1
|
Li M, Ma L, Lv J, Zheng Z, Lu W, Yin X, Lin W, Wang P, Cui J, Hu L, Liu J. Design, synthesis, and biological evaluation of oridonin derivatives as novel NLRP3 inflammasome inhibitors for the treatment of acute lung injury. Eur J Med Chem 2024; 277:116760. [PMID: 39197252 DOI: 10.1016/j.ejmech.2024.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024]
Abstract
Acute lung injury (ALI) is a severe respiratory disorder closely associated with the excessive activation of the NLRP3 inflammasome. Oridonin (Ori), a natural diterpenoid compound, had been confirmed as a specific covalent NLRP3 inflammasome inhibitor, which was completely different from that of MCC950. However, the further clinical application of Ori was limited by its weak inhibitory activity against NLRP3 inflammasome (IC50 = 1240.67 nM). Fortunately, through systematic structure-optimization of Ori, D6 demonstrated the enhancement of IL-1β inhibitory activity (IC50 = 41.79 nM), which was better than the parent compound Ori. Then, by using SPR, molecular docking and MD simulation, D6 was verified to directly interact with NLRP3 via covalent and non-covalent interaction. The further anti-inflammatory mechanism studies were revealed that D6 could inhibit the activation of NLRP3 inflammasome without affecting the initiation phase of NLRP3 inflammasome activation, and D6 was a broad-spectrum and selective NLRP3 inflammasome inhibitor. Finally, D6 demonstrated a favorable therapeutic effect on LPS-induced ALI in mice model, and the potent pharmacodynamic effect of D6 was correlated with the specific inhibition of NLRP3 inflammasome activation in vivo. Thus, D6 is proved as a potent NLRP3 inhibitor, and has the potential to develop as a novel anti-ALI agent.
Collapse
Affiliation(s)
- Mengting Li
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingyu Ma
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiahao Lv
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhe Zheng
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenyu Lu
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xunkai Yin
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weijiang Lin
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ping Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian Cui
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jian Liu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Kang T, Sun S, Wang H, Liu J, Li X, Jiang Y. Design, synthesis and biological evaluation of novel diphenylamine analogues as NLRP3 inflammasome inhibitors. Bioorg Med Chem 2024; 113:117927. [PMID: 39317006 DOI: 10.1016/j.bmc.2024.117927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
The aberrant activation of the NLRP3 inflammasome has been implicated in the pathogenesis of numerous inflammation-related diseases. Development of NLRP3 inflammasome inhibitors is expected to provide a new strategy for the treatment of these diseases. Herein, a novel series of diphenylamine derivatives were designed based on the lead compounds H20 and H28, and the preliminary structure-activity relationship was studied. The representative compound 19 displayed significantly higher inhibitory activity against NLRP3 inflammasome compared to lead compounds H20 and H28, with an IC50 of 0.34 μM. Mechanistic studies indicated that compound 19 directly targets the NLRP3 protein (KD: 0.45 μM), blocking the assembly and activation of the NLRP3 inflammasome, leading to anti-inflammatory effects and inhibition of cellular pyroptosis. Our findings indicated that compound 19 is a promising NLRP3 inhibitor and could potentially serve as a lead compound for further optimization.
Collapse
Affiliation(s)
- Tongtong Kang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Simin Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Huimin Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jinyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong 266071, China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong 266071, China.
| |
Collapse
|
3
|
Sanislav O, Tetaj R, Metali, Ratcliffe J, Phillips W, Klein AR, Sethi A, Zhou J, Mezzenga R, Saxer SS, Charnley M, Annesley SJ, Reynolds NP. Cell invasive amyloid assemblies from SARS-CoV-2 peptides can form multiple polymorphs with varying neurotoxicity. NANOSCALE 2024; 16:19814-19827. [PMID: 39363846 DOI: 10.1039/d4nr03030c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The neurological symptoms of COVID-19, often referred to as neuro-COVID include neurological pain, memory loss, cognitive and sensory disruption. These neurological symptoms can persist for months and are known as Post-Acute Sequalae of COVID-19 (PASC). The molecular origins of neuro-COVID, and how it contributes to PASC are unknown, however a growing body of research highlights that the self-assembly of protein fragments from SARS-CoV-2 into amyloid nanofibrils may play a causative role. Previously, we identified two fragments from the SARS-CoV-2 proteins, Open Reading Frame (ORF) 6 and ORF10, that self-assemble into neurotoxic amyloid assemblies. Here we further our understanding of the self-assembly mechanisms and nano-architectures formed by these fragments and their biological responses. By solubilising the peptides in a fluorinated solvent, we eliminate insoluble aggregates in the starting materials (seeds) that change the polymorphic landscape of the assemblies. The resultant assemblies are dominated by structures with higher free energies (e.g. ribbons and amorphous aggregates) that are less toxic to cultured neurons but do affect their mitochondrial respiration. We also show the first direct evidence of cellular uptake of viral amyloids. This work highlights the importance of understanding the polymorphic behaviour of amyloids and the correlation to neurotoxicity, particularly in the context of neuro-COVID and PASC.
Collapse
Affiliation(s)
- Oana Sanislav
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Rina Tetaj
- Institute for Chemistry and Bioanalytics, School of Life Sciences, FHNW, Muttenz, 4132, Switzerland
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Metali
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Julian Ratcliffe
- Bio Imaging Platform, La Trobe University, Melbourne, Victoria 3086, Australia
| | - William Phillips
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Annaleise R Klein
- Australian Nuclear Science and Technology Organisation (ANSTO), Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Ashish Sethi
- Australian Nuclear Science and Technology Organisation (ANSTO), Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Jiangtao Zhou
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092, Zurich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092, Zurich, Switzerland
- Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Sina S Saxer
- Institute for Chemistry and Bioanalytics, School of Life Sciences, FHNW, Muttenz, 4132, Switzerland
| | - Mirren Charnley
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria 3000, Australia
| | - Sarah J Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Nicholas P Reynolds
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia.
- The Biomedical and Environmental Sensor Technology (BEST) Research Centre, Biosensors Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
4
|
Roberts E, Charras A, Hahn G, Hedrich CM. An improved understanding of pediatric chronic nonbacterial osteomyelitis pathophysiology informs current and future treatment. J Bone Miner Res 2024; 39:1523-1538. [PMID: 39209330 PMCID: PMC11523093 DOI: 10.1093/jbmr/zjae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/24/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Chronic nonbacterial osteomyelitis (CNO) is an autoinflammatory bone disease that primarily affects children and young people. It can cause significant pain, reduced function, bone swelling, and even (vertebral body) fractures. Because of a limited understanding of its pathophysiology, the treatment of CNO remains empiric and is based on relatively small case series, expert opinion, and personal experience. Several studies have linked pathological NOD-kike receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome activation and the resulting imbalance between pro- and anti-inflammatory cytokine expression with CNO. This agrees with elevated pro-inflammatory (mostly) monocyte-derived protein signatures in the blood of CNO patients that may be used as future diagnostic and/or prognostic biomarkers. Recently, rare variants in the P2RX7 gene, encoding for an ATP-dependent transmembrane channel, were linked with increased NLRP3 inflammasome assembly and prolonged monocyte/macrophage survival in CNO. Although the exact molecular mechanisms remain unclear, this will inform future target-directed and individualized treatment. This manuscript reviews most recent developments and their impact on diagnostic and therapeutic strategies in CNO.
Collapse
Affiliation(s)
- Eve Roberts
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Amandine Charras
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Gabriele Hahn
- Department of Pediatric Radiology, University Children’s Hospital Basel UKBB, Basel, Switzerland
| | - Christian M Hedrich
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, United Kingdom
| |
Collapse
|
5
|
El-Sayed S, McMahon E, Musleh S, Freeman S, Brough D, Kasher PR, Bryce RA. Virtual screening-led design of inhibitor scaffolds for the NLRP3 inflammasome. Bioorg Chem 2024; 153:107909. [PMID: 39467507 DOI: 10.1016/j.bioorg.2024.107909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024]
Abstract
The NLRP3 inflammasome is a key target for drug discovery due to its implication in a range of inflammation-related diseases. In this work, we identify new inhibitors of the NLRP3 inflammasome via a hierarchical virtual screening strategy using molecular similarity, docking and MD simulation. The most potent inhibitors identified from a subsequent biological assay (IC50 of 1 - 4 μM) feature a sulfonamide group, a motif known to favour NLRP3 inhibition, in conjunction with an indole, benzofuran or tricyclic 6,7-dihydro-5H-indeno[5,6-b]furan ring, yielding novel scaffolds. These structures provide a basis for the design of more potent, selective NLRP3 inhibitors.
Collapse
Affiliation(s)
- Sherihan El-Sayed
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, M13 9PT, UK; Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Emily McMahon
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and the University of Manchester, Manchester M6 8HD, UK
| | - Sondos Musleh
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, M13 9PT, UK; Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Sally Freeman
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, M13 9PT, UK
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and the University of Manchester, Manchester M6 8HD, UK
| | - Paul R Kasher
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and the University of Manchester, Manchester M6 8HD, UK
| | - Richard A Bryce
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, M13 9PT, UK.
| |
Collapse
|
6
|
Feng H, Li D, Zhu F, Jiang C, Su M, Kong Y, Zheng Y, Yuan Y, Huang W, Chen X, Ma L. Design, synthesis and biological evaluation of sulfonylurea derivatives as NLRP3 inflammasome inhibitors. Bioorg Med Chem Lett 2024; 114:129987. [PMID: 39395633 DOI: 10.1016/j.bmcl.2024.129987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
The NLRP3 inflammasome has been extensively studied in recent years and its aberrant activation can exacerbate inflammatory responses, contributing to various diseases. MCC950, a sulfonylurea drug, is a potent selective inhibitor of the NLRP3 inflammasome. However, its clinical development was halted due to hepatotoxicity, and studies have indicated significant reduction in activity among its metabolites. Building upon MCC950, we referenced substitution sites of NP3-146 for structural modifications aimed at addressing potential metabolism-related issues. Consequently, we synthesized a series of sulfonylurea derivatives. Ultimately, the optimized compound C4 exhibited a remarkable 80.39 % inhibition of IL-1β at 2 μM, with an IC50 value of 0.805 μM. In conclusion, compound C4 shows potential as a lead compound and warrants further development as an anti-inflammatory NLRP3 inhibitor.
Collapse
Affiliation(s)
- Haonan Feng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Donglai Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Fuli Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Caihong Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Mengjun Su
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yonghao Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yaxia Yuan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Weiwei Huang
- Hangzhou Matrix Biopharmaceutical Co., Ltd, Hangzhou, Zhejiang 311121, China.
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
7
|
Fu Z, Duan Y, Pei H, Zou Y, Tang M, Chen Y, Yang T, Ma Z, Yan W, Su K, Cai X, Guo T, Teng Y, Jia T, Chen L. Discovery of Potent, Specific, and Orally Available NLRP3 Inflammasome Inhibitors Based on Pyridazine Scaffolds for the Treatment of Septic Shock and Peritonitis. J Med Chem 2024; 67:15711-15737. [PMID: 39169676 DOI: 10.1021/acs.jmedchem.4c01341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The NLRP3 inflammasome is a multiprotein complex that is a component of the innate immune system, involved in the production of pro-inflammatory cytokines. Its abnormal activation is associated with many inflammatory diseases. In this study, we designed and synthesized a series of NLRP3 inflammasome inhibitors based on pyridazine scaffolds. Among them, P33 exhibited significant inhibitory effects against nigericin-induced IL-1β release in THP-1 cells, BMDMs, and PBMCs, with IC50 values of 2.7, 15.3, and 2.9 nM, respectively. Mechanism studies indicated that P33 directly binds to NLRP3 protein (KD = 17.5 nM), inhibiting NLRP3 inflammasome activation and pyroptosis by suppressing ASC oligomerization during NLRP3 assembly. Additionally, P33 displayed excellent pharmacokinetic properties, with an oral bioavailability of 62%. In vivo efficacy studies revealed that P33 significantly ameliorated LPS-induced septic shock and MSU crystal-induced peritonitis in mice. These results indicate that P33 has great potential for further development as a candidate for treating NLRP3 inflammasome-mediated diseases.
Collapse
Affiliation(s)
- Zhiyuan Fu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yangqin Duan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Heying Pei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yurong Zou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Chen
- Innovation Center of Nursing Research and Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Tao Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziyan Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Yan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kaiyue Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoying Cai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaxin Teng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Jia
- Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| | - Lijuan Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| |
Collapse
|
8
|
Coll RC, Schroder K. Inflammasome components as new therapeutic targets in inflammatory disease. Nat Rev Immunol 2024:10.1038/s41577-024-01075-9. [PMID: 39251813 DOI: 10.1038/s41577-024-01075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/11/2024]
Abstract
Inflammation drives pathology in many human diseases for which there are no disease-modifying drugs. Inflammasomes are signalling platforms that can induce pathological inflammation and tissue damage, having potential as an exciting new class of drug targets. Small-molecule inhibitors of the NLRP3 inflammasome that are now in clinical trials have demonstrated proof of concept that inflammasomes are druggable, and so drug development programmes are now focusing on other key inflammasome molecules. In this Review, we describe the potential of inflammasome components as candidate drug targets and the novel inflammasome inhibitors that are being developed. We discuss how the signalling biology of inflammasomes offers mechanistic insights for therapeutic targeting. We also discuss the major scientific and technical challenges associated with drugging these molecules during preclinical development and clinical trials.
Collapse
Affiliation(s)
- Rebecca C Coll
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| | - Kate Schroder
- Institute for Molecular Bioscience (IMB), The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
9
|
Gastaldi S, Giordano M, Blua F, Rubeo C, Boscaro V, Femminò S, Comità S, Gianquinto E, Landolfi V, Marini E, Gallicchio M, Spyrakis F, Pagliaro P, Bertinaria M, Penna C. Novel NLRP3 inhibitor INF195: Low doses provide effective protection against myocardial ischemia/reperfusion injury. Vascul Pharmacol 2024; 156:107397. [PMID: 38897555 DOI: 10.1016/j.vph.2024.107397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Several factors contribute to ischemia/reperfusion injury (IRI), including activation of the NLRP3 inflammasome and its byproducts, such as interleukin-1β (IL-1β) and caspase-1. However, NLRP3 may paradoxically exhibit cardioprotective properties. This study aimed to assess the protective effects of the novel NLRP3 inhibitor, INF195, both in vitro and ex vivo. METHODS To investigate the relationship between NLRP3 and myocardial IRI, we synthetized a series of novel NLRP3 inhibitors, and investigated their putative binding mode via docking studies. Through in vitro studies we identified INF195 as optimal for NLRP3 inhibition. We measured infarct-size in isolated mouse hearts subjected to 30-min global ischemia/one-hour reperfusion in the presence of three different doses of INF195 (5, 10, or 20-μM). We analyzed caspase-1 and IL-1β concentration in cardiac tissue homogenates by ELISA. Statistical significance was determined using one-way ANOVA followed by Tukey's test. RESULTS AND CONCLUSION INF195 reduces NLRP3-induced pyroptosis in human macrophages. Heart pre-treatment with 5 and 10-μM INF195 significantly reduces both infarct size and IL-1β levels. Data suggest that intracardiac NLRP3 activation contributes to IRI and that low doses of INF195 exert cardioprotective effects by reducing infarct size. However, at 20-μM, INF195 efficacy declines, leading to a lack of cardioprotection. Research is required to determine if high doses of INF195 have off-target effects or dual roles, potentially eliminating both harmful and cardioprotective functions of NLRP3. Our findings highlight the potential of a new chemical scaffold, amenable to further optimization, to provide NLRP3 inhibition and cardioprotection in the ischemia/reperfusion setting.
Collapse
Affiliation(s)
- Simone Gastaldi
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy
| | - Magalì Giordano
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Federica Blua
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy
| | - Chiara Rubeo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Valentina Boscaro
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Stefano Comità
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy
| | - Vanessa Landolfi
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Elisabetta Marini
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy
| | - Margherita Gallicchio
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Torino, Italy; INRC, Bologna, Italy.
| | - Massimo Bertinaria
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy; Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Torino, Italy.
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Torino, Italy; INRC, Bologna, Italy
| |
Collapse
|
10
|
Doedens JR, Diamond C, Harrison D, Bock MG, Clarke N, Watt AP, Gabel CA. The ester-containing prodrug NT-0796 enhances delivery of the NLRP3 inflammasome inhibitor NDT-19795 to monocytic cells expressing carboxylesterase-1. Biochem Pharmacol 2024; 227:116455. [PMID: 39069136 DOI: 10.1016/j.bcp.2024.116455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
NT-0796 is an ester prodrug which is metabolized by carboxylesterase-1 (CES1) to yield the carboxylic acid NDT-19795, an inhibitor of the NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome. When applied to human monocytes/macrophages which express CES1, however, NT-0796 is much more potent at inhibiting NLRP3 inflammasome activation than is NDT-19795. Comparison of the binding of NDT-19795 and NT-0796 in a cell-based NLRP3 target engagement assay confirms that NDT-19795 is the active species. Moreover, microsomes expressing CES1 efficiently convert NT-0796 to NDT-19795, confirming CES1-dependent activation. To understand the basis for the enhanced potency of the ester prodrug species in human monocytes, we analyzed the accumulation and de-esterification of NT-0796 in cultured cells. Our studies reveal NT-0796 rapidly accumulates in cells, achieving estimated cellular concentrations above those applied to the medium, with concomitant metabolism to NDT-19795 in CES1-expressing cells. Using cells lacking CES1 or a poorly hydrolysable NT-0796 analog demonstrated that de-esterification is not required for NT-0796 to achieve high cellular levels. As a result of a dynamic equilibrium whereby NDT-19795 formed intracellularly is subsequently released to the medium, concentrations of NT-0796 sufficient to inhibit NLRP3 can be completely metabolized to NDT-19795 resulting in a transient pharmacodynamic response. In contrast, when NDT-19795 is applied directly to cells, observed cell-associated levels are below those present in the medium and remain stable over time. Dynamics observed within the context of a closed tissue culture system highlight the utility of NT-0796 as a vehicle for delivering the NDT-19795 acid payload to CES1 expressing cells.
Collapse
Affiliation(s)
| | | | - David Harrison
- Nodthera Ltd, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | | | - Nicholas Clarke
- Nodthera Ltd, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Alan P Watt
- Nodthera Ltd, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | | |
Collapse
|
11
|
Wu XY, Zhao MJ, Liao W, Liu T, Liu JY, Gong JH, Lai X, Xu XS. Oridonin attenuates liver ischemia-reperfusion injury by suppressing PKM2/NLRP3-mediated macrophage pyroptosis. Cell Immunol 2024; 401-402:104838. [PMID: 38810591 DOI: 10.1016/j.cellimm.2024.104838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND The NOD-like receptor protein 3 (NLRP3) mediated pyroptosis of macrophages is closely associated with liver ischemia reperfusion injury (IRI). As a covalent inhibitor of NLRP3, Oridonin (Ori), has strong anti-inflammasome effect, but its effect and mechanisms for liver IRI are still unknown. METHODS Mice and liver macrophages were treated with Ori, respectively. Co-IP and LC-MS/MS analysis of the interaction between PKM2 and NLRP3 in macrophages. Liver damage was detected using H&E staining. Pyroptosis was detected by WB, TEM, and ELISA. RESULTS Ori ameliorated liver macrophage pyroptosis and liver IRI. Mechanistically, Ori inhibited the interaction between pyruvate kinase M2 isoform (PKM2) and NLRP3 in hypoxia/reoxygenation(H/R)-induced macrophages, while the inhibition of PKM2/NLRP3 reduced liver macrophage pyroptosis and liver IRI. CONCLUSION Ori exerted protective effects on liver IRI via suppressing PKM2/NLRP3-mediated liver macrophage pyroptosis, which might become a potential therapeutic target in the clinic.
Collapse
Affiliation(s)
- Xin-Yi Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Min-Jie Zhao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Wei Liao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Tao Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Jun-Yan Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Jun-Hua Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Xing Lai
- Department of Hepatobiliary Surgery, the People's Hospital of Tongnan District Chongqing City, China.
| | - Xue-Song Xu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, China.
| |
Collapse
|
12
|
Hung TW, Hsieh YH, Lee HL, Ting YH, Lin CL, Chao WW. Renoprotective effect of rosmarinic acid by inhibition of indoxyl sulfate-induced renal interstitial fibrosis via the NLRP3 inflammasome signaling. Int Immunopharmacol 2024; 135:112314. [PMID: 38788450 DOI: 10.1016/j.intimp.2024.112314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
We previously reported that rosmarinic acid (RA) ameliorated renal fibrosis in a unilateral ureteral obstruction (UUO) murine model of chronic kidney disease. This study aimed to determine whether RA attenuates indoxyl sulfate (IS)-induced renal fibrosis by regulating the activation of the NLRP3 inflammasome/IL-1β/Smad circuit. We discovered the NLRP3 inflammasome was activated in the IS treatment group and downregulated in the RA-treated group in a dose-dependent manner. Additionally, the downstream effectors of the NLRP3 inflammasome, cleaved-caspase-1 and cleaved-IL-1β showed similar trends in different groups. Moreover, RA administration significantly decreased the ROS levels of reactive oxygen species in IS-treated cells. Our data showed that RA treatment significantly inhibited Smad-2/3 phosphorylation. Notably, the effects of RA on NLRP3 inflammasome/IL-1β/Smad and fibrosis signaling were reversed by the siRNA-mediated knockdown of NLRP3 or caspase-1 in NRK-52E cells. In vivo, we demonstrated that expression levels of NLRP3, c-caspase-1, c-IL-1β, collagen I, fibronectin and α-SMA, and TGF- β 1 were downregulated after treatment of UUO mice with RA or RA + MCC950. Our findings suggested RA and MCC950 synergistically inhibited UUO-induced NLRP3 signaling activation, revealing their renoprotective properties and the potential for combinatory treatment of renal fibrosis and chronic kidney inflammation.
Collapse
Affiliation(s)
- Tung-Wei Hung
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Division of Nephrology, Department of Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Hsiang-Lin Lee
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Deptartment of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yi-Hsuan Ting
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chu-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Wen-Wan Chao
- Department of Nutrition and Health Sciences, Kainan University, Taoyuan 33857, Taiwan.
| |
Collapse
|
13
|
Doedens JR, Smolak P, Nguyen M, Wescott H, Diamond C, Schooley K, Billinton A, Harrison D, Koller BH, Watt AP, Gabel CA. Pharmacological Analysis of NLRP3 Inflammasome Inhibitor Sodium [(1,2,3,5,6,7-Hexahydro-s-indacen-4-yl)carbamoyl][(1-methyl-1 H-pyrazol-4-yl)({[(2 S)-oxolan-2-yl]methyl})sulfamoyl]azanide in Cellular and Mouse Models of Inflammation Provides a Translational Framework. ACS Pharmacol Transl Sci 2024; 7:1438-1456. [PMID: 38751618 PMCID: PMC11091978 DOI: 10.1021/acsptsci.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
Interleukin (IL)-1β is an apex proinflammatory cytokine produced in response to tissue injury and infection. The output of IL-1β from monocytes and macrophages is regulated not only by transcription and translation but also post-translationally. Release of the active cytokine requires activation of inflammasomes, which couple IL-1β post-translational proteolysis with pyroptosis. Among inflammasome platforms, NOD-like receptor pyrin domain-containing protein 3 (NLRP3) is implicated in the pathogenesis of numerous human disorders in which disease-specific danger-associated molecular patterns (DAMPS) are positioned to drive its activation. As a promising therapeutic target, numerous candidate NLRP3-targeting therapeutics have been described and demonstrated to provide benefits in the context of animal disease models. While showing benefits, published preclinical studies have not explored dose-response relationships within the context of the models. Here, the preclinical pharmacology of a new chemical entity, [(1,2,3,5,6,7-hexahydro-s-indacen-4-yl)carbamoyl][(1-methyl-1H-pyrazol-4-yl)({[(2S)-oxolan-2-yl]methyl})sulfamoyl]azanide (NT-0249), is detailed, establishing its potency and selectivity as an NLRP3 inhibitor. NT-0249 also is evaluated in two acute in vivo mouse challenge models where pharmacodynamic/pharmacokinetic relationships align well with in vitro blood potency assessments. The therapeutic utility of NT-0249 is established in a mouse model of cryopyrin-associated periodic syndrome (CAPS). In this model, mice express a human gain-of-function NLRP3 allele and develop chronic and progressive IL-1β-dependent autoinflammatory disease. NT-0249 dose-dependently reduced multiple inflammatory biomarkers in this model. Significantly, NT-0249 decreased mature IL-1β levels in tissue homogenates, confirming in vivo target engagement. Our findings highlight not only the pharmacological attributes of NT-0249 but also provide insight into the extent of target suppression that will be required to achieve clinical benefit.
Collapse
Affiliation(s)
| | - Pamela Smolak
- NodThera,
Inc., Seattle, Washington 98103, United States
| | - MyTrang Nguyen
- Department
of Genetics, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | | | | | - Ken Schooley
- NodThera,
Inc., Seattle, Washington 98103, United States
| | - Andy Billinton
- NodThera
Ltd, Little Chesterford,
Saffron Walden, Essex CB10
1XL, U.K.
| | - David Harrison
- NodThera
Ltd, Little Chesterford,
Saffron Walden, Essex CB10
1XL, U.K.
| | - Beverly H. Koller
- Department
of Genetics, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Alan P. Watt
- NodThera
Ltd, Little Chesterford,
Saffron Walden, Essex CB10
1XL, U.K.
| | | |
Collapse
|
14
|
Huang C, Liu J, Chen Y, Sun S, Kang T, Jiang Y, Li X. Discovery of novel biphenyl-sulfonamide analogues as NLRP3 inflammasome inhibitors. Bioorg Chem 2024; 146:107263. [PMID: 38492493 DOI: 10.1016/j.bioorg.2024.107263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
The aberrant activation of NLRP3 inflammasome has been observed in various human diseases. Targeting the NLRP3 protein with small molecule inhibitors shows immense potential as an effective strategy for disease intervention. Herein, a series of novel biphenyl-sulfonamide NLRP3 inflammasome inhibitors were designed and synthesized. The representative compound H28 was identified as potent and specific NLRP3 inflammasome inhibitor with IC50 values of 0.57 μM. Preliminary mechanistic studies have revealed that compound H28 exhibits direct binding to the NLRP3 protein (KD: 1.15 μM), effectively inhibiting the assembly and activation of the NLRP3 inflammasome. The results in a mouse acute peritonitis model revealed that H28 effectively inhibit the NLRP3 inflammasome pathway, demonstrating their anti-inflammatory properties. Our findings strongly support the further development of H28 as potential lead compound for treating NLRP3-related diseases.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jinyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yuxin Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Simin Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Tongtong Kang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong 266071, China.
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong 266071, China.
| |
Collapse
|
15
|
Fireman EM, Fireman Klein E. Association between silicosis and autoimmune disease. Curr Opin Allergy Clin Immunol 2024; 24:45-50. [PMID: 38277164 PMCID: PMC10906195 DOI: 10.1097/aci.0000000000000966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
PURPOSE OF REVIEW There is a well established association between silica inhalational exposure and autoimmune disease, particularly in the context of intense exposure. We will provide in this article an update overview of new sources of silica dust exposure, with evidences of mechanisms from human and animal studies for association between silica and autoimmune diseases, their early detection of silicosis and new options for treatment. RECENT FINDINGS New industries such as jewelry polishing, denim jean production, fabrication of artificial stone benchtops, glass manufacturing and glassware has led to re-emergence of silicosis around the world. Silicosis with long term exposure to dust containing crystalline silica has been examined as a possible risk factor with respect to several autoimmune diseases as scleroderma, rheumatoid arthritis, lupus erythematosus, and some types of small vessel vasculitis with renal involvement. The dust may act to promote or accelerate disease development, requiring some other factors to break immune tolerance or initiate autoimmunity. Autophagy, apoptosis, or pyroptosis-related signaling pathways have also been suggested to contribute to the formation of those pathways with coordination of environmental co-exposure that can magnify autoimmune vulnerability. SUMMARY Better understanding the mechanisms that involve silica -induced autoimmune diseases may contribute to early diagnosis.
Collapse
Affiliation(s)
- Elizabeth Miriam Fireman
- Department of Occupational Environmental Health, School of Public Health, Tel Aviv School of Medicine Tel Aviv University, Tel Aviv
| | - Einat Fireman Klein
- Pulmonary Division, Lady Davis Carmel Medical Center, Faculty of Medicine Technion Institute of Technology, Haifa, Israel
| |
Collapse
|
16
|
Kargbo RB. Advancements in Predictive Medicine: NLRP3 Inflammasome Inhibitors and AI-Driven Predictive Health Analytics. ACS Med Chem Lett 2024; 15:331-333. [PMID: 38505847 PMCID: PMC10945530 DOI: 10.1021/acsmedchemlett.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 03/21/2024] Open
Abstract
Recent advancements in predictive medicine are significantly reshaping the field, primarily through developing novel NLRP3 inflammasome inhibitors and applying AI-driven predictive health analytics. NLRP3 inflammasome inhibitors offer new therapeutic strategies for treating inflammatory and neurodegenerative diseases. Concurrently, AI's role in predictive health analytics marks a transformative shift in disease management and personalized healthcare. By analyzing complex biomarker data, AI provides crucial insights into individual health trajectories, enabling early interventions and customized treatment plans. This convergence of cutting-edge therapies and AI technology heralds a new era in precision medicine and personalized healthcare strategies.
Collapse
|
17
|
Bo W, Duan Y, Zou Y, Ma Z, Yang T, Wang P, Guo T, Fu Z, Wang J, Fan L, Liu J, Wang T, Chen L. Local Scaffold Diversity-Contributed Generator for Discovering Potential NLRP3 Inhibitors. J Chem Inf Model 2024; 64:737-748. [PMID: 38258981 DOI: 10.1021/acs.jcim.3c01818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Deep generative models have become crucial tools in de novo drug design. In current models for multiobjective optimization in molecular generation, the scaffold diversity is limited when multiple constraints are introduced. To enhance scaffold diversity, we herein propose a local scaffold diversity-contributed generator (LSDC), which can be utilized to generate diverse lead compounds capable of satisfying multiple constraints. Compared to the state-of-the-art methods, molecules generated by LSDC exhibit greater diversity when applied to the generation of inhibitors targeting the NOD-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3). We present 12 molecules, some of which feature previously unreported scaffolds, and demonstrate their reasonable docking binding modes. Consequently, the modification of selected scaffolds and subsequent bioactivity evaluation lead to the discovery of two potent NLRP3 inhibitors, A22 and A14, with IC50 values of 38.1 nM and 44.43 nM, respectively. And the oral bioavailability of compound A14 is very high (F is 83.09% in mice). This work contributes to the discovery of novel NLRP3 inhibitors and provides a reference for integrating AI-based generation with wet experiments.
Collapse
Affiliation(s)
- Weichen Bo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yangqin Duan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yurong Zou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziyan Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peng Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyuan Fu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianmin Wang
- The Interdisciplinary Graduate Program in Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
| | - Linchuan Fan
- College of Automation, Chongqing University, Chongqing 40000, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Taijin Wang
- Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu 610041, China
| | - Lijuan Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu 610041, China
| |
Collapse
|
18
|
Yang X, Zhang W, Wang L, Zhao Y, Wei W. Metabolite-sensing GPCRs in rheumatoid arthritis. Trends Pharmacol Sci 2024; 45:118-133. [PMID: 38182481 DOI: 10.1016/j.tips.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024]
Abstract
Persistent inflammation in damaged joints results in metabolic dysregulation of the synovial microenvironment, causing pathogenic alteration of cell activity in rheumatoid arthritis (RA). Recently, the role of metabolite and metabolite-sensing G protein-coupled receptors (GPCRs) in the RA-related inflammatory immune response (IIR) has become a focus of research attention. These GPCRs participate in the progression of RA by modulating immune cell activation, migration, and inflammatory responses. Here, we discuss recent evidence implicating metabolic dysregulation in RA pathogenesis, focusing on the connection between RA-related IIR and GPCR signals originating from the synovial joint and gut. Furthermore, we discuss future directions for targeting metabolite-sensing GPCRs for therapeutic benefit, emphasizing the importance of identifying endogenous ligands and investigating the various transduction mechanisms involved.
Collapse
Affiliation(s)
- Xuezhi Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Wankang Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Luping Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
19
|
Velcicky J, Janser P, Gommermann N, Brenneisen S, Ilic S, Vangrevelinghe E, Stiefl N, Boettcher A, Arnold C, Malinverni C, Dawson J, Murgasova R, Desrayaud S, Beltz K, Hinniger A, Dekker C, Farady CJ, Mackay A. Discovery of Potent, Orally Bioavailable, Tricyclic NLRP3 Inhibitors. J Med Chem 2024; 67:1544-1562. [PMID: 38175811 DOI: 10.1021/acs.jmedchem.3c02098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
NLRP3 is a molecular sensor recognizing a wide range of danger signals. Its activation leads to the assembly of an inflammasome that allows for activation of caspase-1 and subsequent maturation of IL-1β and IL-18, as well as cleavage of Gasdermin-d and pyroptotic cell death. The NLRP3 inflammasome has been implicated in a plethora of diseases including gout, type 2 diabetes, atherosclerosis, Alzheimer's disease, and cancer. In this publication, we describe the discovery of a novel, tricyclic, NLRP3-binding scaffold by high-throughput screening. The hit (1) could be optimized into an advanced compound NP3-562 demonstrating excellent potency in human whole blood and full inhibition of IL-1β release in a mouse acute peritonitis model at 30 mg/kg po dose. An X-ray structure of NP3-562 bound to the NLRP3 NACHT domain revealed a unique binding mode as compared to the known sulfonylurea-based inhibitors. In addition, NP3-562 shows also a good overall development profile.
Collapse
Affiliation(s)
- Juraj Velcicky
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Philipp Janser
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | | | - Slavica Ilic
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | | | | | | | | | - Janet Dawson
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | | | - Karen Beltz
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | - Carien Dekker
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | - Angela Mackay
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| |
Collapse
|
20
|
Zhou N, Zhang Y, Jiao Y, Nan J, Xia A, Mu B, Lin G, Li X, Zhang S, Yang S, Li L. Discovery of a novel pyroptosis inhibitor acting though modulating glutathionylation to suppress NLRP3-related signal pathway. Int Immunopharmacol 2024; 127:111314. [PMID: 38081102 DOI: 10.1016/j.intimp.2023.111314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 01/18/2024]
Abstract
Pyroptosis is a proinflammatory type of regulated cell death and has been involved in many pathological processes. Inhibition of pyroptosis is thought to be a promising strategy for the treatment of related diseases. Here, we performed a phenotypic screening against NLRP3-dependent pyroptosis and obtained the novel compound N77 after structure optimization. N77 showed a half-maximal effective concentration (EC50) of 0.070 ± 0.008 μM against cell pyroptosis induced by nigericin, and exhibited a remarkable ability to prevent NLRP3-dependent inflammasome activation and the release of IL-1β. Chemical proteomics revealed the biological target of N77 to be glutathione-S-transferase Mu 1 (GSTM1); our mechanism of action studies indicated that GSTM1 might act as a negative regulator of NLRP3 inflammasome activation by modulating the glutathionylation of caspase-1. In vivo, N77 substantially alleviated the inflammatory reaction in a pyroptosis-related acute keratitis model. Overall, we identified a novel pyroptosis inhibitor and revealed a new regulatory mechanism of pyroptosis. Our findings suggest an alternative potential therapeutic strategy for pyroptosis-related diseases.
Collapse
Affiliation(s)
- Nenghua Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yun Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Ophthalmology and Macular Disease Research Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Jiao
- Laboratory of Anaesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu China
| | - Jinshan Nan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Anjie Xia
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Ophthalmology and Macular Disease Research Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Mu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Basic Medical College of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Guifeng Lin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xun Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Ophthalmology and Macular Disease Research Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shanshan Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shengyong Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Linli Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
21
|
Chen PK, Tang KT, Chen DY. The NLRP3 Inflammasome as a Pathogenic Player Showing Therapeutic Potential in Rheumatoid Arthritis and Its Comorbidities: A Narrative Review. Int J Mol Sci 2024; 25:626. [PMID: 38203796 PMCID: PMC10779699 DOI: 10.3390/ijms25010626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease characterized by chronic synovitis and the progressive destruction of cartilage and bone. RA is commonly accompanied by extra-articular comorbidities. The pathogenesis of RA and its comorbidities is complex and not completely elucidated. The assembly of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activates caspase-1, which induces the maturation of interleukin (IL)-1β and IL-18 and leads to the cleavage of gasdermin D with promoting pyroptosis. Accumulative evidence indicates the pathogenic role of NLRP3 inflammasome signaling in RA and its comorbidities, including atherosclerotic cardiovascular disease, osteoporosis, and interstitial lung diseases. Although the available therapeutic agents are effective for RA treatment, their high cost and increased infection rate are causes for concern. Recent evidence revealed the components of the NLRP3 inflammasome as potential therapeutic targets in RA and its comorbidities. In this review, we searched the MEDLINE database using the PubMed interface and reviewed English-language literature on the NLRP3 inflammasome in RA and its comorbidities from 2000 to 2023. The current evidence reveals that the NLRP3 inflammasome contributes to the pathogenesis of RA and its comorbidities. Consequently, the components of the NLRP3 inflammasome signaling pathway represent promising therapeutic targets, and ongoing research might lead to the development of new, effective treatments for RA and its comorbidities.
Collapse
Affiliation(s)
- Po-Ku Chen
- Rheumatology and Immunology Center, China Medical University Hospital, No. 2, Yude Road, Taichung 40447, Taiwan;
- College of Medicine, China Medical University, Taichung 40447, Taiwan
- Translational Medicine Laboratory, Rheumatology and Immunology Center, Taichung 40447, Taiwan
| | - Kuo-Tung Tang
- College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan;
- Division of Allergy, Immunology, and Rheumatology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei 112304, Taiwan
| | - Der-Yuan Chen
- Rheumatology and Immunology Center, China Medical University Hospital, No. 2, Yude Road, Taichung 40447, Taiwan;
- College of Medicine, China Medical University, Taichung 40447, Taiwan
- Translational Medicine Laboratory, Rheumatology and Immunology Center, Taichung 40447, Taiwan
- College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan;
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|