1
|
Mulder IA, Abbinanti M, Woller SA, Ruschel J, Coutinho JM, de Vries HE, van Bavel E, Rosen K, McKerracher L, Ayata C. The novel ROCK2 selective inhibitor NRL-1049 preserves the blood-brain barrier after acute injury. J Cereb Blood Flow Metab 2024; 44:1238-1252. [PMID: 38833563 PMCID: PMC11542141 DOI: 10.1177/0271678x241238845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 06/06/2024]
Abstract
Endothelial blood-brain barrier (BBB) dysfunction is critical in the pathophysiology of brain injury. Rho-associated protein kinase (ROCK) activation disrupts BBB integrity in the injured brain. We aimed to test the efficacy of a novel ROCK2 inhibitor in preserving the BBB after acute brain injury. We characterized the molecular structure and pharmacodynamic and pharmacokinetic properties of a novel selective ROCK2 inhibitor, NRL-1049, and its first metabolite, 1-hydroxy-NRL-1049 (referred to as NRL-2017 hereon) and tested the efficacy of NRL-1049 on the BBB integrity in rodent models of acute brain injury. Our data show that NRL-1049 and NRL-2017 both inhibit ROCK activity and are 44-fold and 17-fold more selective towards ROCK2 than ROCK1, respectively. When tested in a mouse model of cortical cryoinjury, NRL-1049 significantly attenuated the increase in water content. Interestingly, 60% of the mice in the vehicle arm developed seizures within 2 hours after cryoinjury versus none in the NRL-1049 arm. In spontaneously hypertensive rats, NRL-1049 attenuated the dramatic surge in Evans Blue extravasation compared with the vehicle arm after transient middle cerebral artery occlusion. Hemorrhagic transformation was also reduced. We show that NRL-1049, a selective ROCK2 inhibitor, is a promising drug candidate to preserve the BBB after brain injury.
Collapse
Affiliation(s)
- Inge A Mulder
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biomedical Engineering and Physics, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands
- Amsterdam Neurosciences, Neurovascular Disorders, Amsterdam, the Netherlands
| | | | | | | | - Jonathan M Coutinho
- Amsterdam Neurosciences, Neurovascular Disorders, Amsterdam, the Netherlands
- Department of Neurology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Helga E de Vries
- Amsterdam Neurosciences, Neurovascular Disorders, Amsterdam, the Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit, Amsterdam, the Netherlands
| | - Ed van Bavel
- Department of Biomedical Engineering and Physics, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands
- Amsterdam Neurosciences, Neurovascular Disorders, Amsterdam, the Netherlands
| | | | - Lisa McKerracher
- BioAxone BioSciences Inc, Boston, MA, USA
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Pala D, Clark DE. Caught between a ROCK and a hard place: current challenges in structure-based drug design. Drug Discov Today 2024; 29:104106. [PMID: 39029868 DOI: 10.1016/j.drudis.2024.104106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/27/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The discipline of structure-based drug design (SBDD) is several decades old and it is tempting to think that the proliferation of experimental structures for many drug targets might make computer-aided drug design (CADD) straightforward. However, this is far from true. In this review, we illustrate some of the challenges that CADD scientists face every day in their work, even now. We use Rho-associated protein kinase (ROCK), and public domain structures and data, as an example to illustrate some of the challenges we have experienced during our project targeting this protein. We hope that this will help to prevent unrealistic expectations of what CADD can accomplish and to educate non-CADD scientists regarding the challenges still facing their CADD colleagues.
Collapse
Affiliation(s)
- Daniele Pala
- Medicinal Chemistry and Drug Design Technologies Department, Chiesi Farmaceutici S.p.A, Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - David E Clark
- Charles River, 6-9 Spire Green Centre, Flex Meadow, Harlow CM19 5TR, UK.
| |
Collapse
|
3
|
Zaky YA, Rashad MW, Zaater MA, El Kerdawy AM. Discovery of dual rho-associated protein kinase 1 (ROCK1)/apoptosis signal-regulating kinase 1 (ASK1) inhibitors as a novel approach for non-alcoholic steatohepatitis (NASH) treatment. BMC Chem 2024; 18:2. [PMID: 38172941 PMCID: PMC10765837 DOI: 10.1186/s13065-023-01081-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024] Open
Abstract
In the current study we suggest a novel approach to curb non-alcoholic steatohepatitis (NASH) progression, and we suggest privileged scaffolds for the design of novel compounds for this aim. NASH is an advanced form of non-alcoholic fatty liver disease that can further progress into fibrosis, cirrhosis, and hepatocellular carcinoma. It is a widely emerging disease affecting 25% of the global population and has no current approved treatments. Protein kinases are key regulators of cellular pathways, of which, Rho-associated protein kinase 1 (ROCK1) and apoptosis signal-regulating kinase 1 (ASK1) play an important role in the progression of NASH and they stand out as promising targets for NASH therapy. Interestingly, their kinase domains are found to be similar in sequence and topology; therefore, dual inhibition of ROCK1 and ASK1 is expected to be amenable and could achieve a more favourable outcome. To reach this goal, a training set of ROCK1 and ASK1 protein structures co-crystalized with type 1 (ATP-competitive) inhibitors was constructed to manually generate receptor-based pharmacophore models representing ROCK1 and ASK1 inhibitors' common pharmacophoric features. The models produced were assessed using a test set of both ROCK1 and ASK1 actives and decoys, and their performance was evaluated using different assessment metrics. The best pharmacophore model obtained, showing a Mathew's correlation coefficient (MCC) of 0.71, was then used to screen the ZINC purchasable database retrieving 6178 hits that were filtered accordingly using several medicinal chemistry and pharmacokinetics filters returning 407 promising compounds. To confirm that these compounds are capable of binding to the target kinases, they were subjected to molecular docking simulations at both protein structures. The results were then assessed individually and filtered, setting the spotlight on various privileged scaffolds that could be exploited as the nucleus for designing novel ROCK1/ASK1 dual inhibitors.
Collapse
Affiliation(s)
- Yara A Zaky
- Department of Chemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, Cairo, Egypt.
| | - Mai W Rashad
- Department of Chemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
| | - Marwa A Zaater
- Master Postgraduate Program, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed M El Kerdawy
- Department of Chemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- School of Pharmacy, College of Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, Lincolnshire, UK
| |
Collapse
|
4
|
Xu X, Yao L. Recent advances in the development of Rho kinase inhibitors (2015-2021). Med Res Rev 2024; 44:406-421. [PMID: 37265266 DOI: 10.1002/med.21980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/27/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Rho-associated coiled-coil kinases (ROCKs) are key downstream effectors of small GTPases. ROCK plays a central role in diverse cellular events with accumulating evidence supporting the concept that ROCK is important in tumor development and progression. Numerous ROCK inhibitors have been investigated for their therapeutic potential in the treatment of cancers. In this article, we review recent research progress on ROCK inhibitors, especially those with potential for the treatment of cancers, reported in the literature from 2015 to 2021. Most ROCK inhibitors show potent in vitro and in vivo antitumor activities and have potential in the treatment of cancers.
Collapse
Affiliation(s)
- Xiangrong Xu
- Yantai University Hospital, Yantai University, Yantai, China
| | - Lei Yao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
5
|
Fang F, Xia J, Quan S, Chen S, Deng GJ. Metal- and Solvent-Free Synthesis of Substituted Pyrimidines via an NH 4I-Promoted Three-Component Tandem Reaction. J Org Chem 2023; 88:14697-14707. [PMID: 37773063 DOI: 10.1021/acs.joc.3c01700] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
A facile and practical approach for the preparation of substituted pyrimidines from ketones, NH4OAc, and N,N-dimethylformamide dimethyl acetal has been described. This NH4I-promoted three-component tandem reaction affords a broad range of substituted pyrimidines in acceptable yields under metal- and solvent-free conditions. The present methodology features the advantages of simple and easily available starting materials, metal- and solvent-free conditions, a broad substrate scope with good functional group tolerance, and gram-scale synthesis.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education Hunan Province, Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
- College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, P. R. China
| | - Jie Xia
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education Hunan Province, Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Siying Quan
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education Hunan Province, Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Shanping Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education Hunan Province, Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education Hunan Province, Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
6
|
Fu S, Wen Y, Peng B, Tang M, Shi M, Liu J, Yang Y, Si W, Guo Y, Li X, Yan T, Kang J, Pei H, Chen L. Discovery of indoline-based derivatives as effective ROCK2 inhibitors for the potential new treatment of idiopathic pulmonary fibrosis. Bioorg Chem 2023; 137:106539. [PMID: 37163811 DOI: 10.1016/j.bioorg.2023.106539] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/06/2023] [Accepted: 04/09/2023] [Indexed: 05/12/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and devastating lung disease with a median survival of only 3-5 years. Due to the lack of effective therapy, IPF threatens human health. Recently, increasing reports have indicated that Rho-associated coiled-coil protein kinases (ROCKs) play important roles in the development of IPF and might represent a novel target for the treatment of IPF. Herein, a new series of selective ROCK2 inhibitors based on indoline were designed and synthesized. Structural modification resulted in optimized compound 9b with an IC50 value of 6 nM against ROCK2 and the inhibition of collagen gel contraction. Cellular assays demonstrated that 9b could significantly suppress the expression of collagen I and α-SMA, and inhibited ROCK signaling pathway. Oral administration of compound 9b (10 mg/kg) exerted more significant anti-pulmonary fibrosis effects than nintedanib (100 mg/kg) and KD025 (100 mg/kg) in a bleomycin-induced IPF rat model, suggesting that 9b could serve as a potential lead compound for the treatment of IPF.
Collapse
Affiliation(s)
- Suhong Fu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Wen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingsong Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiang Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yingxue Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenting Si
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiandeng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingting Yan
- Sichuan Good Doctor Panxi Pharmaceutical Co.,Ltd., Xichang 615000, China
| | - Jie Kang
- Sichuan Key Laboratory for Medicinal American Cockroach, Chengdu 610031, China
| | - Heying Pei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China..
| | - Lijuan Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.; Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu 610000, China.
| |
Collapse
|
7
|
Xie Y, Yue L, Shi Y, Su X, Gan C, Liu H, Xue T, Ye T. Application and Study of ROCK Inhibitors in Pulmonary Fibrosis: Recent Developments and Future Perspectives. J Med Chem 2023; 66:4342-4360. [PMID: 36940432 DOI: 10.1021/acs.jmedchem.2c01753] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Rho-associated coiled-coil-containing kinases (ROCKs), serine/threonine protein kinases, were initially identified as downstream targets of the small GTP-binding protein Rho. Pulmonary fibrosis (PF) is a lethal disease with limited therapeutic options and a particularly poor prognosis. Interestingly, ROCK activation has been demonstrated in PF patients and in animal PF models, making it a promising target for PF treatment. Many ROCK inhibitors have been discovered, and four of these have been approved for clinical use; however, no ROCK inhibitors are approved for the treatment of PF patients. In this article, we describe ROCK signaling pathways and the structure-activity relationship, potency, selectivity, binding modes, pharmacokinetics (PKs), biological functions, and recently reported inhibitors of ROCKs in the context of PF. We will also focus our attention on the challenges to be addressed when targeting ROCKs and discuss the strategy of ROCK inhibitor use in the treatment of PF.
Collapse
Affiliation(s)
- Yuting Xie
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Yue
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yaojie Shi
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingping Su
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Cailing Gan
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyao Liu
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Taixiong Xue
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tinghong Ye
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
8
|
You Y, Zhu K, Wang J, Liang Q, Li W, Wang L, Guo B, Zhou J, Feng X, Shi J. ROCK inhibitor: Focus on recent updates. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
9
|
Xia J, Xin L, Li J, Tian L, Wu K, Zhang S, Yan W, Li H, Zhao Q, Liang C. Discovery of Quaternized Pyridine-Thiazole-Pleuromutilin Derivatives with Broad-Spectrum Antibacterial and Potent Anti-MRSA Activity. J Med Chem 2023; 66:5061-5078. [PMID: 37051724 DOI: 10.1021/acs.jmedchem.2c02135] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The quaternization of compounds has emerged as a promising molecular design strategy for the development of antibiotics. Herein, we report the design, synthesis, antibacterial activities, and structure-activity relationships of a series of novel pleuromutilin derivatives containing a quaternary amine C-14 side chain. Most of these derivatives exhibited broad-spectrum antibacterial activity against the tested bacteria. 10b was the most effective antibacterial agent that displayed excellent antibacterial activity against five clinical methicillin-resistant Staphylococcus aureus (MRSA) isolates, remarkable antimycoplasma activity, rapid bactericidal effects, and a strong ability to damage bacterial biofilms. Further mechanistic studies indicated that 10b destroyed bacterial cell membranes to exert its antibacterial effects. Moreover, 10b exhibited high survival protection and potent in vivo antibacterial efficacy (ED50 = 4.94 mg/kg) in a mouse model of systemic MRSA infection. These findings suggest that 10b is a promising candidate for the treatment of multi-drug-resistant infectious diseases, especially MRSA infections.
Collapse
Affiliation(s)
- Juan Xia
- Laboratory of Hematologic Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, P. R. China
| | - Liang Xin
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Jingyi Li
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Lei Tian
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Kangxiong Wu
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Shaojun Zhang
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Wenjing Yan
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Han Li
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Qianqian Zhao
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Chengyuan Liang
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| |
Collapse
|
10
|
Ladduwahetty T, Lee MR, Maillard MC, Cachope R, Todd D, Barnes M, Beaumont V, Chauhan A, Gallati C, Haughan AF, Kempf G, Luckhurst CA, Matthews K, McAllister G, Mitchell P, Patel H, Rose M, Saville-Stones E, Steinbacher S, Stott AJ, Thatcher E, Tierney J, Urbonas L, Munoz-Sanjuan I, Dominguez C. Identification of a Potent, Selective, and Brain-Penetrant Rho Kinase Inhibitor and its Activity in a Mouse Model of Huntington's Disease. J Med Chem 2022; 65:9819-9845. [PMID: 35816678 DOI: 10.1021/acs.jmedchem.2c00474] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Rho kinase (ROCK) pathway is implicated in the pathogenesis of several conditions, including neurological diseases. In Huntington's disease (HD), ROCK is implicated in mutant huntingtin (HTT) aggregation and neurotoxicity, and members of the ROCK pathway are increased in HD mouse models and patients. To validate this mode of action as a potential treatment for HD, we sought a potent, selective, central nervous system (CNS)-penetrant ROCK inhibitor. Identifying a compound that could be dosed orally in mice with selectivity against other AGC kinases, including protein kinase G (PKG), whose inhibition could potentially activate the ROCK pathway, was paramount for the program. We describe the optimization of published ligands to identify a novel series of ROCK inhibitors based on a piperazine core. Morphing of the early series developed in-house by scaffold hopping enabled the identification of a compound exhibiting high potency and desired selectivity and demonstrating a robust pharmacodynamic (PD) effect by the inhibition of ROCK-mediated substrate (MYPT1) phosphorylation after oral dosing.
Collapse
Affiliation(s)
- Tammy Ladduwahetty
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Matthew R Lee
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Michel C Maillard
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Roger Cachope
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Daniel Todd
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Michael Barnes
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Vahri Beaumont
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Alka Chauhan
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Caroline Gallati
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Alan F Haughan
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Georg Kempf
- Proteros Biostructures GmbH, Bunsenstr. 7a, D-82152 Planegg-Martinsried, Germany
| | | | - Kim Matthews
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - George McAllister
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Philip Mitchell
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Hiral Patel
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Mark Rose
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | | | - Stefan Steinbacher
- Proteros Biostructures GmbH, Bunsenstr. 7a, D-82152 Planegg-Martinsried, Germany
| | - Andrew J Stott
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Emma Thatcher
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Jason Tierney
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Liudvikas Urbonas
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Ignacio Munoz-Sanjuan
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Celia Dominguez
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| |
Collapse
|
11
|
Laczi D, Johnstone MD, Fleming CL. Photoresponsive Small Molecule Inhibitors for the Remote Control of Enzyme Activity. Chem Asian J 2022; 17:e202200200. [PMID: 35446477 PMCID: PMC9322446 DOI: 10.1002/asia.202200200] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Indexed: 12/14/2022]
Abstract
The development of new and effective therapeutics is reliant on the ability to study the underlying mechanisms of potential drug targets in live cells and multicellular systems. A persistent challenge in many drug development programmes is poor selectivity, which can obscure the mechanisms involved and lead to poorly understood modes of action. In efforts to improve our understanding of these complex processes, small molecule inhibitors have been developed in which their OFF/ON therapeutic activity can be toggled using light. Photopharmacology is devoted to using light to modulate drugs. Herein, we highlight the recent progress made towards the development of light-responsive small molecule inhibitors of selected enzymatic targets. Given the size of this field, literature from 2015 onwards has been reviewed.
Collapse
Affiliation(s)
- Dóra Laczi
- Centre for Biomedical and Chemical SciencesSchool of ScienceAuckland University of TechnologyPrivate Bag 92006Auckland1142New Zealand
| | - Mark D. Johnstone
- Centre for Biomedical and Chemical SciencesSchool of ScienceAuckland University of TechnologyPrivate Bag 92006Auckland1142New Zealand
| | - Cassandra L. Fleming
- Centre for Biomedical and Chemical SciencesSchool of ScienceAuckland University of TechnologyPrivate Bag 92006Auckland1142New Zealand
| |
Collapse
|
12
|
Lou C, Yang H, Wang J, Huang M, Li W, Liu G, Lee PW, Tang Y. IDL-PPBopt: A Strategy for Prediction and Optimization of Human Plasma Protein Binding of Compounds via an Interpretable Deep Learning Method. J Chem Inf Model 2022; 62:2788-2799. [PMID: 35607907 DOI: 10.1021/acs.jcim.2c00297] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The prediction and optimization of pharmacokinetic properties are essential in lead optimization. Traditional strategies mainly depend on the empirical chemical rules from medicinal chemists. However, with the rising amount of data, it is getting more difficult to manually extract useful medicinal chemistry knowledge. To this end, we introduced IDL-PPBopt, a computational strategy for predicting and optimizing the plasma protein binding (PPB) property based on an interpretable deep learning method. At first, a curated PPB data set was used to construct an interpretable deep learning model, which showed excellent predictive performance with a root mean squared error of 0.112 for the entire test set. Then, we designed a detection protocol based on the model and Wilcoxon test to identify the PPB-related substructures (named privileged substructures, PSubs) for each molecule. In total, 22 general privileged substructures (GPSubs) were identified, which shared some common features such as nitrogen-containing groups, diamines with two carbon units, and azetidine. Furthermore, a series of second-level chemical rules for each GPSub were derived through a statistical test and then summarized into substructure pairs. We demonstrated that these substructure pairs were equally applicable outside the training set and accordingly customized the structural modification schemes for each GPSub, which provided alternatives for the optimization of the PPB property. Therefore, IDL-PPBopt provides a promising scheme for the prediction and optimization of the PPB property and would be helpful for lead optimization of other pharmacokinetic properties.
Collapse
Affiliation(s)
- Chaofeng Lou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hongbin Yang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiye Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mengting Huang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Philip W Lee
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
13
|
Wang L, Ouyang B, Fan M, Qi J, Yao L. The Design, Synthesis and Evaluation of Rho-kinase Inhibitory Activity of 4-aryl-thiazole-2-amines. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:121-131. [PMID: 34903975 PMCID: PMC8653655 DOI: 10.22037/ijpr.2020.114468.14866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rho-associated kinases (ROCK) are a class of serine/threonine kinases that play important roles in various biological processes. ROCK are becoming attractive targets for drug designing. A novel scaffold was designed according to molecular hybridization strategy, then a series of 4-aryl-5-aminomethyl-thiazole-2-amines were synthesized, and their inhibitory activities on ROCK were screened by enzyme-linked immunosorbent assay (ELISA). The results showed that 4-aryl-5-aminomethyl-thiazole-2-amines derivatives displayed certain ROCK II inhibitory activities. The IC50 value of the most potent compound 4v was found to be 20 nM. The preliminary structure-activity-relationship investigation showed that compounds with 4-pyridine substitution were generally found to be more potent than compounds with 3-pyridine substitution. The molecular docking studies indicated that more optimization work needs to conduct to obtain more potent ROCK inhibitors.
Collapse
Affiliation(s)
- Linan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264003, China
| | - Ben Ouyang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264003, China
| | - Meixia Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264003, China
| | - Junhui Qi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264003, China
| | - Lei Yao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264003, China
| |
Collapse
|
14
|
Matsuo K, Thayyil S, Kawaguchi M, Nakagawa H, Tamaoki N. A visible light-controllable Rho kinase inhibitor based on a photochromic phenylazothiazole. Chem Commun (Camb) 2021; 57:12500-12503. [PMID: 34751279 DOI: 10.1039/d1cc04905d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rho-associated coiled-coil-containing protein kinase (ROCK) is a serine-threonine kinase whose inhibitors are useful for the regulation of the actomyosin system. Here, we developed a photoswitchable ROCK inhibitor based on a phenylazothiazole scaffold. The reversible trans-cis isomerization by visible light stimuli enabled us to manipulate ROCK activities in vitro and in cells.
Collapse
Affiliation(s)
- Kazuya Matsuo
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, 001-0020, Japan.
| | - Sampreeth Thayyil
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, 001-0020, Japan.
| | - Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabedori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabedori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Nobuyuki Tamaoki
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, 001-0020, Japan.
| |
Collapse
|
15
|
Wang L, Qi J, Fan M, Yao L. Design, synthesis, and biological evaluation of urea-based ROCK2 inhibitors. Chem Biol Drug Des 2021; 98:969-978. [PMID: 34581498 DOI: 10.1111/cbdd.13961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/22/2021] [Accepted: 09/06/2021] [Indexed: 01/18/2023]
Abstract
A series of urea-based ROCK2 inhibitors were design and synthesized. The inhibitory activity on ROCK2 was screened by enzyme-linked immunosorbent assay (ELISA). The study results showed that the urea derivatives exhibited certain ROCK2 inhibitory activity. The most potent compound 10p showed ROCK2 inhibitory activity with the IC50 value of 0.03 μM. A preliminary structure-activity relationship was then summarized. The molecular docking studies showed that further optimization needs to conduct to obtain more potent ROCK inhibitors.
Collapse
Affiliation(s)
- Linan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation Yantai University, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Junhui Qi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation Yantai University, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Meixia Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation Yantai University, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Lei Yao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation Yantai University, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
16
|
Sun Y, Li Y, Miao Z, Yang R, Zhang Y, Wu M, Lin G, Li L. Discovery of 3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one derivatives as a new class of ROCK inhibitors for the treatment of glaucoma. Bioorg Med Chem Lett 2021; 45:128138. [PMID: 34044123 DOI: 10.1016/j.bmcl.2021.128138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 02/05/2023]
Abstract
The Rho-associated protein kinases (ROCKs) are associated with the pathology of glaucoma and discovery of ROCK inhibitors has attracted much attention in recent years. Herein, we report a series of 3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one derivatives as a new class of ROCK inhibitors. Structure-activity relationship studies led to the discovery of compound 12b, which showed potent activities against ROCK I and ROCK Ⅱ with IC50 values of 93 nM and 3 nM, respectively. 12b also displayed considerable selectivity for ROCKs. The mean IOP-lowering effect of 12b in an ocular normotensive model was 34.3%, and no obvious hyperemia was observed. Overall, this study provides a good starting point for ROCK-targeting drug discovery against glaucoma.
Collapse
Affiliation(s)
- Yumeng Sun
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Yueshan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhuang Miao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruicheng Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yun Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Macular Disease Research Laboratory, Department of Ophthalmology, West China Hospital, Sichuan University, Sichuan 610041, China
| | - Ming Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guifeng Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linli Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China.
| |
Collapse
|
17
|
Al-Soliemy AM, Sabour R, Farghaly TA. Pyrazoles and fused pyrimidines: Synthesis, structure elucidation, antitubercular activity and molecular docking study. Med Chem 2021; 18:181-198. [PMID: 33761862 DOI: 10.2174/1573406417666210324131951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/21/2020] [Accepted: 12/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Synthesis of new heterocyclic drugs in short reaction time with sufficient quantity is considered as a target for several pharmaceutical scientists. Thus, organic reactions proceeded on the surface of nano-sized catalysts to speed up the stimulation process. OBJECTIVE we aimed in this research to synthesize a new series of heterocyclic compounds carrying pyrazole moiety in the presence of ZnO nano-catalyst to investigate their anti-tubercular activity. METHODS ZnO(NPs) was used in synthesis of novel series of thienylpyrazolopyrimidines bearing arylazo group by reaction of thiophene-enaminone and the amino-arylazopyrazoles in excellent yield. On the other hand, another series of theinyl-pyrazoles was synthesized through the reaction of the same enaminone with hydrazonoyl chlorides but the usage of ZnO(NPs) failed in such reactions. RESULTS The proposed structures of the products and the mechanistic pathways of the reactions were assured based on the spectral data and chemical evidences. Thienylpyrazole derivatives were assessed for their activity as Mycobacterium tuberculosis inhibitor and their results revealed that two thienylpyrazole derivatives 24d & 24f showed the most significant anti-mycobacterial activity with MIC values 0.70 & 1.29 µM/mL, respectively comparing with the MIC value = 0.60 µM/mL of the standard drug Rifampicin. Furthermore, the most active thienylpyrazole derivatives were investigated for their cytotoxic impact versus normal cells WI-38 (Normal human Lung fibroblast cells) using MTT assay. These thienylpyrazole derivatives exhibited good selective index profile. Moreover, 1,3,4-trisubstituted pyrazole analogues showed good interaction with the active site of enoyl-acyl carrier protein reductase (Mt InhA) through the molecular docking studies. CONCLUSION We succeeded to synthesis a new series of heterocyclic compounds carrying pyrazole moiety in the presence of ZnO nano-catalyst as anti-tubercular agents.
Collapse
Affiliation(s)
- Amerah M Al-Soliemy
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah. Saudi Arabia
| | - Rehab Sabour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo. Egypt
| | - Thoraya A Farghaly
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, 12613. Egypt
| |
Collapse
|
18
|
ROCK inhibitors 4: Structure-activity relationship studies of 7-azaindole-based rho kinase (ROCK) inhibitors. Bioorg Med Chem Lett 2021; 33:127721. [DOI: 10.1016/j.bmcl.2020.127721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/13/2023]
|
19
|
Zonouzi A, Kakeshpour A, Ranjbar PR, Moradi A. Computational studies on the conformational preference of
N
‐(Thiazol‐2‐yl) benzamide. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Afsaneh Zonouzi
- School of Chemistry, College of Science University of Tehran Tehran Iran
- Pharmaceutical and Cosmetic Research Center (PCRC) University of Tehran Tehran Iran
| | - Ali Kakeshpour
- School of Chemistry, College of Science University of Tehran Tehran Iran
| | | | - Ashraf Moradi
- School of Chemistry, University College of Science University of Zabol Zabol Iran
| |
Collapse
|
20
|
Ma S, Wang L, Ouyang B, Fan M, Qi J, Yao L. Design, synthesis and biological evaluation of 4-aryl-5-aminoalkyl-thiazole-2-amines derivatives as ROCK II inhibitors. Bioorg Med Chem 2020; 28:115683. [PMID: 32912437 DOI: 10.1016/j.bmc.2020.115683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/15/2020] [Indexed: 01/21/2023]
Abstract
A series of 4-aryl-5-aminoalkyl-thiazole-2-amines were designed and synthesized, and their inhibitory activity on ROCK II was screened by enzyme-linked immunosorbent assay (ELISA). The results showed that 4-aryl-5-aminomethyl-thiazole-2-amines derivatives had certain ROCK II inhibitory activities. Compound 10l showed ROCK II inhibitory activity with IC50 value of 20 nM.
Collapse
Affiliation(s)
- Shuchao Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264003, China
| | - Linan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264003, China
| | - Ben Ouyang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264003, China
| | - Meixia Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264003, China
| | - Junhui Qi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264003, China
| | - Lei Yao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264003, China
| |
Collapse
|
21
|
Kesar S, Paliwal S, Mishra P, Madan K, Chauhan M, Chauhan N, Verma K, Sharma S. Identification of Novel Rho-Kinase-II Inhibitors with Vasodilatory Activity. ACS Med Chem Lett 2020; 11:1694-1703. [PMID: 32944136 DOI: 10.1021/acsmedchemlett.0c00126] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/04/2020] [Indexed: 11/30/2022] Open
Abstract
Small GTPase protein Rho-kinase (ROCK) plays an important role in the pathogenesis of hypertension. Inhibition of ROCK II brings about the biochemical changes leading to vascular smooth muscles relaxation, finally resulting into potent antihypertensive activity. In the quest for potent ROCK-II inhibitors, a ligand-based pharmacophore containing four essential chemical features, namely two hydrogen bond acceptor (HBA), one hydrogen bond donor (HBD), and one hydrophobe (HY), was developed and rigorously validated. The pharmacophore was used for virtual screening, and hits retrieved from the National Cancer Institute (NCI) database were sorted on the basis of fit value, estimate value, and Lipinski's violation. Potential feature interaction of hits was also observed during docking studies with the amino acids present in the active site of Rho-kinase. Based on the above screening, three hits (NSC 2488, NSC 2888, and NSC 4231) were chosen and subjected to in vitro Rho-kinase enzyme-based assay, followed by ex vivo rat aortic vasodilatory assay. All three compounds showed good biological activity as predicted by the model and confirmed by the docking studies.
Collapse
Affiliation(s)
- Seema Kesar
- Department of Pharmacy, Banasthali Vidyapith, P. O. Banasthali-304022, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, P. O. Banasthali-304022, Rajasthan, India
| | - Pooja Mishra
- Department of Pharmacy, Banasthali Vidyapith, P. O. Banasthali-304022, Rajasthan, India
| | - Kirtika Madan
- Department of Pharmacy, Banasthali Vidyapith, P. O. Banasthali-304022, Rajasthan, India
| | - Monika Chauhan
- Department of Pharmacy, Banasthali Vidyapith, P. O. Banasthali-304022, Rajasthan, India
| | - Neha Chauhan
- Department of Pharmacy, Banasthali Vidyapith, P. O. Banasthali-304022, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, P. O. Banasthali-304022, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, P. O. Banasthali-304022, Rajasthan, India
| |
Collapse
|
22
|
Abbhi V, Piplani P. Rho-kinase (ROCK) Inhibitors - A Neuroprotective Therapeutic Paradigm with a Focus on Ocular Utility. Curr Med Chem 2020; 27:2222-2256. [PMID: 30378487 DOI: 10.2174/0929867325666181031102829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Glaucoma is a progressive optic neuropathy causing visual impairment and Retinal Ganglionic Cells (RGCs) death gradually posing a need for neuroprotective strategies to minimize the loss of RGCs and visual field. It is recognized as a multifactorial disease, Intraocular Pressure (IOP) being the foremost risk factor. ROCK inhibitors have been probed for various possible indications, such as myocardial ischemia, hypertension, kidney diseases. Their role in neuroprotection and neuronal regeneration has been suggested to be of value in the treatment of neurological diseases, like spinal-cord injury, Alzheimer's disease and multiple sclerosis but recently Rho-associated Kinase inhibitors have been recognized as potential antiglaucoma agents. EVIDENCE SYNTHESIS Rho-Kinase is a serine/threonine kinase with a kinase domain which is constitutively active and is involved in the regulation of smooth muscle contraction and stress fibre formation. Two isoforms of Rho-Kinase, ROCK-I (ROCK β) and ROCK-II (ROCK α) have been identified. ROCK II plays a pathophysiological role in glaucoma and hence the inhibitors of ROCK may be beneficial to ameliorate the vision loss. These inhibitors decrease the intraocular pressure in the glaucomatous eye by increasing the aqueous humour outflow through the trabecular meshwork pathway. They also act as anti-scarring agents and hence prevent post-operative scarring after the glaucoma filtration surgery. Their major role involves axon regeneration by increasing the optic nerve blood flow which may be useful in treating the damaged optic neurons. These drugs act directly on the neurons in the central visual pathway, interrupting the RGC apoptosis and therefore serve as a novel pharmacological approach for glaucoma neuroprotection. CONCLUSION Based on the results of high-throughput screening, several Rho kinase inhibitors have been designed and developed comprising of diverse scaffolds exhibiting Rho kinase inhibitory activity from micromolar to subnanomolar ranges. This diversity in the scaffolds with inhibitory potential against the kinase and their SAR development will be intricated in the present review. Ripasudil is the only Rho kinase inhibitor marketed to date for the treatment of glaucoma. Another ROCK inhibitor AR-13324 has recently passed the clinical trials whereas AMA0076, K115, PG324, Y39983 and RKI-983 are still under trials. In view of this, a detailed and updated account of ROCK II inhibitors as the next generation therapeutic agents for glaucoma will be discussed in this review.
Collapse
Affiliation(s)
- Vasudha Abbhi
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study (UGCCAS), Panjab University, Chandigarh 160014, India
| | - Poonam Piplani
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study (UGCCAS), Panjab University, Chandigarh 160014, India
| |
Collapse
|
23
|
Wu F, Zhuo L, Wang F, Huang W, Hao G, Yang G. Auto In Silico Ligand Directing Evolution to Facilitate the Rapid and Efficient Discovery of Drug Lead. iScience 2020; 23:101179. [PMID: 32498019 PMCID: PMC7267738 DOI: 10.1016/j.isci.2020.101179] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/25/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Motivated by the growing demand for reducing the chemical optimization burden of H2L, we developed auto in silico ligand directing evolution (AILDE, http://chemyang.ccnu.edu.cn/ccb/server/AILDE), an efficient and general approach for the rapid identification of drug leads in accessible chemical space. This computational strategy relies on minor chemical modifications on the scaffold of a hit compound, and it is primarily intended for identifying new lead compounds with minimal losses or, in some cases, even increases in ligand efficiency. We also described how AILDE greatly reduces the chemical optimization burden in the design of mesenchymal-epithelial transition factor (c-Met) kinase inhibitors. We only synthesized eight compounds and found highly efficient compound 5g, which showed an ∼1,000-fold improvement in in vitro activity compared with the hit compound. 5g also displayed excellent in vivo antitumor efficacy as a drug lead. We believe that AILDE may be applied to a large number of studies for rapid design and identification of drug leads. AILDE was developed for the rapid identification of drug leads A potent drug lead targeted to c-Met was found by synthesizing only eight compounds
Collapse
Affiliation(s)
- Fengxu Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Linsheng Zhuo
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Fan Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Wei Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China.
| | - Gefei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China.
| | - Guangfu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China.
| |
Collapse
|
24
|
Johnson BM, Shu YZ, Zhuo X, Meanwell NA. Metabolic and Pharmaceutical Aspects of Fluorinated Compounds. J Med Chem 2020; 63:6315-6386. [PMID: 32182061 DOI: 10.1021/acs.jmedchem.9b01877] [Citation(s) in RCA: 333] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The applications of fluorine in drug design continue to expand, facilitated by an improved understanding of its effects on physicochemical properties and the development of synthetic methodologies that are providing access to new fluorinated motifs. In turn, studies of fluorinated molecules are providing deeper insights into the effects of fluorine on metabolic pathways, distribution, and disposition. Despite the high strength of the C-F bond, the departure of fluoride from metabolic intermediates can be facile. This reactivity has been leveraged in the design of mechanism-based enzyme inhibitors and has influenced the metabolic fate of fluorinated compounds. In this Perspective, we summarize the literature associated with the metabolism of fluorinated molecules, focusing on examples where the presence of fluorine influences the metabolic profile. These studies have revealed potentially problematic outcomes with some fluorinated motifs and are enhancing our understanding of how fluorine should be deployed.
Collapse
Affiliation(s)
- Benjamin M Johnson
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Yue-Zhong Shu
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Xiaoliang Zhuo
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Nicholas A Meanwell
- Discovery Chemistry Platforms, Small Molecule Drug Discovery, Bristol Myers Squibb Company, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
25
|
IODVA1, a guanidinobenzimidazole derivative, targets Rac activity and Ras-driven cancer models. PLoS One 2020; 15:e0229801. [PMID: 32163428 PMCID: PMC7067412 DOI: 10.1371/journal.pone.0229801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/13/2020] [Indexed: 12/17/2022] Open
Abstract
We report the synthesis and preliminary characterization of IODVA1, a potent small molecule that is active in xenograft mouse models of Ras-driven lung and breast cancers. In an effort to inhibit oncogenic Ras signaling, we combined in silico screening with inhibition of proliferation and colony formation of Ras-driven cells. NSC124205 fulfilled all criteria. HPLC analysis revealed that NSC124205 was a mixture of at least three compounds, from which IODVA1 was determined to be the active component. IODVA1 decreased 2D and 3D cell proliferation, cell spreading and ruffle and lamellipodia formation through downregulation of Rac activity. IODVA1 significantly impaired xenograft tumor growth of Ras-driven cancer cells with no observable toxicity. Immuno-histochemistry analysis of tumor sections suggests that cell death occurs by increased apoptosis. Our data suggest that IODVA1 targets Rac signaling to induce death of Ras-transformed cells. Therefore, IODVA1 holds promise as an anti-tumor therapeutic agent.
Collapse
|
26
|
Kesar S, Paliwal S, Sharma S, Mishra P, Chauhan M, Arya R, Madan K, Khan S. In-Silico QSAR Modelling of Predicted Rho Kinase Inhibitors Against Cardio Vascular Diseases. Curr Comput Aided Drug Des 2020; 15:421-432. [PMID: 30848208 DOI: 10.2174/1573409915666190307163437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/12/2019] [Accepted: 02/27/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Rho-kinase is an essential downstream target of GTP-binding protein RhoA, and plays a crucial role in the calcium-sensitization pathway. Rho-kinase pathway is critically involved in phosphorylation state of myosin light chain, leading to increased contraction of smooth muscles. Inhibition of this pathway has turned out to be a promising target for several indications such as cardiovascular diseases, glaucoma and inflammatory diseases. METHODS The present work focuses on a division-based 2D quantitative structure-activity relationship (QSAR) analysis along with a docking study to predict structural features that may be essential for the enhancement of selectivity and potency of the target compounds. Furthermore, a set of indoles and azaindoles were also projected based on the regression equation as novel developments. Molecular docking was applied for exploring the binding sites of the newly predicted set of compounds with the receptor. RESULTS Results of the docked conformations suggested that introduction of non-bulky and substituted groups in the hinge region of ROCK-II ATP binding pocket would improve the activity by decreasing the bulkiness or length of the compounds. CONCLUSION ADME studies were performed to ascertain the novelty and drug-like properties of the designed molecules, respectively.
Collapse
Affiliation(s)
- Seema Kesar
- Department of Pharmacy, Banasthali Vidyapeeth, Banasthali- 304022, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapeeth, Banasthali- 304022, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapeeth, Banasthali- 304022, Rajasthan, India
| | - Pooja Mishra
- Department of Pharmacy, Banasthali Vidyapeeth, Banasthali- 304022, Rajasthan, India
| | - Monika Chauhan
- Department of Pharmacy, Banasthali Vidyapeeth, Banasthali- 304022, Rajasthan, India
| | - Richa Arya
- Department of Pharmacy, Banasthali Vidyapeeth, Banasthali- 304022, Rajasthan, India
| | - Kirtika Madan
- Department of Pharmacy, Banasthali Vidyapeeth, Banasthali- 304022, Rajasthan, India
| | - Shagufta Khan
- Department of Pharmacy, Banasthali Vidyapeeth, Banasthali- 304022, Rajasthan, India
| |
Collapse
|
27
|
Zhang X, Liu C, Deng Y, Cao S. Chemo- and regioselective synthesis of polysubstituted 2-aminothiophenes by the cyclization of gem-dibromo or gem-dichloroalkenes with β-keto tertiary thioamides. Org Biomol Chem 2020; 18:7540-7544. [PMID: 32966516 DOI: 10.1039/d0ob01821j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A facile and practical method for the synthesis of 2,3,4-trisubstituted 2-aminothiophenes by the cyclization of gem-dibromoalkenes or gem-dichloroalkenes with β-keto tertiary thioamides has been developed. The cyclization reaction proceeded chemoselectively and regioselectively under metal-catalyst-free conditions, providing various structurally diverse 2,3,4-trisubstituted N,N'-dialkyl 2-aminothiophenes in good to excellent yields.
Collapse
Affiliation(s)
- Xuxue Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | | | | | | |
Collapse
|
28
|
Hu Y, Ren R, Zhang Y, Huang Y, Cui H, Ma C, Qiu W, Wang H, Cui P, Chen H, Wang G. Rho-associated coiled-coil kinase 1 activation mediates amyloid precursor protein site-specific Ser655 phosphorylation and triggers amyloid pathology. Aging Cell 2019; 18:e13001. [PMID: 31287605 PMCID: PMC6718535 DOI: 10.1111/acel.13001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/29/2019] [Accepted: 06/16/2019] [Indexed: 01/08/2023] Open
Abstract
Rho‐associated coiled‐coil kinase 1 (ROCK1) is proposed to be implicated in Aβ suppression; however, the role for ROCK1 in amyloidogenic metabolism of amyloid precursor protein (APP) to produce Aβ was unknown. In the present study, we showed that ROCK1 kinase activity and its APP binding were enhanced in AD brain, resulting in increased β‐secretase cleavage of APP. Furthermore, we firstly confirmed that APP served as a substrate for ROCK1 and its major phosphorylation site was located at Ser655. The increased level of APP Ser655 phosphorylation was observed in the brain of APP/PS1 mice and AD patients compared to controls. Moreover, blockade of APP Ser655 phosphorylation, or inhibition of ROCK1 activity with either shRNA knockdown or Y‐27632, ameliorated amyloid pathology and improved learning and memory in APP/PS1 mice. These findings suggest that activated ROCK1 targets APP Ser655 phosphorylation, which promotes amyloid processing and pathology. Inhibition of ROCK1 could be a potential therapeutic approach for AD.
Collapse
Affiliation(s)
- Yong‐Bo Hu
- Department of Neurology Neuroscience Institute Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
- Department of Pharmacology and Chemical Biology Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Ru‐Jing Ren
- Department of Neurology Neuroscience Institute Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yong‐Fang Zhang
- Department of Pharmacology and Chemical Biology Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yue Huang
- National Clinical Research Centre for Neurological Diseases Beijing Tiantan Hospital Affiliated to Capital Medical University Beijing China
- Faculty of Medicine, Neuroscience Research Australia UNSW Australia Sydney New South Wales Australia
| | - Hai‐Lun Cui
- Department of Neurology Neuroscience Institute Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College Beijing China
| | - Wen‐Ying Qiu
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College Beijing China
| | - Hao Wang
- Department of Pharmacology and Chemical Biology Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Pei‐Jing Cui
- Department of Geriatrics Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Hong‐Zhuan Chen
- Department of Pharmacology and Chemical Biology Shanghai Jiao Tong University School of Medicine Shanghai China
- Institute of Interdisciplinary Science, Shuguang Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Gang Wang
- Department of Neurology Neuroscience Institute Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
29
|
McKerracher L, Shenkar R, Abbinanti M, Cao Y, Peiper A, Liao JK, Lightle R, Moore T, Hobson N, Gallione C, Ruschel J, Koskimäki J, Girard R, Rosen K, Marchuk DA, Awad IA. A Brain-Targeted Orally Available ROCK2 Inhibitor Benefits Mild and Aggressive Cavernous Angioma Disease. Transl Stroke Res 2019; 11:365-376. [PMID: 31446620 DOI: 10.1007/s12975-019-00725-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/01/2019] [Accepted: 08/13/2019] [Indexed: 12/01/2022]
Abstract
Cavernous angioma (CA) is a vascular pathology caused by loss of function in one of the 3 CA genes (CCM1, CCM2, and CCM3) that result in rho kinase (ROCK) activation. We investigated a novel ROCK2 selective inhibitor for the ability to reduce brain lesion formation, growth, and maturation. We used genetic methods to explore the use of a ROCK2-selective kinase inhibitor to reduce growth and hemorrhage of CAs. The role of ROCK2 in CA was investigated by crossing Rock1 or Rock2 hemizygous mice with Ccm1 or Ccm3 hemizygous mice, and we found reduced lesions in the Rock2 hemizygous mice. A ROCK2-selective inhibitor, BA-1049 was used to investigate efficacy in reducing CA lesions after oral administration to Ccm1+/- and Ccm3+/- mice that were bred into a mutator background. After assessing the dose range effective to target brain endothelial cells in an ischemic brain model, Ccm1+/- and Ccm3+/- transgenic mice were treated for 3 (Ccm3+/-) or 4 months (Ccm1+/-), concurrently, randomized to receive one of three doses of BA-1049 in drinking water, or placebo. Lesion volumes were assessed by micro-computed tomography. BA-1049 reduced activation of ROCK2 in Ccm3+/-Trp53-/- lesions. Ccm1+/-Msh2-/- (n=68) and Ccm3+/-Trp53-/- (n=71) mice treated with BA-1049 or placebo showed a significant dose-dependent reduction in lesion volume after treatment with BA-1049, and a reduction in hemorrhage (iron deposition) near lesions at all doses. These translational studies show that BA-1049 is a promising therapeutic agent for the treatment of CA, a disease with no current treatment except surgical removal of the brain lesions.
Collapse
Affiliation(s)
- Lisa McKerracher
- BioAxone BioSciences Inc., Cambridge, MA, USA.,Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL, USA
| | | | - Ying Cao
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL, USA
| | - Amy Peiper
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - James K Liao
- Section of Cardiology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL, USA
| | - Thomas Moore
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL, USA
| | - Nicholas Hobson
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL, USA
| | - Carol Gallione
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | | | - Janne Koskimäki
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL, USA
| | | | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL, USA.
| |
Collapse
|
30
|
Xie Z, Chen R, Ma M, Kong L, Liu J, Wang C. Copper‐catalyzed one‐pot coupling reactions of aldehydes (ketones), tosylhydrazide and 2‐amino(benzo)thiazoles: An efficient strategy for the synthesis of
N
‐alkylated (benzo)thiazoles. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zengyang Xie
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic MedicineJining Medical University Jining 272067 China
| | - Ruijiao Chen
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic MedicineJining Medical University Jining 272067 China
| | - Mingfang Ma
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic MedicineJining Medical University Jining 272067 China
| | - Lingdong Kong
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic MedicineJining Medical University Jining 272067 China
| | - Jun Liu
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic MedicineJining Medical University Jining 272067 China
| | - Cunde Wang
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225002 China
| |
Collapse
|
31
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
32
|
Bayel Secinti B, Tatar G, Taskin Tok T. Determination of potential selective inhibitors for ROCKI and ROCKII isoforms with molecular modeling techniques: structure based docking, ADMET and molecular dynamics simulation. J Biomol Struct Dyn 2018; 37:2457-2463. [DOI: 10.1080/07391102.2018.1491420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Burcu Bayel Secinti
- Department of Bioinformatics and Computational Biology, Gaziantep University, Institute of Health Sciences, Gaziantep, Turkey
| | - Gizem Tatar
- Department of Bioinformatics and Computational Biology, Gaziantep University, Institute of Health Sciences, Gaziantep, Turkey
| | - Tugba Taskin Tok
- Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University, Gaziantep, TurkeyCommunicated by Ramaswamy H. Sarma
| |
Collapse
|
33
|
Gao H, Marhefka C, Jacobs MD, Cao J, Bandarage UK, Green J. ROCK inhibitors 2. Improving potency, selectivity and solubility through the application of rationally designed solubilizing groups. Bioorg Med Chem Lett 2018; 28:2616-2621. [PMID: 29945794 DOI: 10.1016/j.bmcl.2018.06.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/16/2018] [Accepted: 06/21/2018] [Indexed: 11/28/2022]
Abstract
Solubilizing groups have been frequently appended to kinase inhibitor drug molecules when solubility is insufficient for pharmaceutical development. Such groups are usually located at substitution sites that have minimal impact on target activity. In this report we describe the incorporation of solubilizing groups in a class of Rho kinase (ROCK) inhibitors that not only confer improved solubility, but also enhance target potency and selectivity against a closely related kinase, PKA.
Collapse
Affiliation(s)
- Huai Gao
- Vertex Pharmaceuticals, Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | - Craig Marhefka
- Vertex Pharmaceuticals, Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | - Marc D Jacobs
- Vertex Pharmaceuticals, Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | - Jingrong Cao
- Vertex Pharmaceuticals, Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | - Upul K Bandarage
- Vertex Pharmaceuticals, Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | - Jeremy Green
- Vertex Pharmaceuticals, Incorporated, 50 Northern Avenue, Boston, MA 02210, USA.
| |
Collapse
|
34
|
Bandarage UK, Cao J, Come JH, Court JJ, Gao H, Jacobs MD, Marhefka C, Nanthakumar S, Green J. ROCK inhibitors 3: Design, synthesis and structure-activity relationships of 7-azaindole-based Rho kinase (ROCK) inhibitors. Bioorg Med Chem Lett 2018; 28:2622-2626. [PMID: 30082069 DOI: 10.1016/j.bmcl.2018.06.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 01/21/2023]
Abstract
Rho kinase (ROCK) inhibitors are potential therapeutic agents for the treatment of a variety of disorders including hypertension, glaucoma and erectile dysfunction. Here we disclose a series of potent and selective ROCK inhibitors based on a substituted 7-azaindole scaffold. Substitution of the 3-position of 7-azaindole led to compounds such as 37, which possess excellent ROCK inhibitory potency and high selectivity against the closely related kinase PKA.
Collapse
Affiliation(s)
- Upul K Bandarage
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA.
| | - Jingrong Cao
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | - Jon H Come
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | - John J Court
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | - Huai Gao
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | - Marc D Jacobs
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | - Craig Marhefka
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | | | - Jeremy Green
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA.
| |
Collapse
|
35
|
Ouvry G, Atrux-Tallau N, Bihl F, Bondu A, Bouix-Peter C, Carlavan I, Christin O, Cuadrado MJ, Defoin-Platel C, Deret S, Duvert D, Feret C, Forissier M, Fournier JF, Froude D, Hacini-Rachinel F, Harris CS, Hervouet C, Huguet H, Lafitte G, Luzy AP, Musicki B, Orfila D, Ozello B, Pascau C, Pascau J, Parnet V, Peluchon G, Pierre R, Piwnica D, Raffin C, Rossio P, Spiesse D, Taquet N, Thoreau E, Vatinel R, Vial E, Hennequin LF. Discovery and Characterization of CD12681, a Potent RORγ Inverse Agonist, Preclinical Candidate for the Topical Treatment of Psoriasis. ChemMedChem 2018; 13:321-337. [PMID: 29327456 DOI: 10.1002/cmdc.201700758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/05/2018] [Indexed: 01/12/2023]
Abstract
With possible implications in multiple autoimmune diseases, the retinoic acid receptor-related orphan receptor RORγ has become a sought-after target in the pharmaceutical industry. Herein are described the efforts to identify a potent RORγ inverse agonist compatible with topical application for the treatment of skin diseases. These efforts culminated in the discovery of N-(2,4-dimethylphenyl)-N-isobutyl-2-oxo-1-[(tetrahydro-2H-pyran-4-yl)methyl]-2,3-dihydro-1H-benzo[d]imidazole-5-sulfonamide (CD12681), a potent inverse agonist with in vivo activity in an IL-23-induced mouse skin inflammation model.
Collapse
Affiliation(s)
- Gilles Ouvry
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Nicolas Atrux-Tallau
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Franck Bihl
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Aline Bondu
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Claire Bouix-Peter
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Isabelle Carlavan
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Olivier Christin
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Marie-Josée Cuadrado
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Claire Defoin-Platel
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Sophie Deret
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Denis Duvert
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Christophe Feret
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Mathieu Forissier
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Jean-François Fournier
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - David Froude
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Fériel Hacini-Rachinel
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Craig Steven Harris
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Catherine Hervouet
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Hélène Huguet
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Guillaume Lafitte
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Anne-Pascale Luzy
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Branislav Musicki
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Danielle Orfila
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Benjamin Ozello
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Coralie Pascau
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Jonathan Pascau
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Véronique Parnet
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Guillaume Peluchon
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Romain Pierre
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - David Piwnica
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Catherine Raffin
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Patricia Rossio
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Delphine Spiesse
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Nathalie Taquet
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Etienne Thoreau
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Rodolphe Vatinel
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | - Emmanuel Vial
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902, Sophia-Antipolis Cedex, France
| | | |
Collapse
|
36
|
Gao H, Hou F, Dong R, Wang Z, Zhao C, Tang W, Wu Y. Rho-Kinase inhibitor fasudil suppresses high glucose-induced H9c2 cell apoptosis through activation of autophagy. Cardiovasc Ther 2016; 34:352-9. [PMID: 27333569 DOI: 10.1111/1755-5922.12206] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Huikuan Gao
- Department of Cardiology; Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Fei Hou
- Department of Infection; Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Ruiqing Dong
- Department of Cardiology; Hangzhou First People's Hospital; Zhejiang China
| | - Zefeng Wang
- Department of Cardiology; Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Can Zhao
- Department of Cardiology; Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Wurina Tang
- Department of Cardiology; Baotou Central Hospital; Inner Mongolia China
| | - Yongquan Wu
- Department of Cardiology; Beijing Friendship Hospital; Capital Medical University; Beijing China
| |
Collapse
|
37
|
Feng Y, LoGrasso PV, Defert O, Li R. Rho Kinase (ROCK) Inhibitors and Their Therapeutic Potential. J Med Chem 2015; 59:2269-300. [PMID: 26486225 DOI: 10.1021/acs.jmedchem.5b00683] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rho kinases (ROCKs) belong to the serine-threonine family, the inhibition of which affects the function of many downstream substrates. As such, ROCK inhibitors have potential therapeutic applicability in a wide variety of pathological conditions including asthma, cancer, erectile dysfunction, glaucoma, insulin resistance, kidney failure, neuronal degeneration, and osteoporosis. To date, two ROCK inhibitors have been approved for clinical use in Japan (fasudil and ripasudil) and one in China (fasudil). In 1995 fasudil was approved for the treatment of cerebral vasospasm, and more recently, ripasudil was approved for the treatment of glaucoma in 2014. In this Perspective, we present a comprehensive review of the physiological and biological functions for ROCK, the properties and development of over 170 ROCK inhibitors as well as their therapeutic potential, the current status, and future considerations.
Collapse
Affiliation(s)
| | | | - Olivier Defert
- Amakem Therapeutics , Agoralaan A bis, 3590 Diepenbeek, Belgium
| | - Rongshi Li
- Center for Drug Discovery and Department of Pharmaceutical Sciences, College of Pharmacy, Cancer Genes and Molecular Regulation Program, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center , 986805 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
38
|
Chin VT, Nagrial AM, Chou A, Biankin AV, Gill AJ, Timpson P, Pajic M. Rho-associated kinase signalling and the cancer microenvironment: novel biological implications and therapeutic opportunities. Expert Rev Mol Med 2015; 17:e17. [PMID: 26507949 PMCID: PMC4836205 DOI: 10.1017/erm.2015.17] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Rho/ROCK pathway is involved in numerous pivotal cellular processes that have made it an area of intense study in cancer medicine, however, Rho-associated coiled-coil containing protein kinase (ROCK) inhibitors are yet to make an appearance in the clinical cancer setting. Their performance as an anti-cancer therapy has been varied in pre-clinical studies, however, they have been shown to be effective vasodilators in the treatment of hypertension and post-ischaemic stroke vasospasm. This review addresses the various roles the Rho/ROCK pathway plays in angiogenesis, tumour vascular tone and reciprocal feedback from the tumour microenvironment and explores the potential utility of ROCK inhibitors as effective vascular normalising agents. ROCK inhibitors may potentially enhance the delivery and efficacy of chemotherapy agents and improve the effectiveness of radiotherapy. As such, repurposing of these agents as adjuncts to standard treatments may significantly improve outcomes for patients with cancer. A deeper understanding of the controlled and dynamic regulation of the key components of the Rho pathway may lead to effective use of the Rho/ROCK inhibitors in the clinical management of cancer.
Collapse
Affiliation(s)
- Venessa T. Chin
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | - Adnan M. Nagrial
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- The Department of Medical Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, NSW, Australia
| | - Angela Chou
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Anatomical Pathology, Sydpath, St Vincent's Hospital, Sydney, Australia
| | - Andrew V. Biankin
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, NSW 2200, Australia
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland G61 1BD, UK
| | - Anthony J. Gill
- Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia
- University of Sydney, Sydney, NSW 2006, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of NSW, Australia
| | - Marina Pajic
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of NSW, Australia
| |
Collapse
|
39
|
Fareghi-Alamdari R, Zandi F, Keshavarz MH. Copper–cobalt synergy in Cu1−xCoxFe2O4spinel ferrite as a highly efficient and regioselective nanocatalyst for the synthesis of 2,4-dinitrotoluene. RSC Adv 2015. [DOI: 10.1039/c5ra11338e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Highly regioselective dinitration of toluene with nitric acid as nitrating agent in the presence of Cu1−xCoxFe2O4(0 ≤x≤ 1) as nanocatalysts is described.
Collapse
Affiliation(s)
- Reza Fareghi-Alamdari
- College of Chemistry and Chemical Engineering
- Malek-Ashtar University of Technology
- Tehran
- I. R. Iran
| | - Farzad Zandi
- College of Chemistry and Chemical Engineering
- Malek-Ashtar University of Technology
- Tehran
- I. R. Iran
| | | |
Collapse
|