal-mediated degradation of GPX4, suggesting GIC-20 may function as a molecule glue degrader. On the other hand, GIC-20 can also induce apoptosis via upregulating the level of apoptotic protein Bax and downregulating the level of anti-apoptotic protein Bcl-2 in HT1080 cells. Furthermore, GIC-20 also enhanced the sensitivity of resistant MIA-PaCa-2-AMG510R cells to AMG510, suggesting the great potential of GIC-20 in overcoming the acquired resistance of KRASG12C inhibitors. Overall, GIC-20 represents a novel dual ferroptosis/apoptosis inducer warranting further development for cancer therapeutics and overcoming drug resistance.
Collapse
Affiliation(s)
- Furong Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhoum, 310053, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yulong Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhoum, 310053, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Maohua Cai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhoum, 310053, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Wenyan Yang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zumei Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhoum, 310053, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Jinyun Dong
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
21
|
Yi N, Wang L, Jiang Z, Xu G, Li L, Zhang Y, Tan Y. Peiminine triggers ferroptosis to inhibit breast cancer growth through triggering Nrf2 signaling. Tissue Cell 2024; 87:102323. [PMID: 38412577 DOI: 10.1016/j.tice.2024.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Peiminine (PMI) is an active alkaloid sourced from Fritillaria thunbergii, which has been shown to suppress the development of a variety of tumors. Whereas, the roles and precise mechanism of PMI in breast cancer (BC) development remain not been clarified. METHODS The cytotoxic effect of PMI on MCF-10A and BC cell lines (MCF-7 and BT-549) were assessed by MTT and LDH release assay. Cell proliferation was evaluated by EdU staining. Levels of Malondialdehyde (MDA), reactive oxygen species (ROS), glutathione (GSH) activity and iron assay were measured by Enzyme linked immunosorbent assay (ELISA) kits, respectively. Transmission Electron Microscope was performed to observe mitochondrial morphological structure. Immunofluorescence, immunohistochemistry, and western blot were conducted to examine protein levels, respectively. Xenograft model was used to confirm cellular findings. RESULTS PMI treatment reduced the viability and enhanced LDH level of MCF-7 and BT-549 cells in a time- and concentration-dependent manner, and further suppressed cell proliferation in vitro and tumor growth in vivo. Subsequently, PMI administration resulted in significant increases of ROS, MDA and iron levels, reduction of GSH activity as well as mitochondrial shrinkage and GPX4 reduction, while all these phenomena could be rescued by ferrostatin-1. Mechanistically, PMI treatment led to promoted Nrf2 expression and its nuclear translocation, as well as it's downstream protein HO-1 and NQO1 expressions. Notably, ML-385, a Nrf2 specific inhibitor, greatly reversed the anti-tumor effects and pro-ferroptosis role of PMI in BC cells. CONCLUSION Taking these finding together, PMI could stimulate ferroptosis to inhibit BC tumor growth by activating Nrf2-HO-1 signaling pathway.
Collapse
Affiliation(s)
- Nian Yi
- Thyroid and Breast Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, PR China
| | - Li Wang
- Thyroid and Breast Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, PR China
| | - Zhongjun Jiang
- Thyroid and Breast Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, PR China
| | - Ge Xu
- Thyroid and Breast Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, PR China
| | - Lihong Li
- Thyroid and Breast Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, PR China
| | - Ya Zhang
- Thyroid and Breast Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, PR China
| | - Yinna Tan
- Department of Anesthesiology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, No. 336 Dongfeng South Road, Zhuhui District, Hengyang City, Hunan Province, PR China.
| |
Collapse
|
22
|
Zhou TJ, Zhang MM, Liu DM, Huang LL, Yu HQ, Wang Y, Xing L, Jiang HL. Glutathione depletion and dihydroorotate dehydrogenase inhibition actuated ferroptosis-augment to surmount triple-negative breast cancer. Biomaterials 2024; 305:122447. [PMID: 38154441 DOI: 10.1016/j.biomaterials.2023.122447] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/03/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Ferroptosis is a promising therapeutic approach for combating malignant cancers, but its effectiveness is limited in clinical due to the adaptability and self-repair abilities of cancer cells. Mitochondria, as the pivotal player in ferroptosis, exhibit tremendous therapeutic potential by targeting the intramitochondrial anti-ferroptotic pathway mediated by dihydroorotate dehydrogenase (DHODH). In this study, an albumin-based nanomedicine was developed to induce augmented ferroptosis in triple-negative breast cancer (TNBC) by depleting glutathione (GSH) and inhibiting DHODH activity. The nanomedicine (ATO/SRF@BSA) was developed by loading sorafenib (SRF) and atovaquone (ATO) into bovine serum albumin (BSA). SRF is an FDA-approved ferroptosis inducer and ATO is the only drug used in clinical that targets mitochondria. By combining the effects of SRF and ATO, ATO/SRF@BSA promoted the accumulation of lipid peroxides within mitochondria by inhibiting the glutathione peroxidase 4 (GPX4)-GSH pathway and downregulating the DHODH-coenzyme Q (CoQH2) defense mechanism, triggers a burst of lipid peroxides. Simultaneously, ATO/SRF@BSA suppressed cancer cell self-repair and enhanced cell death by inhibiting the synthesis of adenosine triphosphate (ATP) and pyrimidine nucleotides. Furthermore, the anti-cancer results showed that ATO/SRF@BSA exhibited tumor-specific killing efficacy, significantly improved the tumor hypoxic microenvironment, and lessened the toxic side effects of SRF. This work presents an efficient and easily achievable strategy for TNBC treatment, which may hold promise for clinical applications.
Collapse
Affiliation(s)
- Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Meng-Meng Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Dan-Meng Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Li-Ling Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Hai-Qing Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China; College of Pharmacy, Yanbian University, Yanji, 133002, PR China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 210009, PR China.
| |
Collapse
|
23
|
Faraji P, Borchert A, Ahmadian S, Kuhn H. Butylated Hydroxytoluene (BHT) Protects SH-SY5Y Neuroblastoma Cells from Ferroptotic Cell Death: Insights from In Vitro and In Vivo Studies. Antioxidants (Basel) 2024; 13:242. [PMID: 38397840 PMCID: PMC10886092 DOI: 10.3390/antiox13020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Ferroptosis is a special kind of programmed cell death that has been implicated in the pathogenesis of a large number of human diseases. It involves dysregulated intracellular iron metabolism and uncontrolled lipid peroxidation, which together initiate intracellular ferroptotic signalling pathways leading to cellular suicide. Pharmacological interference with ferroptotic signal transduction may prevent cell death, and thus patients suffering from ferroptosis-related diseases may benefit from such treatment. Butylated hydroxytoluene (BHT) is an effective anti-oxidant that is frequently used in oil chemistry and in cosmetics to prevent free-radical-mediated lipid peroxidation. Since it functions as a radical scavenger, it has previously been reported to interfere with ferroptotic signalling. Here, we show that BHT prevents RSL3- and ML162-induced ferroptotic cell death in cultured human neuroblastoma cells (SH-SY5Y) in a dose-dependent manner. It prevents the RSL3-induced oxidation of membrane lipids and normalises the RSL3-induced inhibition of the intracellular catalytic activity of glutathione peroxidase 4. The systemic application of BHT in a rat Alzheimer's disease model prevented the upregulation of the expression of ferroptosis-related genes. Taken together, these data indicate that BHT interferes with ferroptotic signalling in cultured neuroblastoma cells and may prevent ferroptotic cell death in an animal Alzheimer's disease model.
Collapse
Affiliation(s)
- Parisa Faraji
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (P.F.); (A.B.)
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Astrid Borchert
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (P.F.); (A.B.)
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Hartmut Kuhn
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (P.F.); (A.B.)
| |
Collapse
|
24
|
Yadav DK, Tiwari S, Senthil S, Vechalapu SK, Duraisamy S, Rawat V, Rahman MI, Khanna S, Allimuthu D. Diazepam-based covalent modifiers of GPX4 induce ferroptosis in liver cancer cells. Chem Commun (Camb) 2024; 60:1928-1931. [PMID: 38268331 DOI: 10.1039/d3cc06215e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Developing new chemotherapeutics that are structurally and mechanistically unique is needed due to the rapid rise of the cancer incidence across the globe. Here, we report the identification of irreversible, thiol-reactive diazepam derivatives as GPX4 modifiers and nanomolar inducers of ferroptosis in liver cancer cells.
Collapse
Affiliation(s)
- Dharmendra K Yadav
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh-208016, India.
| | - Sona Tiwari
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh-208016, India.
| | - Sathyapriya Senthil
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh-208016, India.
| | - Sai Kumari Vechalapu
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh-208016, India.
| | - Santhosh Duraisamy
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh-208016, India.
| | - Viral Rawat
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh-208016, India.
| | - Mohammed Isfahur Rahman
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh-208016, India.
| | - Shweta Khanna
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh-208016, India.
| | - Dharmaraja Allimuthu
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh-208016, India.
| |
Collapse
|
25
|
Tang Z, Li J, Peng L, Xu F, Tan Y, He X, Zhu C, Zhang ZM, Zhang Z, Sun P, Ding K, Li Z. Novel Covalent Probe Selectively Targeting Glutathione Peroxidase 4 In Vivo: Potential Applications in Pancreatic Cancer Therapy. J Med Chem 2024; 67:1872-1887. [PMID: 38265413 DOI: 10.1021/acs.jmedchem.3c01608] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Glutathione peroxidase 4 (GPX4) emerges as a promising target for the treatment of therapy-resistant cancer through ferroptosis. Thus, there is a broad interest in the development of GPX4 inhibitors. However, a majority of reported GPX4 inhibitors utilize chloroacetamide as a reactive electrophilic warhead, and the selectivity and pharmacokinetic properties still need to be improved. Herein, we developed a compound library based on a novel electrophilic warhead, the sulfonyl ynamide, and executed phenotypic screening against pancreatic cancer cell lines. Notably, one compound A16 exhibiting potent cell toxicity was identified. Further chemical proteomics investigations have demonstrated that A16 specifically targets GPX4 under both in situ and in vivo conditions, inducing ferroptosis. Importantly, A16 exhibited superior selectivity and potency compared to reported GPX4 inhibitors, ML210 and ML162. This provides the structural diversity of tool probes for unraveling the fundamental biology of GPX4 and exploring the therapeutic potential of pancreatic cancer via ferroptosis induction.
Collapse
Affiliation(s)
- Zifeng Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jie Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Lijie Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Fang Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yi Tan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaoqiang He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Chengjun Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhi-Min Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhang Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Pinghua Sun
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ke Ding
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhengqiu Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
26
|
Song H, Liang J, Guo Y, Liu Y, Sa K, Yan G, Xu W, Xu W, Chen L, Li H. A potent GPX4 degrader to induce ferroptosis in HT1080 cells. Eur J Med Chem 2024; 265:116110. [PMID: 38194774 DOI: 10.1016/j.ejmech.2023.116110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
Glutathione peroxidase 4 (GPX4) is the most promising target for inducing ferroptosis. GPX4-targeting strategies primarily focus on inhibiting its activity or adjusting its cellular level. However, small inhibitors have limitations due to the covalent reactive alkyl chloride moiety, which could lead to poor selectivity and suboptimal pharmacokinetic properties. Herein, we designed and synthesized a series of proteolysis targeting chimeras (PROTACs) by connecting RSL3, a small molecule inhibitor of GPX4, with six different ubiquitin ligase ligands. As a highly effective degrader, compound 18a is a potent degrader (DC50, 48h = 1.68 μM, Dmax, 48h = 85 %). It also showed an obvious anti-proliferative effect with the IC50 value of 2.37 ± 0.17 μM in HT1080. Mechanism research showed that compound 18a formed a ternary complex with GPX4 and cIAP and induced the degradation of GPX4 through the ubiquitin-proteasome system pathway. Furthermore, compound 18a also induced the accumulation of lipid peroxides and mitochondrial depolarization, subsequently triggering ferroptosis. Our work demonstrated the practicality and efficiency of the PROTAC strategy and offered a promising avenue for designing degraders to induce ferroptosis in cancer cells.
Collapse
Affiliation(s)
- Haoze Song
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuanyuan Guo
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Kuiru Sa
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Guohong Yan
- Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China.
| | - Wen Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Wei Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
27
|
Huang W, Wen F, Yang P, Li Y, Li Q, Shu P. Yi-qi-hua-yu-jie-du decoction induces ferroptosis in cisplatin-resistant gastric cancer via the AKT/GSK3β/NRF2/GPX4 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155220. [PMID: 38056149 DOI: 10.1016/j.phymed.2023.155220] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Resistance to chemotherapy in gastric cancer (GC) is a ubiquitous challenge for its treatment. Yi-qi-hua-yu-jie-du decoction (YJD), an empirical formula in Traditional Chinese Medicine (TCM), demonstrated survival-prolonging functions in patients with GC. Previous research has shown that YJD could also inhibit drug resistance in GC. However, the precise mechanisms for how YJD accomplishes this remain incompletely explained. PURPOSE The research aimed to identify differential metabolic characteristics in cisplatin-resistant GC and investigate whether YJD can target these differences to suppress GC drug resistance. METHODS Metabolomic analysis was conducted to identify metabolic disparities between cisplatin-resistant and parental GC cells, as well as metabolic modifications resulting from YJD intervention in cisplatin-resistant GC cells. The effect of YJD on ferroptosis stimulation was assessed by measuring the levels of reactive oxygen species (ROS), malondialdehyde (MDA), iron ions, the reduced glutathione (GSH) to oxidised glutathione (GSSG) ratio, and alterations in mitochondrial morphology. Western blotting and quantitative real-time polymerase chain reaction (Q-PCR) were employed to verity the mechanisms of YJD-triggered ferroptosis through GPX4 and NRF2 overexpression models, alongside the AKT activator SC79. In vivo validation was conducted using nude mouse xenograft models. RESULTS Cisplatin-resistant GC exhibited altered GSH/GPX4 metabolism, and ferroptosis was a significantly enriched cell death pattern with YJD treatment in cisplatin-resistant GC cells. Ferroptosis biomarkers, including ROS, MDA, iron ions, the GSH/GSSG ratio, and mitochondrial morphology, were remarkably changed with the YJD intervention. Mechanistic experiments demonstrated that YJD inhibited the phosphorylation cascade activity of the AKT/GSK3β pathway, thereby reducing NRF2 expression. The level of GPX4, a crucial enzyme involved in glutathione metabolism, was attenuated, facilitating ferroptosis induction in cisplatin-resistant GC. CONCLUSION The research reveals, for the first time, changes in GSH/GPX4 metabolism in cisplatin-resistant GC cells based on metabolomic analysis. YJD induced ferroptosis in cisplatin-resistant GC by inhibiting GPX4 through the AKT/GSK3β/NRF2 pathway, thus attenuating the cisplatin drug resistance in GC. Our findings identify metabolic changes in cisplatin-resistant GC and establish a theoretical framework for YJD on tackling drug resistance in GC through ferroptosis.
Collapse
Affiliation(s)
- Wenjie Huang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Fang Wen
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Peipei Yang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Ye Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Qiurong Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Peng Shu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
28
|
Wang Y, Sun Y, Wang F, Wang H, Hu J. Ferroptosis induction via targeting metabolic alterations in triple-negative breast cancer. Biomed Pharmacother 2023; 169:115866. [PMID: 37951026 DOI: 10.1016/j.biopha.2023.115866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC), the most aggressive form of breast cancer, presents severe threats to women's health. Therefore, it is critical to find novel treatment approaches. Ferroptosis, a newly identified form of programmed cell death, is marked by the buildup of lipid reactive oxygen species (ROS) and high iron concentrations. According to previous studies, ferroptosis sensitivity can be controlled by a number of metabolic events in cells, such as amino acid metabolism, iron metabolism, and lipid metabolism. Given that TNBC tumors are rich in iron and lipids, inducing ferroptosis in these tumors is a potential approach for TNBC treatment. Notably, the metabolic adaptability of cancer cells allows them to coordinate an attack on one or more metabolic pathways to initiate ferroptosis, offering a novel perspective to improve the high drug resistance and clinical therapy of TNBC. However, a clear picture of ferroptosis in TNBC still needs to be completely revealed. In this review, we provide an overview of recent advancements regarding the connection between ferroptosis and amino acid, iron, and lipid metabolism in TNBC. We also discuss the probable significance of ferroptosis as an innovative target for chemotherapy, radiotherapy, immunotherapy, nanotherapy and natural product therapy in TNBC, highlighting its therapeutic potential and application prospects.
Collapse
Affiliation(s)
- Yaru Wang
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yue Sun
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Feiran Wang
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Hongyi Wang
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jing Hu
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| |
Collapse
|