1
|
Liu G, Zhang T, Qian S, Zhang X, Lou H, Fan P. Conjugation with the XJB peptide enhanced neuroprotective effect of honokiol via SIRT3 modulation. Eur J Med Chem 2025; 289:117460. [PMID: 40054297 DOI: 10.1016/j.ejmech.2025.117460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
Mitochondria play a crucial role in cellular processes such as growth, differentiation, and energy conversion. Dysfunctional mitochondria have been implicated in Alzheimer's disease (AD), making mitochondrial improvement a promising therapeutic approach. SIRT3, a mitochondrial deacetylase, modulates mitochondrial function by deacetylating associated proteins. This study aimed to enhance the activity of honokiol, a natural SIRT3 modulator, and improve mitochondrial function for neuroprotective activity, using mitochondria targeting strategy. We synthesized mitochondrial targeting peptide conjugates using XJB as a carrier and found that honokiol conjugates exhibited lower toxicity and higher activity on neuronal injury models in vitro and in vivo (Zebrafish model) at lower concentrations compared to honokiol. The neuroprotective mechanism may involve the activation of cellular autophagy-related pathways, promotion of SIRT3 pathway activation, and up-regulation of mitochondrial fusion-associated protein Mfn-1 expression under damaged conditions. This study offers a promising approach for developing anti-Alzheimer's disease (AD) natural product derivatives based on SIRT3 regulation.
Collapse
Affiliation(s)
- Guoliang Liu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Tao Zhang
- Shandong Qidu Pharmaceutical Research Institute, Zibo, 255400, PR China
| | - Shunmeng Qian
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Xiaoshuang Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Peihong Fan
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
2
|
Zhra M, Elahi MA, Tariq A, Abu-Zaid A, Yaqinuddin A. Sirtuins and Gut Microbiota: Dynamics in Health and a Journey from Metabolic Dysfunction to Hepatocellular Carcinoma. Cells 2025; 14:466. [PMID: 40136715 PMCID: PMC11941559 DOI: 10.3390/cells14060466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic dysfunction leading to non-alcoholic fatty liver disease (NAFLD) exhibits distinct molecular and immune signatures that are influenced by factors like gut microbiota. The gut microbiome interacts with the liver via a bidirectional relationship with the gut-liver axis. Microbial metabolites, sirtuins, and immune responses are pivotal in different metabolic diseases. This extensive review explores the complex and multifaceted interrelationship between sirtuins and gut microbiota, highlighting their importance in health and disease, particularly metabolic dysfunction and hepatocellular carcinoma (HCC). Sirtuins (SIRTs), classified as a group of NAD+-dependent deacetylases, serve as crucial modulators of a wide spectrum of cellular functions, including metabolic pathways, the inflammatory response, and the process of senescence. Their subcellular localization and diverse functions link them to various health conditions, including NAFLD and cancer. Concurrently, the gut microbiota, comprising diverse microorganisms, significantly influences host metabolism and immune responses. Recent findings indicate that sirtuins modulate gut microbiota composition and function, while the microbiota can affect sirtuin activity. This bidirectional relationship is particularly relevant in metabolic disorders, where dysbiosis contributes to disease progression. The review highlights recent findings on the roles of specific sirtuins in maintaining gut health and their implications in metabolic dysfunction and HCC development. Understanding these interactions offers potential therapeutic avenues for managing diseases linked to metabolic dysregulation and liver pathology.
Collapse
Affiliation(s)
- Mahmoud Zhra
- Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Muhammad Affan Elahi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.A.E.); (A.A.-Z.)
| | - Aamira Tariq
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad 45550, Pakistan
| | - Ahmed Abu-Zaid
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.A.E.); (A.A.-Z.)
| | - Ahmed Yaqinuddin
- Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
3
|
Jaramillo-Torres MJ, Limpert RH, Butak WJ, Cohen KE, Whitaker-Hilbig AA, Durand MJ, Freed JK, SenthilKumar G. Promoting Resiliency to Stress in the Vascular Endothelium. Basic Clin Pharmacol Toxicol 2025; 136:e70001. [PMID: 39936288 DOI: 10.1111/bcpt.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025]
Abstract
By 2050, roughly 60% of the population will have cardiovascular disease. While a substantial amount of data has been generated over the last few decades that has aided in our understanding of cardiovascular disease pathology, less is known about how to increase resiliency to cardiovascular risk factors that individuals are exposed to on a daily basis. The vascular endothelium is considered the first line of defence against circulating noxious stimuli and, when dysfunctional, is an early risk factor for the development of cardiovascular disease. A vast amount of data has been generated demonstrating how external stress impairs the vascular endothelium; however, there is a paucity of knowledge regarding how to amplify protective pathways and ward off stress and the development of disease, which is the focus of this review. Targeting known protective endothelial pathways may be feasible to increase resiliency to vascular stress. Leveraging stress to boost defence mechanisms within the vascular endothelium is also proposed and may help identify novel therapeutic targets to protect individuals from the stress of everyday life.
Collapse
Affiliation(s)
- Maria J Jaramillo-Torres
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Rachel H Limpert
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - William J Butak
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Katie E Cohen
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Alicen A Whitaker-Hilbig
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Matthew J Durand
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Julie K Freed
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Gopika SenthilKumar
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
4
|
Meng Y, Sun J, Zhang G, Yu T, Piao H. Fasting: A Complex, Double-Edged Blade in the Battle Against Doxorubicin-Induced Cardiotoxicity. Cardiovasc Toxicol 2024; 24:1395-1409. [PMID: 39354217 DOI: 10.1007/s12012-024-09925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
In recent years, there has been a surge in the popularity of fasting as a method to enhance one's health and overall well-being. Fasting is a customary practice characterized by voluntary refraining from consuming food and beverages for a specified duration, ranging from a few hours to several days. The potential advantages of fasting, including enhanced insulin sensitivity, decreased inflammation, and better cellular repair mechanisms, have been well documented. However, the effects of fasting on cancer therapy have been the focus of recent scholarly investigations. Doxorubicin (Dox) is one of the most widely used chemotherapy medications for cancer treatment. Unfortunately, cardiotoxicity, which may lead to heart failure and other cardiovascular issues, has been linked to Dox usage. This study aims to comprehensively examine the possible advantages and disadvantages of fasting concerning Dox-induced cardiotoxicity. Researchers have investigated the potential benefits of fasting in lowering the risk of Dox-induced cardiac damage to solve this problem. Nevertheless, new studies indicate that prolonged alternate-day fasting may adversely affect the heart's capacity to manage the cardiotoxic properties of Dox. Though fasting may benefit overall health, it is essential to proceed cautiously and consider the potential risks in certain circumstances.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Tao Yu
- Department of Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Liaoning Province Cancer Hospital, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| | - Haozhe Piao
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Liaoning Province Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| |
Collapse
|
5
|
Fernandez F, Griffiths LR, Sutherland HG, Cole MH, Fitton JH, Winberg P, Schweitzer D, Hopkins LN, Meyer BJ. Sirtuin Proteins and Memory: A Promising Target in Alzheimer's Disease Therapy? Nutrients 2024; 16:4088. [PMID: 39683482 DOI: 10.3390/nu16234088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Sirtuins (SIRTs), nicotine adenine dinucleotide (+)-dependent histone deacetylases, have emerged as critical regulators in many signalling pathways involved in a wide range of biological processes. Currently, seven mammalian SIRTs have been characterized and are found across a number of cellular compartments. There has been considerable interest in the role of SIRTs in the brain due to their role in a plethora of metabolic- and age-related diseases, including their involvement in learning and memory function in physiological and pathophysiological conditions. Although cognitive function declines over the course of healthy ageing, neurological disorders including Alzheimer's disease (AD) can be associated with progressive cognitive impairments. This review aimed to report and integrate recent advances in the understanding of the role of SIRTs in cognitive function and dysfunction in the context of AD. We have also reviewed the use of selective and/or natural SIRT activators as potential therapeutic agents and/or adjuvants for AD.
Collapse
Affiliation(s)
- Francesca Fernandez
- School of Behavioural and Health Sciences, Faculty of Heath Sciences, Australian Catholic University, Banyo, QLD 4014, Australia
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
- Healthy Brain and Mind Research Centre, Australian Catholic University, Fitzroy, VIC 3065, Australia
| | - Lyn R Griffiths
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
| | - Heidi G Sutherland
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
| | - Michael H Cole
- School of Behavioural and Health Sciences, Faculty of Heath Sciences, Australian Catholic University, Banyo, QLD 4014, Australia
- Healthy Brain and Mind Research Centre, Australian Catholic University, Fitzroy, VIC 3065, Australia
| | - J Helen Fitton
- Venus Shell Systems Pty Ltd., Huskisson, NSW 2540, Australia
| | - Pia Winberg
- Venus Shell Systems Pty Ltd., Huskisson, NSW 2540, Australia
- School of Medical, Indigenous and Health Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Daniel Schweitzer
- Mater Centre of Neuroscience, 53 Raymond Terrace, South Brisbane, QLD 4066, Australia
- Department of Neurology, Wesley Hospital, 451 Coronation Drive, Auchenflower, QLD 4066, Australia
| | - Lloyd N Hopkins
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
| | - Barbara J Meyer
- School of Medical, Indigenous and Health Science, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
6
|
Zhao X, Wang Z, Wang L, Jiang T, Dong D, Sun M. The PINK1/Parkin signaling pathway-mediated mitophagy: a forgotten protagonist in myocardial ischemia/reperfusion injury. Pharmacol Res 2024; 209:107466. [PMID: 39419133 DOI: 10.1016/j.phrs.2024.107466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Myocardial ischemia causes extensive damage, further exacerbated by reperfusion, a phenomenon called myocardial ischemia/reperfusion injury (MIRI). Nowadays, the pathological mechanisms of MIRI have received extensive attention. Oxidative stress, multiple programmed cell deaths, inflammation and others are all essential pathological mechanisms contributing to MIRI. Mitochondria are the energy supply centers of cells. Numerous studies have found that abnormal mitochondrial function is an essential "culprit" of MIRI, and mitophagy mediated by the phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1)/Parkin signaling pathway is an integral part of maintaining mitochondrial function. Therefore, exploring the association between the PINK1/Parkin signaling pathway-mediated mitophagy and MIRI is crucial. This review will mainly summarize the crucial role of the PINK1/Parkin signaling pathway-mediated mitophagy in MIR-induced several pathological mechanisms and various potential interventions that affect the PINK1/Parkin signaling pathway-mediated mitophagy, thus ameliorating MIRI.
Collapse
Affiliation(s)
- Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China.
| | - Zheng Wang
- School of Medicine, Qilu Institute of Technology, Jinan 250200, China.
| | - Lijie Wang
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110033, China.
| | - Tao Jiang
- Rehabilitation Medicine Center, The Second Hospital of Shandong University, Jinan 250033, China.
| | - Dan Dong
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China.
| |
Collapse
|
7
|
Shen H, Qi X, Hu Y, Wang Y, Zhang J, Liu Z, Qin Z. Targeting sirtuins for cancer therapy: epigenetics modifications and beyond. Theranostics 2024; 14:6726-6767. [PMID: 39479446 PMCID: PMC11519805 DOI: 10.7150/thno.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/29/2024] [Indexed: 11/02/2024] Open
Abstract
Sirtuins (SIRTs) are well-known as nicotinic adenine dinucleotide+(NAD+)-dependent histone deacetylases, which are important epigenetic enzymes consisting of seven family members (SIRT1-7). Of note, SIRT1 and SIRT2 are distributed in the nucleus and cytoplasm, while SIRT3, SIRT4 and SIRT5 are localized in the mitochondria. SIRT6 and SIRT7 are distributed in the nucleus. SIRTs catalyze the deacetylation of various substrate proteins, thereby modulating numerous biological processes, including transcription, DNA repair and genome stability, metabolism, and signal transduction. Notably, accumulating evidence has recently underscored the multi-faceted roles of SIRTs in both the suppression and progression of various types of human cancers. Crucially, SIRTs have been emerging as promising therapeutic targets for cancer therapy. Thus, in this review, we not only present an overview of the molecular structure and function of SIRTs, but elucidate their intricate associations with oncogenesis. Additionally, we discuss the current landscape of small-molecule activators and inhibitors targeting SIRTs in the contexts of cancer and further elaborate their combination therapies, especially highlighting their prospective utility for future cancer drug development.
Collapse
Affiliation(s)
- Hui Shen
- Department of Respiratory and Critical Care Medicine, Department of Outpatient, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xinyi Qi
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yue Hu
- Department of Respiratory and Critical Care Medicine, Department of Outpatient, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yi Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- No. 989 Hospital of Joint Logistic Support Force of PLA, Luoyang 471031, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Zhongyu Liu
- No. 989 Hospital of Joint Logistic Support Force of PLA, Luoyang 471031, China
| | - Zheng Qin
- Department of Respiratory and Critical Care Medicine, Department of Outpatient, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
8
|
Lumpuy-Castillo J, Amador-Martínez I, Díaz-Rojas M, Lorenzo O, Pedraza-Chaverri J, Sánchez-Lozada LG, Aparicio-Trejo OE. Role of mitochondria in reno-cardiac diseases: A study of bioenergetics, biogenesis, and GSH signaling in disease transition. Redox Biol 2024; 76:103340. [PMID: 39250857 PMCID: PMC11407069 DOI: 10.1016/j.redox.2024.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are global health burdens with rising prevalence. Their bidirectional relationship with cardiovascular dysfunction, manifesting as cardio-renal syndromes (CRS) types 3 and 4, underscores the interconnectedness and interdependence of these vital organ systems. Both the kidney and the heart are critically reliant on mitochondrial function. This organelle is currently recognized as a hub in signaling pathways, with emphasis on the redox regulation mediated by glutathione (GSH). Mitochondrial dysfunction, including impaired bioenergetics, redox, and biogenesis pathways, are central to the progression of AKI to CKD and the development of CRS type 3 and 4. This review delves into the metabolic reprogramming and mitochondrial redox signaling and biogenesis alterations in AKI, CKD, and CRS. We examine the pathophysiological mechanisms involving GSH redox signaling and the AMP-activated protein kinase (AMPK)-sirtuin (SIRT)1/3-peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) axis in these conditions. Additionally, we explore the therapeutic potential of GSH synthesis inducers in mitigating these mitochondrial dysfunctions, as well as their effects on inflammation and the progression of CKD and CRS types 3 and 4.
Collapse
Affiliation(s)
- Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - Isabel Amador-Martínez
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico; Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Miriam Díaz-Rojas
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 43210, Columbus, Ohio, USA.
| | - Oscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Laura Gabriela Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| | - Omar Emiliano Aparicio-Trejo
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| |
Collapse
|
9
|
Kordowitzki P. Elucidating the Role of Sirtuin 3 in Mammalian Oocyte Aging. Cells 2024; 13:1592. [PMID: 39329773 PMCID: PMC11429517 DOI: 10.3390/cells13181592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
The field of reproductive biology has made significant progress in recent years, identifying specific molecular players that influence oocyte development and function. Among them, sirtuin 3 (SIRT3) has attracted particular attention for its central role in mediating mitochondrial function and cellular stress responses in oocytes. So far, studies have demonstrated that the knockdown of SIRT3 leads to a decrease in blastocyst formation and an increase in oxidative stress within an embryo, underscoring the importance of SIRT3 in maintaining the cellular redox balance critical for embryonic survival and growth. Furthermore, the literature reveals specific signaling pathways, such as the SIRT3- Glycogen synthase kinase-3 beta (GSK3β) deacetylation pathway, crucial for mitigating oxidative stress-related anomalies in oocyte meiosis, particularly under conditions like maternal diabetes. Overall, the emerging role of SIRT3 in regulating oocyte mitochondrial function and development highlights the critical importance of understanding the intricate connections between cellular metabolism, stress response pathways, and overall reproductive health and function. This knowledge could lead to the development of novel strategies to support oocyte quality and fertility, with far-reaching implications for assisted reproductive technologies and women's healthcare. This commentary aims to provide an overview of the importance of SIRT3 in oocytes by synthesizing results from a multitude of studies. The aim is to elucidate the role of SIRT3 in oocyte development, maturation, and aging and to identify areas where further research is needed.
Collapse
Affiliation(s)
- Pawel Kordowitzki
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
- Department of Gynecology Including Center of Oncological Surgery (CVK) and Department of Gynaecology (CBF), Charite, 13353 Berlin, Germany
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Wang L, Chen C, Zhou H, Tao L, Xu E. Nicotinamide Riboside-Driven Modulation of SIRT3/mtROS/JNK Signaling Pathways Alleviates Myocardial Ischemia-Reperfusion Injury. Int J Med Sci 2024; 21:2139-2148. [PMID: 39239543 PMCID: PMC11373543 DOI: 10.7150/ijms.97530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/24/2024] [Indexed: 09/07/2024] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury exacerbates cellular damage upon restoring blood flow to ischemic cardiac tissue, causing oxidative stress, inflammation, and apoptosis. This study investigates Nicotinamide Riboside (NR), a precursor of nicotinamide adenine dinucleotide (NAD+), for its cardioprotective effects. Administering NR to mice before I/R injury and evaluating heart function via echocardiography showed that NR significantly improved heart function, increased left ventricular ejection fraction (LVEF) and fractional shortening (FS), and reduced left ventricular end-diastolic (LVDd) and end-systolic diameters (LVSd). NR also restored E/A and E/e' ratios. It reduced cardiomyocyte apoptosis both in vivo and in vitro, inhibiting elevated caspase-3 activity and returning Bax protein levels to normal. In vitro, NR reduced the apoptotic rate in hydrogen peroxide (H2O2)-treated HL-1 cells from 30% to 10%. Mechanistically, NR modulated the SIRT3/mtROS/JNK pathway, reversing H2O2-induced SIRT3 downregulation, reducing mitochondrial reactive oxygen species (mtROS), and inhibiting JNK activation. Using SIRT3-knockout (SIRT3-KO) mice, we confirmed that NR's cardioprotective effects depend on SIRT3. Echocardiography showed that NR's benefits were abrogated in SIRT3-KO mice. In conclusion, NR provides significant cardioprotection against myocardial I/R injury by enhancing NAD+ levels and modulating the SIRT3/mtROS/JNK pathway, suggesting its potential as a novel therapeutic agent for ischemic heart diseases, meriting further clinical research.
Collapse
Affiliation(s)
- Lingqing Wang
- Department of Cardiovascular Internal Medicine, Taizhou First People's Hospital, Wenzhou Medical University, Zhejiang, China
| | - Changgong Chen
- Department of Cardiovascular Internal Medicine, Taizhou First People's Hospital, Wenzhou Medical University, Zhejiang, China
| | - Hao Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Luyuan Tao
- Department of Cardiovascular Internal Medicine, Taizhou First People's Hospital, Wenzhou Medical University, Zhejiang, China
| | - Enguo Xu
- Department of Cardiovascular Internal Medicine, Taizhou First People's Hospital, Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
11
|
Radosavljevic T, Brankovic M, Samardzic J, Djuretić J, Vukicevic D, Vucevic D, Jakovljevic V. Altered Mitochondrial Function in MASLD: Key Features and Promising Therapeutic Approaches. Antioxidants (Basel) 2024; 13:906. [PMID: 39199152 PMCID: PMC11351122 DOI: 10.3390/antiox13080906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD), encompasses a range of liver conditions from steatosis to nonalcoholic steatohepatitis (NASH). Its prevalence, especially among patients with metabolic syndrome, highlights its growing global impact. The pathogenesis of MASLD involves metabolic dysregulation, inflammation, oxidative stress, genetic factors and, notably, mitochondrial dysfunction. Recent studies underscore the critical role of mitochondrial dysfunction in MASLD's progression. Therapeutically, enhancing mitochondrial function has gained interest, along with lifestyle changes and pharmacological interventions targeting mitochondrial processes. The FDA's approval of resmetirom for metabolic-associated steatohepatitis (MASH) with fibrosis marks a significant step. While resmetirom represents progress, further research is essential to understand MASLD-related mitochondrial dysfunction fully. Innovative strategies like gene editing and small-molecule modulators, alongside lifestyle interventions, can potentially improve MASLD treatment. Drug repurposing and new targets will advance MASLD therapy, addressing its increasing global burden. Therefore, this review aims to provide a better understanding of the role of mitochondrial dysfunction in MASLD and identify more effective preventive and treatment strategies.
Collapse
Affiliation(s)
- Tatjana Radosavljevic
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milica Brankovic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.B.); (J.S.)
| | - Janko Samardzic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.B.); (J.S.)
| | - Jasmina Djuretić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dusan Vukicevic
- Uniklinik Mannheim, Theodor-Kutyer-Ufer 1-3, 68167 Mannheim, Germany;
| | - Danijela Vucevic
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Trubetskaya Street 8, Str. 2, 119991 Moscow, Russia
| |
Collapse
|
12
|
Juszczak F, Arnould T, Declèves AE. The Role of Mitochondrial Sirtuins (SIRT3, SIRT4 and SIRT5) in Renal Cell Metabolism: Implication for Kidney Diseases. Int J Mol Sci 2024; 25:6936. [PMID: 39000044 PMCID: PMC11241570 DOI: 10.3390/ijms25136936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Kidney diseases, including chronic kidney disease (CKD), diabetic nephropathy, and acute kidney injury (AKI), represent a significant global health burden. The kidneys are metabolically very active organs demanding a large amount of ATP. They are composed of highly specialized cell types in the glomerulus and subsequent tubular compartments which fine-tune metabolism to meet their numerous and diverse functions. Defective renal cell metabolism, including altered fatty acid oxidation or glycolysis, has been linked to both AKI and CKD. Mitochondria play a vital role in renal metabolism, and emerging research has identified mitochondrial sirtuins (SIRT3, SIRT4 and SIRT5) as key regulators of renal cell metabolic adaptation, especially SIRT3. Sirtuins belong to an evolutionarily conserved family of mainly NAD+-dependent deacetylases, deacylases, and ADP-ribosyl transferases. Their dependence on NAD+, used as a co-substrate, directly links their enzymatic activity to the metabolic status of the cell. In the kidney, SIRT3 has been described to play crucial roles in the regulation of mitochondrial function, and the antioxidative and antifibrotic response. SIRT3 has been found to be constantly downregulated in renal diseases. Genetic or pharmacologic upregulation of SIRT3 has also been associated with beneficial renal outcomes. Importantly, experimental pieces of evidence suggest that SIRT3 may act as an important energy sensor in renal cells by regulating the activity of key enzymes involved in metabolic adaptation. Activation of SIRT3 may thus represent an interesting strategy to ameliorate renal cell energetics. In this review, we discuss the roles of SIRT3 in lipid and glucose metabolism and in mediating a metabolic switch in a physiological and pathological context. Moreover, we highlight the emerging significance of other mitochondrial sirtuins, SIRT4 and SIRT5, in renal metabolism. Understanding the role of mitochondrial sirtuins in kidney diseases may also open new avenues for innovative and efficient therapeutic interventions and ultimately improve the management of renal injuries.
Collapse
Affiliation(s)
- Florian Juszczak
- Laboratory of Molecular and Metabolic Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), 20, Place du Parc, 7000 Mons, Belgium;
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61, Rue de Bruxelles, 5000 Namur, Belgium;
| | - Anne-Emilie Declèves
- Laboratory of Molecular and Metabolic Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), 20, Place du Parc, 7000 Mons, Belgium;
| |
Collapse
|
13
|
Scarano N, Brullo C, Musumeci F, Millo E, Bruzzone S, Schenone S, Cichero E. Recent Advances in the Discovery of SIRT1/2 Inhibitors via Computational Methods: A Perspective. Pharmaceuticals (Basel) 2024; 17:601. [PMID: 38794171 PMCID: PMC11123952 DOI: 10.3390/ph17050601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Sirtuins (SIRTs) are classified as class III histone deacetylases (HDACs), a family of enzymes that catalyze the removal of acetyl groups from the ε-N-acetyl lysine residues of histone proteins, thus counteracting the activity performed by histone acetyltransferares (HATs). Based on their involvement in different biological pathways, ranging from transcription to metabolism and genome stability, SIRT dysregulation was investigated in many diseases, such as cancer, neurodegenerative disorders, diabetes, and cardiovascular and autoimmune diseases. The elucidation of a consistent number of SIRT-ligand complexes helped to steer the identification of novel and more selective modulators. Due to the high diversity and quantity of the structural data thus far available, we reviewed some of the different ligands and structure-based methods that have recently been used to identify new promising SIRT1/2 modulators. The present review is structured into two sections: the first includes a comprehensive perspective of the successful computational approaches related to the discovery of SIRT1/2 inhibitors (SIRTIs); the second section deals with the most interesting SIRTIs that have recently appeared in the literature (from 2017). The data reported here are collected from different databases (SciFinder, Web of Science, Scopus, Google Scholar, and PubMed) using "SIRT", "sirtuin", and "sirtuin inhibitors" as keywords.
Collapse
Affiliation(s)
- Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Francesca Musumeci
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.M.); (S.B.)
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.M.); (S.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Schenone
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| |
Collapse
|
14
|
D'Agnano V, Mariniello DF, Pagliaro R, Far MS, Schiattarella A, Scialò F, Stella G, Matera MG, Cazzola M, Bianco A, Perrotta F. Sirtuins and Cellular Senescence in Patients with Idiopathic Pulmonary Fibrosis and Systemic Autoimmune Disorders. Drugs 2024; 84:491-501. [PMID: 38630364 PMCID: PMC11189987 DOI: 10.1007/s40265-024-02021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 06/22/2024]
Abstract
The sirtuin family is a heterogeneous group of proteins that play a critical role in many cellular activities. Several degenerative diseases have recently been linked to aberrant sirtuin expression and activity because of the involvement of sirtuins in maintaining cell longevity and their putative antiaging function. Idiopathic pulmonary fibrosis and progressive pulmonary fibrosis associated with systemic autoimmune disorders are severe diseases characterized by premature and accelerated exhaustion and failure of alveolar type II cells combined with aberrant activation of fibroblast proliferative pathways leading to dramatic destruction of lung architecture. The mechanisms underlying alveolar type II cell exhaustion in these disorders are not fully understood. In this review, we have focused on the role of sirtuins in the pathogenesis of idiopathic and secondary pulmonary fibrosis and their potential as biomarkers in the diagnosis and management of fibrotic interstitial lung diseases.
Collapse
Affiliation(s)
- Vito D'Agnano
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
- U.O.C. Clinica Pneumologica L. Vanvitelli, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Domenica Francesca Mariniello
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
- U.O.C. Clinica Pneumologica L. Vanvitelli, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Raffaella Pagliaro
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
- U.O.C. Clinica Pneumologica L. Vanvitelli, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Mehrdad Savabi Far
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
| | - Angela Schiattarella
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
- U.O.C. Clinica Pneumologica L. Vanvitelli, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Filippo Scialò
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
| | - Giulia Stella
- Unit of Respiratory System Diseases, Department of Medical Sciences and Infectious Diseases, Foundation IRCCS Polyclinic San Matteo, Pavia, Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'L. Vanvitelli', Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy.
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
- U.O.C. Clinica Pneumologica L. Vanvitelli, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
- U.O.C. Clinica Pneumologica L. Vanvitelli, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| |
Collapse
|
15
|
Mou Y, Chen Y, Fan Z, Ye L, Hu B, Han B, Wang G. Discovery of a novel small-molecule activator of SIRT3 that inhibits cell proliferation and migration by apoptosis and autophagy-dependent cell death pathways in colorectal cancer. Bioorg Chem 2024; 146:107327. [PMID: 38579616 DOI: 10.1016/j.bioorg.2024.107327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Colorectal cancer (CRC) is well known as a prevalent malignancy affecting the digestive tract, yet its precise etiological determinants remain to be elusive. Accordingly, identifying specific molecular targets for colorectal cancer and predicting potential malignant tumor behavior are potential strategies for therapeutic interventions. Of note, apoptosis (type I programmed cell death) has been widely reported to play a pivotal role in tumorigenesis by exerting a suppressive effect on cancer development. Moreover, autophagy-dependent cell death (type II programmed cell death) has been implicated in different types of human cancers. Thus, investigating the molecular mechanisms underlying apoptosis and autophagy-dependent cell death is paramount in treatment modalities of colorectal cancer. In this study, we uncovered that a new small-molecule activator of SIRT3, named MY-13, triggered both autophagy-dependent cell death and apoptosis by modulating the SIRT3/Hsp90/AKT signaling pathway. Consequently, this compound inhibited tumor cell proliferation and migration in RKO and HCT-116 cell lines. Moreover, we further demonstrated that the small-molecule activator significantly suppressed tumor growth in vivo. In conclusion, these findings demonstrate that the novel small-molecule activator of SIRT3 may hold a therapeutic potential as a drug candidate in colorectal cancer.
Collapse
Affiliation(s)
- Yi Mou
- Department of Gastroenterology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yanmei Chen
- Department of Gastroenterology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhichao Fan
- Department of Gastroenterology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liansong Ye
- Department of Gastroenterology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Bing Hu
- Department of Gastroenterology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Guan Wang
- Department of Gastroenterology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
16
|
Chen Z, Li Z, Xu R, Xie Y, Li D, Zhao Y. Design, Synthesis, and In Vivo Evaluation of Isosteviol Derivatives as New SIRT3 Activators with Highly Potent Cardioprotective Effects. J Med Chem 2024; 67:6749-6768. [PMID: 38572607 DOI: 10.1021/acs.jmedchem.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Cardiovascular diseases (CVDs) persist as the predominant cause of mortality, urging the exploration of innovative pharmaceuticals. Mitochondrial dysfunction stands as a pivotal contributor to CVDs development. Sirtuin 3 (SIRT3), a prominent mitochondrial deacetylase known for its crucial role in protecting mitochondria against damage and dysfunction, has emerged as a promising therapeutic target for CVDs treatment. Utilizing isosteviol, a natural ent-beyerene diterpenoid, 24 derivatives were synthesized and evaluated in vivo using a zebrafish model, establishing a deduced structure-activity relationship. Among these, derivative 5v exhibited significant efficacy in doxorubicin-induced cardiomyopathy in zebrafish and murine models. Subsequent investigations revealed that 5v selectively elevated SIRT3 expression, leading to the upregulation of SOD2 and OPA1 expression, effectively preventing mitochondrial dysfunction, mitigating oxidative stress, and preserving cardiomyocyte viability. As a novel structural class of SIRT3 activators with robust therapeutic effects, 5v emerges as a promising candidate for further drug development.
Collapse
Affiliation(s)
- Zhenyu Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhiyin Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruilong Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yufeng Xie
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Dehuai Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yu Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|