1
|
Sood A, Mehrotra A, Sharma U, Aggarwal D, Singh T, Shahwan M, Jairoun AA, Rani I, Ramniwas S, Tuli HS, Yadav V, Kumar M. Advancements and recent explorations of anti-cancer activity of chrysin: from molecular targets to therapeutic perspective. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:477-494. [PMID: 38966181 PMCID: PMC11220305 DOI: 10.37349/etat.2024.00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/28/2023] [Indexed: 07/06/2024] Open
Abstract
In recent times, there have been notable advancements in comprehending the potential anti-cancer effects of chrysin (CH), a naturally occurring flavonoid compound found abundantly in various plant sources like honey, propolis, and certain fruits and vegetables. This active compound has garnered significant attention due to its promising therapeutic qualities and minimal toxicity. CH's ability to combat cancer arises from its multifaceted mechanisms of action, including the initiation of apoptosis and the inhibition of proliferation, angiogenesis, metastasis, and cell cycle progression. CH also displays potent antioxidant and anti-inflammatory properties, effectively counteracting the harmful molecules that contribute to DNA damage and the development of cancer. Furthermore, CH has exhibited the potential to sensitize cancer cells to traditional chemotherapy and radiotherapy, amplifying the effectiveness of these treatments while reducing their negative impact on healthy cells. Hence, in this current review, the composition, chemistry, mechanisms of action, safety concerns of CH, along with the feasibility of its nanoformulations. To conclude, the recent investigations into CH's anti-cancer effects present a compelling glimpse into the potential of this natural compound as a complementary therapeutic element in the array of anti-cancer approaches, providing a safer and more comprehensive method of combating this devastating ailment.
Collapse
Affiliation(s)
- Abhilasha Sood
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura 140401, India
| | - Arpit Mehrotra
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura 140401, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda 151001, India
| | - Diwakar Aggarwal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala 133207, India
| | - Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi 110007, India
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Ammar Abdulrahman Jairoun
- Health and Safety Department, Dubai Municipality, Dubai 67, United Arab Emirates
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia (USM), Pulau Pinang 11500, Malaysia
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Sadopur, Ambala 134007, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala 133207, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skane University Hospital, Lund University, SE 20213 Malmö, Sweden
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala 133207, India
- Department of Chemistry, Maharishi Markandeshwar University Sadopur, Ambala 134007, India
| |
Collapse
|
2
|
Zhang R, Gao C, Hu M, Wang X, Li S, An Z, Yang X, Xie Y. Synthesis and biological evaluation of the novel chrysin prodrug for non-alcoholic fatty liver disease treatment. Front Pharmacol 2024; 15:1336232. [PMID: 38708081 PMCID: PMC11066169 DOI: 10.3389/fphar.2024.1336232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/26/2024] [Indexed: 05/07/2024] Open
Abstract
Background: Chrysin (5,7-dihydroxyflavone) is a natural flavonoid that has been reported as a potential treatment for non-alcoholic fatty liver disease (NAFLD). However, extensive phase II metabolism and poor aqueous solubility led to a decrease in the chrysin concentration in the blood after oral administration, limiting its pharmacological development in vivo. Methods: In the present study, we synthesized a novel chrysin derivative prodrug (C-1) to address this issue. We introduced a hydrophilic prodrug group at the 7-position hydroxyl group, which is prone to phase II metabolism, to improve water solubility and mask the metabolic site. Further, we evaluated the ameliorative effects of C-1 on NAFLD in vitro and in vivo by NAFLD model cells and db/db mice. Results: In vitro studies indicated that C-1 has the ability to ameliorate lipid accumulation, cellular damage, and oxidative stress in NAFLD model cells. In vivo experiments showed that oral administration of C-1 at a high dose (69.3 mg/kg) effectively ameliorated hyperlipidemia and liver injury and reduced body weight and liver weight in db/db mice, in addition to alleviating insulin resistance. Proteomic analysis showed that C-1 altered the protein expression profile in the liver and particularly improved the expression of proteins associated with catabolism and metabolism. Furthermore, in our preliminary pharmacokinetic study, C-1 showed favorable pharmacokinetic properties and significantly improved the oral bioavailability of chrysin. Conclusion: Our data demonstrated that C-1 may be a promising agent for NAFLD therapy.
Collapse
Affiliation(s)
- Ruiming Zhang
- Department of Nuclear Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chuanyue Gao
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020–2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Mingxing Hu
- Department of Nuclear Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xingxing Wang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020–2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shuoyuan Li
- Department of Nuclear Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Zhenmei An
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020–2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yongmei Xie
- Department of Nuclear Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
3
|
Duan SF, Song L, Guo HY, Deng H, Huang X, Shen QK, Quan ZS, Yin XM. Research status of indole-modified natural products. RSC Med Chem 2023; 14:2535-2563. [PMID: 38107170 PMCID: PMC10718587 DOI: 10.1039/d3md00560g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 12/19/2023] Open
Abstract
Indole is a heterocyclic compound formed by the fusion of a benzene ring and pyrrole ring, which has rich biological activity. Many indole-containing compounds have been sold on the market due to their excellent pharmacological activity. For example, vincristine and reserpine have been widely used in clinical practice. The diverse structures and biological activities of natural products provide abundant resources for the development of new drugs. Therefore, this review classifies natural products by structure, and summarizes the research progress of indole-containing natural product derivatives, their biological activities, structure-activity relationship and research mechanism which has been studied in the past 13 years, so as to provide a basis for the development of new drug development.
Collapse
Affiliation(s)
- Song-Fang Duan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Lei Song
- Yanbian University Hospital, Yanbian University Yanji 133002 People's Republic of China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Xiu-Mei Yin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| |
Collapse
|
4
|
Mikhail DS, El-Nassan HB, Mahmoud ST, Fahim SH. Nonacidic thiophene-based derivatives as potential analgesic and design, synthesis, biological evaluation, and metabolic stability study. Drug Dev Res 2022; 83:1739-1757. [PMID: 36074734 DOI: 10.1002/ddr.21992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 12/29/2022]
Abstract
Nonsteroidal anti-inflammatory drugs represent one of the most popularly used classes of drugs. However, their long-term administration is associated with various side effects including gastrointestinal ulceration. One of the major reasons of NSAIDs ulcerogenicity is direct damage of the epithelial lining cells by the acidic moieties present in many drugs. Another drawback for this acidic group is its rapid metabolism and clearance through Phase II conjugation. Three series of thiophene and thienopyrimidine derivatives were designed and synthesized as nonacidic anti-inflammatory agents. In vivo testing of their analgesic activity indicated that compounds 2b and 7a-d showed higher PI values than that of the positive control drugs, indomethacin and celecoxib. The latter compounds 2b and 7a-d were subjected to further anti-inflammatory activity testing where they showed comparable percentage edema inhibition to that of indomethacin and celecoxib. Compounds 2b, 7a, 7c, and 7d inhibited PGE2 synthesis by 61.10%-74.54% (71.47% for indomethacin, and 80.11% for celecoxib). The same compounds inhibited the expression of rat mPGES-1 and cPGES3 by 74%-83% (77% for indomethacin, and 82% for celecoxib) and 48%-70% (62% for indomethacin, and 70% for celecoxib), respectively. The stability of the most active compound 2b in Nonenzymatic gastrointestinal fluids and in human plasma was tested. Additionally, studying the metabolic stability of compound 2b in S9 rat liver fraction showed that it displayed a slow in vitro clearance with half-life time 1.5-fold longer than indomethacin. The metabolites of 2b were predicted via UPLC-MS/MS. In silico ADMET profiling study was also included.
Collapse
Affiliation(s)
- Demiana S Mikhail
- Department, of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hala B El-Nassan
- Department, of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sally T Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Samar H Fahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Ragab EM, El Gamal DM, Mohamed TM, Khamis AA. Therapeutic potential of chrysin nanoparticle-mediation inhibition of succinate dehydrogenase and ubiquinone oxidoreductase in pancreatic and lung adenocarcinoma. Eur J Med Res 2022; 27:172. [PMID: 36076266 PMCID: PMC9461199 DOI: 10.1186/s40001-022-00803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/30/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreatic adenocarcinoma (PDAC) and lung cancer are expected to represent the most common cancer types worldwide until 2030. Under typical conditions, mitochondria provide the bulk of the energy needed to sustain cell life. For that inhibition of mitochondrial complex ΙΙ (CΙΙ) and ubiquinone oxidoreductase with natural treatments may represent a promising cancer treatment option. A naturally occurring flavonoid with biological anti-cancer effects is chyrsin. Due to their improved bioavailability, penetrative power, and efficacy, chitosan–chrysin nano-formulations (CCNPs) are being used in medicine with increasing frequency. Chitosan (cs) is also regarded as a highly versatile and adaptable polymer. The cationic properties of Cs, together with its biodegradability, high adsorption capacity, biocompatibility, effect on permeability, ability to form films, and adhesive properties, are advantages. In addition, Cs is thought to be both safe and economical. CCNPs may indeed be therapeutic candidates in the treatment of pancreatic adenocarcinoma (PDAC) and lung cancer by blocking succinate ubiquinone oxidoreductase.
Collapse
Affiliation(s)
- Eman M Ragab
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Doaa M El Gamal
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Abeer A Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
6
|
Chigan JZ, Hu Z, Liu L, Xu YS, Ding HH, Yang KW. Quinolinyl sulfonamides and sulphonyl esters exhibit inhibitory efficacy against New Delhi metallo-β-lactamase-1 (NDM-1). Bioorg Chem 2022; 120:105654. [DOI: 10.1016/j.bioorg.2022.105654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 11/27/2022]
|
7
|
Meshram MA, Bhise UO, Makhal PN, Kaki VR. Synthetically-tailored and nature-derived dual COX-2/5-LOX inhibitors: Structural aspects and SAR. Eur J Med Chem 2021; 225:113804. [PMID: 34479036 DOI: 10.1016/j.ejmech.2021.113804] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022]
Abstract
Inflammation is a most complex pathological process that gives birth to different diseases. Different inflammatory mediators are released during an inflammation responsible for acute pain and chronic inflammatory diseases like cancer, asthma, rheumatoid arthritis, osteoarthritis, neurodegenerative diseases, metabolic and cardiovascular disorders. The arachidonic acid pathway, which results in the production of inflammatory mediators, provides several targets for anti-inflammatory intervention. The most popularly used medications for inflammation are non-steroidal anti-inflammatory agents (NSAIDs) but it has some limitations, in particular traditional NSAIDs which inhibit the COX pathway non-selectively, producing gastrointestinal side effects, and other adverse effects like stroke and renal failure. On the other hand, selective COX-2 inhibitors commonly known as 'coxibs' produce cardiovascular side effects. Frequent inhibition of either cyclooxygenase or lipoxygenase enzyme switches the metabolism of arachidonic acid from one to another which could lead to serious consequences. Therefore, a need to develop novel, effective and safe anti-inflammatory agents which can inhibit the release of both prostaglandins and leukotrienes from the respective cyclooxygenase and lipoxygenase pathways has emerged. This resulted in the discovery of new anti-inflammatory agents derived from natural and synthetic sources as dual COX-2/5-LOX inhibitors. To further contribute towards the discovery in this field, we have attempted to summarize structural features and pharmacological activities of heterocyclic scaffolds and natural products explored as dual COX-2/5-LOX inhibitors. We have emphasized the designing of the dual inhibitors inspired by the previously reported COX-2 and 5-LOX inhibitors. This outline could render us to identify the best pharmacophores catering to dual COX-2/5-LOX inhibitory activity while improving their efficiency as anti-inflammatory agents.
Collapse
Affiliation(s)
- Minakshi A Meshram
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Utkarsha O Bhise
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Priyanka N Makhal
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Venkata Rao Kaki
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India.
| |
Collapse
|
8
|
Benny AT, Arikkatt SD, Vazhappilly CG, Kannadasan S, Thomas R, Leelabaiamma MSN, Radhakrishnan EK, Shanmugam P. Chromone a Privileged Scaffold in Drug Discovery: Developments on the Synthesis and Bioactivity. Mini Rev Med Chem 2021; 22:1030-1063. [PMID: 34819000 DOI: 10.2174/1389557521666211124141859] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/12/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022]
Abstract
Chromones are the class of secondary metabolites broadly occurred in the plant kingdom in a noticeable quantity. This rigid bicyclic system has been categorized "as privileged scaffolds in compounds" in medicinal chemistry. The wide biological responses made them an important moiety in a drug discovery program. This review provides updates on the various methods of synthesis of chromones and biological applications in medicinal chemistry. Various synthetic strategies for the construction of chromones include readily available phenols, salicylic acid and its derivatives, ynones, chalcones, enaminones, chalcones and 2-hydroxyarylalkylketones as starting materials. Synthesis of chromones by using metal, metal free, nanomaterials and different catalysts are included. Details of diverse biological activities such as anti-cancer agents, antimicrobial agents, anti-viral property, anti-inflammatory agents, antioxidants, Monoamine Oxidase-B (MAO-B) Inhibitors, anti-Alzheimer's agents, anti-diabetic agent, antihistaminic potential, antiplatelet agents of chromone derivatives are diecussed.
Collapse
Affiliation(s)
- Anjitha Theres Benny
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore-632014. India
| | - Sonia D Arikkatt
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore-632014. India
| | - Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah. United Arab Emirates
| | | | - Renjan Thomas
- Division of Molecular Pathology, Strand Lifesciences, HCG Hospital, Bangalore - 560 0270. India
| | | | | | - Ponnusamy Shanmugam
- Organic and Bioorganic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai-600020. India
| |
Collapse
|
9
|
Liu C, Kou X, Wang X, Wu J, Yang A, Shen R. Novel chrysin derivatives as hidden multifunctional agents for anti-Alzheimer's disease: design, synthesis and in vitro evaluation. Eur J Pharm Sci 2021; 166:105976. [PMID: 34419572 DOI: 10.1016/j.ejps.2021.105976] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/17/2021] [Accepted: 08/15/2021] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia, the exact etiology of the disease has not been known yet. The use of single-target drugs limits the efficacy of drugs and has certain side effects. In this study, the 'hidden' multi-target strategy was used in combination with chrysin's metal chelating site and rivastigmine's anti-cholinesterase pharmacophore to form an ester, which improves the hydrophobicity and protects the phenolic hydroxyl group at the same time. Four derivatives (1-4) were synthesized as the hidden multifunctional agents for AD therapy. Most of the compounds displayed good activities of anti-cholinesterase, antioxidant, appropriate blood brain barrier (BBB) penetration and certain inhibitory activity of β-amyloid (Aβ) aggregation. Compound 3 was demonstrated as the highest selective butyrylcholinesterase (BuChE) inhibitor and targeted both the catalytic active site (CAS) and the peripheral anion site (PAS). And it could be hydrolyzed by BuChE to release chrysin with good ability to chelate Cu2+ and Fe2+. At the same time, phenol fragment can exert its good antioxidant effect. Overall, these findings demonstrated that compound 3 might be considered as a potential hidden multifunctional candidate in the therapy of AD.
Collapse
Affiliation(s)
- Chang Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaodi Kou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xi Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jianhua Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Aihong Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Rui Shen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
10
|
Kumari P, Singh P, Kaur J, Bhatti R. Design, Synthesis, and Activity Evaluation of Stereoconfigured Tartarate Derivatives as Potential Anti-inflammatory Agents In Vitro and In Vivo. J Med Chem 2021; 64:9550-9566. [PMID: 34137625 DOI: 10.1021/acs.jmedchem.1c00880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Preclinical and clinical data reveal that inflammation is strongly correlated with the pathogenesis of a number of diseases including those of cancer, Alzheimer, and diabetes. The inflammatory cascade involves a multitude of cytokines ending ultimately with the activation of COX-2/LOX for the production of prostaglandins and leukotrienes. While the available inhibitors for these enzymes suffer from nonoptimal selectivity, in particular for COX-2, we present here the results of purposely designed tartarate derivatives that exhibit favorable selectivity and significant effectiveness against COX-2 and LOX. Integrated approaches of molecular simulation, organic synthesis, and biochemical/physical experiments identified 15 inhibiting COX-2 and LOX with respective IC50 4 and 7 nM. At a dose of 5 mg kg-1 to Swiss albino mice, 15 reversed algesia by 65% and inflammation by 33% in 2-3 h. We find good agreement between experiments and simulations and use the simulations to rationalize our observations.
Collapse
|
11
|
Li Y, Wang Z, Xu S, Cheng J. Rhodium-catalyzed C–H activation/annulation of salicylaldehyde with 4-diazoisochroman-3-imines toward 5H,12H-isochromeno[3,4–b]chromen-12-one. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Song X, Yang R, Xiao Q. Recent Advances in the Synthesis of Heterocyclics via Cascade Cyclization of Propargylic Alcohols. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001142] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xian‐Rong Song
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Nanchang 330013 People's Republic of China
| | - Ruchun Yang
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Nanchang 330013 People's Republic of China
| | - Qiang Xiao
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Nanchang 330013 People's Republic of China
| |
Collapse
|
13
|
P JJ, S L M. Novel approach of multi-targeted thiazoles and thiazolidenes toward anti-inflammatory and anticancer therapy—dual inhibition of COX-2 and 5-LOX enzymes. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02655-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Jacob P J, Manju SL. Identification and development of thiazole leads as COX-2/5-LOX inhibitors through in-vitro and in-vivo biological evaluation for anti-inflammatory activity. Bioorg Chem 2020; 100:103882. [PMID: 32361295 DOI: 10.1016/j.bioorg.2020.103882] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022]
Abstract
Treatment of inflammation using NSAIDs is coupled with a risk of severe gastric adverse events. Development of dual COX-2/5-LOX inhibitors turns out to be an imperative area devoted to safer NSAIDs. A series of thiourea, thiazole, and thiazolidene derivatives were synthesized by green synthetic approach and COX-1, COX-2 and 5-LOX inhibition screening resulted in the identification of a potent compound 6l with IC50 of 5.55 µM, 0.09 µM, and 0.38 µM respectively. Compound 6l made significant decrease (60.82%) in the carrageenan-induced edema in male Wistar rats. qRT-PCR analysis and determination of PGE2 and LTB4 in the rat paw tissues indicated that this thiazole based dual inhibitor significantly reduced the expression of COX-2 and 5-LOX genes besides the marked reduction in both PGE2 and LTB4 levels. The gastric safety profiling revealed an enhanced gastrointestinal safety of the compound 6l on histopathological examination. Molecular docking studies at COX-2 and 5-LOX active sites were consistent with biological studies by significant protein-ligand interaction. Besides, results of in-vitro PGE2 and LTB4 studies on RAW 264.7 cells as well as antioxidant studies were parallel to the dual inhibitory activity. The present investigations identify a promising lead having anti-inflammatory potential with an improved gastric safety profile.
Collapse
Affiliation(s)
- Jaismy Jacob P
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| | - S L Manju
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
15
|
Pang L, Liu CY, Gong GH, Quan ZS. Synthesis, in vitro and in vivo biological evaluation of novel lappaconitine derivatives as potential anti-inflammatory agents. Acta Pharm Sin B 2020; 10:628-645. [PMID: 32322467 PMCID: PMC7161710 DOI: 10.1016/j.apsb.2019.09.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/01/2019] [Accepted: 08/31/2019] [Indexed: 12/20/2022] Open
Abstract
Lappaconitine (LA), a natural compound with a novel C18-diterpenoid alkaloid skeleton, displayed extensive biological profile. Recent research on LA is focused mainly on its anti-tumor and analgesic effects, and therefore we aimed to investigate its anti-inflammatory potential. A series of novel LA derivatives with various substituents on the 20-N position was designed and synthesized. In the initial screening of LA derivatives against NO production, all the target compounds, except compound E2, exhibited excellent inhibitory ability relative to that of LA. Particularly, compound A4 exhibited the most potent inhibition with IC50 of 12.91 μmol/L. The elementary structure-activity relationships (SARs) of NO inhibitory activity indicated that replacement of the benzene ring with an electron donating group could improve the anti-inflammatory efficacy. Furthermore, compound A4 shows an anti-inflammatory mechanism by inhibiting NO, PGE2, and TNF-α generation via the suppression of NF-κB and MAPK signaling pathways. Notably, compound A4 could exert a significant therapeutic effect on LPS-induced acute lung injury (ALI) in vivo. Based on the above research, we further investigated the preliminary pharmacokinetic property of A4 in rats. Therefore, compound A4 could be a promising candidate for the development of anti-inflammatory agents in the future.
Collapse
Affiliation(s)
- Lei Pang
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Chun-Yan Liu
- Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Guo-Hua Gong
- Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao 028000, China
- Corresponding authors. Tel./fax: + 86 433 243 6020.
| | - Zhe-Shan Quan
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
- Corresponding authors. Tel./fax: + 86 433 243 6020.
| |
Collapse
|
16
|
Sinha S, Manju SL, Doble M. Chalcone-Thiazole Hybrids: Rational Design, Synthesis, and Lead Identification against 5-Lipoxygenase. ACS Med Chem Lett 2019; 10:1415-1422. [PMID: 31620227 DOI: 10.1021/acsmedchemlett.9b00193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022] Open
Abstract
A hybrid pharmacophore approach is used to design and synthesize novel chalcone-thiazole hybrid molecules. Herein, thiazole has been hybridized with chalcone to obtain a new class of 5-LOX inhibitors. In vitro biological evaluation showed that most of the compounds were better 5-LOX inhibitors than the positive control, Zileuton (IC50 = 1.05 ± 0.03 μM). The best compounds in the series, namely, 4k, 4n, and 4v (4k: IC50 = 0.07 ± 0.02 μM, 4n: IC50 = 0.08 ± 0.05 μM, 4v: 0.12 ± 0.04 μM) are found to be 10 times more active than previously reported 2-amino thiazole (2m: IC50 = 0.9 ± 0.1 μM) by us. Further, 4k has redox (noncompetitive) while 4n and 4v act through a competitive inhibition mechanism. SAR indicated that the presence of methoxy/methyl either in the vicinity of chalcone or both thiazole and chalcone contributed to the synergistic inhibitory effect.
Collapse
Affiliation(s)
- Shweta Sinha
- Bioengineering and Drug Design Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Tamil Nadu 600036, India
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - S. L. Manju
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Mukesh Doble
- Bioengineering and Drug Design Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Tamil Nadu 600036, India
| |
Collapse
|
17
|
Sinha S, Doble M, Manju SL. 5-Lipoxygenase as a drug target: A review on trends in inhibitors structural design, SAR and mechanism based approach. Bioorg Med Chem 2019; 27:3745-3759. [PMID: 31331653 DOI: 10.1016/j.bmc.2019.06.040] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 01/22/2023]
Abstract
The most common inflammatory disease of the airways is asthma among children affecting around 235 million people worldwide. 5-Lipoxygenase (5-LOX) is a crucial enzyme which helps in the conversion of arachidonic acid (AA) to leukotrienes (LTs), the lipid mediators. It is associated with several inflammation related disorders such as asthma, allergy, and atherosclerosis. Therefore, it is considered as a promising target against inflammation and asthma. Currently, the only drug against 5-LOX which is available is Zileuton, while a few inhibitors are in clinical trial stages such as Atreleuton and Setileuton. So, there is a dire requirement in the area of progress of novel 5-LOX inhibitors which necessitates an understanding of their structure activity relationship and mode of action. In this review, novel 5-LOX inhibitors reported so far, their structural design, SAR and developmental strategies along with clinical updates are discussed over the last two decades.
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India; Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Tamil Nadu 600036, India
| | - Mukesh Doble
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Tamil Nadu 600036, India.
| | - S L Manju
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
18
|
Huang Y, Zhang B, Li J, Liu H, Zhang Y, Yang Z, Liu W. Design, synthesis, biological evaluation and docking study of novel indole-2-amide as anti-inflammatory agents with dual inhibition of COX and 5-LOX. Eur J Med Chem 2019; 180:41-50. [PMID: 31299586 DOI: 10.1016/j.ejmech.2019.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
Abstract
In this work, a series of novel indole-2-amide compounds were designed, synthesized, characterized and the anti-inflammatory activity in vivo were evaluated. Compounds 8a, 10b, 12h, and 12l exhibited marked anti-inflammatory activity in 2,4-Dinitrofluorobenzenethe (DNFB) - induced mice auricle edema model. Further, compounds 8a, 10b and 12h exhibited potential in vitro COX-2 inhibitory activity (IC50 = 21.86, 23.3 and 23.21 nM, respectively), while the reference drug celecoxib was 11.20 nM. The most promising compound 10b was exhibited the highest selectivity for COX-2 (selectivity index (COX-1/COX-2) = 17.45) and moderate 5-LOX inhibitory activity (IC50 = 66 nM), which comparable to positive controlled zileuton (IC50 = 38.91 nM). In addition, the test results showed compounds 10b and 12h no significant cytotoxic activity on normal cells (RAW264.7). Further, at the active sites of the COX-1, COX-2 co-crystals, 3b and 4l showed higher binding forces in the molecular docking study, which consistent with the results of in vitro experiments. These results demonstrated that these compounds had dual inhibitory activity of COX/5-LOX, providing clues for further searching for safer and more effective anti-inflammatory drugs.
Collapse
Affiliation(s)
- Yuanzheng Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Bin Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Jiaming Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China; Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei, 230031, China.
| | - Huicai Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Yanchun Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China; Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei, 230031, China
| | - Zhang Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Wandong Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| |
Collapse
|
19
|
Li Y, Liu LH, Yu XQ, Zhang YX, Yang JW, Hu XQ, Zhang HB. Transglycosylation Improved Caffeic Acid Phenethyl Ester Anti-Inflammatory Activity and Water Solubility by Leuconostoc mesenteroides Dextransucrase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4505-4512. [PMID: 30915841 DOI: 10.1021/acs.jafc.9b01143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bioglycosylation is an efficient strategy to improve the biological activity and physicochemical properties of natural compounds for therapeutic drug development. In this study, two caffeic acid phenethyl ester (CAPE) glucosides (G-CAPE and 2G-CAPE) were synthesized by transglycosylation with dextransucrase from Leuconostoc mesenteroides 0326 with CAPE as an acceptor and sucrose as a donor. The products were purified and the structures were characterized. The physicochemical properties, anti-inflammatory activity, and cytotoxicity of the two CAPE glucosides were measured. The water solubility of G-CAPE and 2G-CAPE is 35 and 90 times higher, respectively, than that of CAPE. Compared to CAPE, the monoglycoside product showed superior anti-inflammatory effects, and its inhibition rate of NO, IF-6, and TNF-α is 93.4%, 76.81%, and 56.58% in RAW 264.7 macrophages, respectively, at 20 μM. Also, the cytotoxicity of both products was significantly improved. These glycosylation-modified CAPEs circumvent some of the flaws in CAPE application in anti-inflammatory drugs.
Collapse
Affiliation(s)
- Yao Li
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology , 193# Tunxi Road , Hefei , 230009 Anhui Province , P. R. China
| | - Lan-Hua Liu
- Instrumental Analysis Center , Hefei University of Technology , 193# Tunxi Road , Hefei , 230009 Anhui Province , P. R. China
| | - Xiao-Qin Yu
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology , 193# Tunxi Road , Hefei , 230009 Anhui Province , P. R. China
| | - Yu-Xin Zhang
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology , 193# Tunxi Road , Hefei , 230009 Anhui Province , P. R. China
| | - Jing-Wen Yang
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology , 193# Tunxi Road , Hefei , 230009 Anhui Province , P. R. China
| | - Xue-Qin Hu
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology , 193# Tunxi Road , Hefei , 230009 Anhui Province , P. R. China
| | - Hong-Bin Zhang
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology , 193# Tunxi Road , Hefei , 230009 Anhui Province , P. R. China
| |
Collapse
|
20
|
Li Y, Li YP, He J, Liu D, Zhang QZ, Li K, Zheng X, Tang GT, Guo Y, Liu Y. The Relationship between Pharmacological Properties and Structure- Activity of Chrysin Derivatives. Mini Rev Med Chem 2019; 19:555-568. [PMID: 29692242 DOI: 10.2174/1389557518666180424094821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/24/2017] [Accepted: 12/20/2017] [Indexed: 11/22/2022]
Abstract
Chrysin is a natural product of a flavonoid compound. Chemically, chrysin consists of two phenyl rings (A and B) and a heterocyclic ring (C). Biologically, chrysin exerts many different physiological activities. In recent years, with the in-depth development for more active drugs, the synthesis and biological activities of chrysin derivatives have been well studied. Besides, structure-activity relationship of chrysin revealed that the chemical construction meets the critical chemical structural necessities of flavonoids for numerous pharmacological activities. It is generally believed that modified chrysin could be more potent than unmodified chrysin. Different modification in the rings of chrysin could possess various degrees of biological activities. This review aims to summarize the mechanism for the activities of chrysin and its derivatives in different rings. We also explored the relationship between biological function and structure-activity of substituted chrysin derivatives with different functional groups. The influence of chrysin derivatives on the proliferation and apoptosis of cancer cells is also investigated. Development of novel drugs based on the biological functions of chrysin could better improve clinical outcomes of affected population, especially for tumor patients and diabetic patients.
Collapse
Affiliation(s)
- Yang Li
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Yan-Peng Li
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Jun He
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang 421001, China
| | - Ding Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Qi-Zhi Zhang
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Kang Li
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Xing Zheng
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Guo-Tao Tang
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Yu Guo
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| |
Collapse
|
21
|
Szczęśniak-Sięga BM, Mogilski S, Wiglusz RJ, Janczak J, Maniewska J, Malinka W, Filipek B. Synthesis and pharmacological evaluation of novel arylpiperazine oxicams derivatives as potent analgesics without ulcerogenicity. Bioorg Med Chem 2019; 27:1619-1628. [PMID: 30852078 DOI: 10.1016/j.bmc.2019.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 11/25/2022]
Abstract
Gastrotoxicity continues to be a major issue in therapy with nonsteroidal anti-inflammatory drugs (NSAIDs). Medicine is yet to develop absolutely safe analgesics. Numerous strategies are employed to discover new, safer NSAIDs, for example selective inhibition of cyclooxygenase-2, new molecular targets (e.g. microsomal prostaglandin E2 synthase-1), incorporation of cytoprotective compounds in the drug molecule or modification of the classic NSAIDs currently available on the market. The research presented in this paper is indicative of a current worldwide trend in this area of science, and is an example of the fourth strategy noted above. Two series of new arylpiperazine derivatives of the classic NSAID - piroxicam, were developed by conventional synthesis. The full range of compounds obtained proved to be between two and five times analgesically more potent than the reference drug and, most importantly, they did not show any ulcerogenic activity.
Collapse
Affiliation(s)
- Berenika M Szczęśniak-Sięga
- Department of Chemistry of Drugs, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland
| | - Rafał J Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wroclaw, Poland; Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okólna 2, 50-950 Wroclaw, Poland
| | - Jan Janczak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wroclaw, Poland
| | - Jadwiga Maniewska
- Department of Chemistry of Drugs, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Wiesław Malinka
- Department of Chemistry of Drugs, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Barbara Filipek
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland
| |
Collapse
|
22
|
Chandel P, Kumar A, Singla N, Kumar A, Singh G, Gill RK. Rationally synthesized coumarin based pyrazolines ameliorate carrageenan induced inflammation through COX-2/pro-inflammatory cytokine inhibition. MEDCHEMCOMM 2019; 10:421-430. [PMID: 30996860 PMCID: PMC6430084 DOI: 10.1039/c8md00457a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/22/2019] [Indexed: 12/28/2022]
Abstract
In the present work, coumarin based pyrazolines (7a-g) have been synthesized and investigated for their in vitro and in vivo anti-inflammatory potential. Amongst the synthesized compounds, compounds 7a, 7d and 7f exhibited significant in vitro anti-inflammatory activity as compared to the standard etoricoxib. Keeping this in mind, in vivo investigations were carried out via carrageenan induced inflammation and acetic acid induced writhing models in male Wistar rats and compound 7a was found to possess appreciable anti-inflammatory and analgesic potential. The mode of action of compound 7a was also investigated by using substance P as the biomarker, which shows promising results. Further, the selectivity of the most active compound 7a against the cyclooxygenase enzyme was supported by molecular docking studies which reveal that compound 7a has greater binding affinity towards COX-2 over COX-1 and 5-LOX enzymes. In silico ADME analysis of compound 7a confirms the drug-like characteristics and the in vivo acute toxicity study showed the safety of the compound even up to a 2000 mg kg-1 dose. Thus, compound 7a was identified as an effective anti-inflammatory agent, and can be explored for further analgesic/anti-inflammatory drug design and development.
Collapse
Affiliation(s)
- Priyanka Chandel
- Department of Pharmaceutical Chemistry , ISF College of Pharmacy , Moga-142001 , Punjab , India . ; ; Tel: +91 1636 324200
| | - Anoop Kumar
- Department of Pharmacology , ISF College of Pharmacy , Moga-142001 , Punjab , India
| | - Nishu Singla
- Department of Pharmaceutical Chemistry , ISF College of Pharmacy , Moga-142001 , Punjab , India . ; ; Tel: +91 1636 324200
| | - Anshul Kumar
- Department of Pharmaceutical Chemistry , ISF College of Pharmacy , Moga-142001 , Punjab , India . ; ; Tel: +91 1636 324200
| | - Gagandeep Singh
- Department of Chemistry , Indian Institute of Technology-Ropar-140001 , Punjab , India .
| | - Rupinder Kaur Gill
- Department of Pharmaceutical Chemistry , ISF College of Pharmacy , Moga-142001 , Punjab , India . ; ; Tel: +91 1636 324200
| |
Collapse
|
23
|
Cai L, Zhu X, Chen J, Lin A, Yao H. Rh(iii)-Catalyzed C–H activation/annulation of salicylaldehydes with sulfoxonium ylides for the synthesis of chromones. Org Chem Front 2019. [DOI: 10.1039/c9qo00830f] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A rhodium(iii)-catalyzed C–H activation/annulation of salicylaldehydes with sulfoxonium ylides has been developed for the formation of structurally diverse 2-substituted chromones.
Collapse
Affiliation(s)
- Libo Cai
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Xiaoyi Zhu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Jiayi Chen
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| |
Collapse
|
24
|
Ren SZ, Wang ZC, Zhu XH, Zhu D, Li Z, Shen FQ, Duan YT, Cao H, Zhao J, Zhu HL. Design and biological evaluation of novel hybrids of 1, 5-diarylpyrazole and Chrysin for selective COX-2 inhibition. Bioorg Med Chem 2018; 26:4264-4275. [DOI: 10.1016/j.bmc.2018.07.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/28/2018] [Accepted: 07/12/2018] [Indexed: 12/20/2022]
|
25
|
Singh P, Kaur J, Kaur H, Kaur A, Bhatti R. Synergy of Physico-chemical and Biological Experiments for Developing a Cyclooxygenase-2 Inhibitor. Sci Rep 2018; 8:10005. [PMID: 29968808 PMCID: PMC6030096 DOI: 10.1038/s41598-018-28408-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
The physiological consequences of COX-2 overexpression in the development of cancer, diabetes and neurodegenerative diseases have made this enzyme a promising therapeutic target. Herein, COX-2 active site was analyzed and new molecules were designed. We identified a highly potent molecule (S)-3a with IC50 value and the selectivity for COX-2 0.6 nM and 1666, respectively. The MTD of (S)-3a was 2000 mg kg-1 and its pharmacokinetic studies in rat showed t1/2 7.5 h. This compound reversed acetic acid induced analgesia and carragennan induced inflammation by 50% and 25% in rat when used at a dose 10 mg kg-1. Mechanistically, it was found that compound (S)-3a inhibits COX-2. Overall, the combination of physico-chemical and biological experiments facilitated the development of a new lead molecule to anti-inflammatory drug.
Collapse
Affiliation(s)
- Palwinder Singh
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, 143005, India.
| | - Jagroop Kaur
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, 143005, India
| | - Harpreet Kaur
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, 143005, India
| | - Anudeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Rajbir Bhatti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| |
Collapse
|
26
|
|
27
|
Safer anti-inflammatory therapy through dual COX-2/5-LOX inhibitors: A structure-based approach. Eur J Pharm Sci 2018; 121:356-381. [PMID: 29883727 DOI: 10.1016/j.ejps.2018.06.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022]
Abstract
Inflammatory mediators of the arachidonic acid cascade from cyclooxygenase (COX) and lipoxygenase (LOX) pathways are primarily responsible for many diseases in human beings. Chronic inflammation is associated with the pathogenesis and progression of cancer, arthritis, autoimmune, cardiovascular and neurological diseases. Traditional non-steroidal anti-inflammatory agents (tNSAIDs) inhibit cyclooxygenase pathway non-selectively and produce gastric mucosal damage due to COX-1 inhibition and allergic reactions and bronchospasm resulting from increased leukotriene levels. 'Coxibs' which are selective COX-2 inhibitors cause adverse cardiovascular events. Inhibition of any of these biosynthetic pathways could switch the metabolism to the other, which can lead to fatal side effects. Hence, there is undoubtedly an urgent need for new anti-inflammatory agents having dual mechanism that prevent release of both prostaglandins and leukotrienes. Though several molecules have been synthesized with this objective, their unfavourable toxicity profile prevented them from being used in clinics. Here, this integrative review attempts to identify the promising pharmacophore that serves as dual inhibitors of COX-2/5-LOX enzymes with improved safety profile. A better acquaintance of structural features that balance safety and efficacy of dual inhibitors would be a different approach to the process of understanding and interpreting the designing of novel anti-inflammatory agents.
Collapse
|
28
|
Kaur S, Kumari P, Singh G, Bhatti R, Singh P. Design and Synthesis of Aza-/Oxa Heterocycle-Based Conjugates as Novel Anti-Inflammatory Agents Targeting Cyclooxygenase-2. ACS OMEGA 2018; 3:5825-5845. [PMID: 30023927 PMCID: PMC6044720 DOI: 10.1021/acsomega.8b00445] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/17/2018] [Indexed: 05/13/2023]
Abstract
A library of hybrid molecules was procured by the combination of triazine-indole adduct with morpholine/piperidine/pyrrolidine and pyrazole/pyrimidine/oxindole moieties. Enzyme immunoassays on cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) identified compound 6 having an IC50 value of 20 nM for COX-2 and 3000 nM for COX-1. The significant reduction in the formation of prostaglandin E2 in the lipopolysaccharide-treated (COX-2-activated) human whole blood, almost no change in the production of thromboxane B2 in the calcium ionophore-treated (COX-1-activated) sample of human whole blood, and the mechanistic studies on Swiss albino mice ensured that compound 6 is selective for COX-2. The association constant (Ka) of compound 6 with COX-2 was found to be of the order of 0.48 × 106 M-1. The diffusion spectroscopy experiments and relaxation time (T1) calculations of compound 6 in the presence of COX-2 assisted in identifying the site-specific interactions of 6 with the enzyme, and these results fall into nice correlation with the theoretical data obtained from molecular docking and quantitative structure-activity relationship studies. With maximum tolerable dose >2000 mg kg-1, compound 6 made 68 and 32% reduction in formalin-induced analgesia and carrageenan-induced inflammation in Swiss albino mice.
Collapse
Affiliation(s)
- Sukhmeet Kaur
- Department
of Chemistry—Centre for Advanced Studies and Department of
Pharmaceutical Sciences, Guru Nanak Dev
University, Amritsar 143005, India
| | - Priya Kumari
- Department
of Chemistry—Centre for Advanced Studies and Department of
Pharmaceutical Sciences, Guru Nanak Dev
University, Amritsar 143005, India
| | - Gurjit Singh
- Department
of Chemistry—Centre for Advanced Studies and Department of
Pharmaceutical Sciences, Guru Nanak Dev
University, Amritsar 143005, India
| | - Rajbir Bhatti
- Department
of Chemistry—Centre for Advanced Studies and Department of
Pharmaceutical Sciences, Guru Nanak Dev
University, Amritsar 143005, India
| | - Palwinder Singh
- Department
of Chemistry—Centre for Advanced Studies and Department of
Pharmaceutical Sciences, Guru Nanak Dev
University, Amritsar 143005, India
- E-mail: (P.S.)
| |
Collapse
|
29
|
Alexander OT, Donka R, Tonder JHV, Bezuidenhoudt BC, Visser HG. The crystal structure of 6-(4-bromobenzyl)-1,3,5-trimethyl-7-phenyl-1,5-dihydro-2 H-pyrrolo[3,2-d]pyrimidine-2,4(3 H)-dione, C 22H 20BrN 3O 2. Z KRIST-NEW CRYST ST 2018. [DOI: 10.1515/ncrs-2017-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C22H20BrN3O2, monoclinic, P21/c (no. 14), a = 15.889(12) Å, b = 16.332(13) Å, c = 7.324(5) Å, β = 94.985(5), V = 1893(2) Å3, Z = 4, Rgt(F) = 0.0295, wRref(F2) = 0.0790, T = 100(2) K.
Collapse
Affiliation(s)
- Orbett T. Alexander
- Department of Chemistry, University of the Free State, Nelson Mandela ave , Bloemfontein , South Africa
| | - Rajasekhar Donka
- Department of Chemistry, University of the Free State, Nelson Mandela ave , Bloemfontein , South Africa
| | - Johannes H. van Tonder
- Department of Chemistry, University of the Free State, Nelson Mandela ave , Bloemfontein , South Africa
| | - Barend C.B. Bezuidenhoudt
- Department of Chemistry, University of the Free State, Nelson Mandela ave , Bloemfontein , South Africa
| | - Hendrik G. Visser
- Department of Chemistry, University of the Free State, Nelson Mandela ave , Bloemfontein , South Africa
| |
Collapse
|
30
|
Begnami AF, Spindola HM, Ruiz ALTG, de Carvalho JE, Groppo FC, Rehder VLG. Antinociceptive and anti-edema properties of the ethyl acetate fraction obtained from extracts of Coriandrum sativum Linn. leaves. Biomed Pharmacother 2018; 103:1617-1622. [PMID: 29864950 DOI: 10.1016/j.biopha.2018.04.196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 02/07/2023] Open
Abstract
This study evaluated the antinociceptive and anti-edema properties of fractions of Coriandrum sativum Linn. (Apiaceae/Umbelliferae) leaves in mice. Ethyl acetate fractions (FAc) were obtained from dichloromethane extracts prepared from dried C. sativum (CS) leaves and stems. The effects of different concentrations of FAc on mice were observed using the open-field test, formalin-, capsaicin-, and carrageenan-induced paw edema tests, and the acetic acid-induced abdominal writhing test. Results from the carrageenan-induced paw edema test were subjected to a linear regression analysis and data from other assays were subjected to the Kruskal-Wallis test (followed by the SNK post hoc test). Dihydrocoriandrin (34.5%), coriandrin (14.4%), vitamin E (4.6%), and stigmasterol (7.9%) were identified in FAc. The number of squares the mice crossed in the open field test was decreased by 100 mg/kg and 300 mg/kg FAc (i.p.). The administration of 30, 100, and 300 mg/kg FAc induced fewer abdominal writhes than the control. In the formalin test, neurogenic pain was reduced by 20 mg/kg morphine and 30 and 100 mg/kg FAc, but not 5 mg/kg dexamethasone or 10 mg/kg FAc. Formalin-induced inflammatory pain was decreased by morphine, dexamethasone, and 30 and 100 mg/kg FAc. Morphine and 30, 100, and 300 mg/kg FAc significantly decreased the reaction time during the capsaicin test. Dexamethasone reduced both early and later phases of carrageenan-induced edema. Both 30 and 300 mg/kg FAc induced less edema than the control throughout the experiment. FAc showed antinociceptive, anti-edema and anti-inflammatory properties and it may be considered as a potential phytotherapeutic agent in the future.
Collapse
Affiliation(s)
- Andreza Fabiana Begnami
- CPQBA, University of Campinas-UNICAMP, Rua Alexandre Cazelatto 999, 13148-218, Paulínia, SP, Brazil
| | - Humberto M Spindola
- CPQBA, University of Campinas-UNICAMP, Rua Alexandre Cazelatto 999, 13148-218, Paulínia, SP, Brazil
| | - Ana Lucia T Gois Ruiz
- CPQBA, University of Campinas-UNICAMP, Rua Alexandre Cazelatto 999, 13148-218, Paulínia, SP, Brazil
| | - João Ernesto de Carvalho
- CPQBA, University of Campinas-UNICAMP, Rua Alexandre Cazelatto 999, 13148-218, Paulínia, SP, Brazil
| | - Francisco Carlos Groppo
- Department of Pharmacology, Anesthesiology and Therapeutics, Piracicaba Dental School, University of Campinas-UNICAMP, Av. Limeira 901, P.O. Box 52, 13414-903, Piracicaba, SP, Brazil.
| | - Vera L Garcia Rehder
- CPQBA, University of Campinas-UNICAMP, Rua Alexandre Cazelatto 999, 13148-218, Paulínia, SP, Brazil
| |
Collapse
|
31
|
Singh P, Kaur S, Sharma A, Kaur G, Bhatti R. TNF-α and IL-6 inhibitors: Conjugates of N-substituted indole and aminophenylmorpholin-3-one as anti-inflammatory agents. Eur J Med Chem 2017; 140:92-103. [DOI: 10.1016/j.ejmech.2017.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 01/01/2023]
|
32
|
Novel indole derivatives as potential anticancer agents: Design, synthesis and biological screening. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2065-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Philkhana SC, Verma AK, Jachak GR, Hazra B, Basu A, Reddy DS. Identification of new anti-inflammatory agents based on nitrosporeusine natural products of marine origin. Eur J Med Chem 2017; 135:89-109. [DOI: 10.1016/j.ejmech.2017.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 12/16/2022]
|
34
|
Zhang M, Xia Z, Yan A. Computer modeling in predicting the bioactivity of human 5-lipoxygenase inhibitors. Mol Divers 2016; 21:235-246. [PMID: 27904990 DOI: 10.1007/s11030-016-9709-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/14/2016] [Indexed: 01/04/2023]
Abstract
5-Lipoxygenase (5-LOX) is a key enzyme in the inflammatory path. Inhibitors of 5-LOX are useful for the treatment of diseases like arthritis, cancer, and asthma. We have collected a dataset including 220 human 5-LOX inhibitors for classification. A self-organizing map (SOM), a support vector machine (SVM), and a multilayer perceptron (MLP) algorithm were used to build models with selected descriptors for classifying 5-LOX inhibitors into active and weakly active ones. MACCS fingerprints were used in this model building process. The accuracy (Q) and Matthews correlation coefficient (MCC) of the best SOM model (Model 1A) were 86.49% and 0.73 on the test set, respectively. The Q and MCC of the best SVM model (Model 2A) were 82.67% and 0.64 on the test set, respectively. The Q and MCC of the best MLP model (Model 3B) were 84.00% and 0.67 on the test set, respectively. In addition, 180 inhibitors with bioactivities measured by fluorescence method were further used for a quantitative prediction. Multiple linear regression (MLR) and SVM algorithms were used to build models to predict the [Formula: see text] values. The correlation coefficients (R) of the MLR model (Model Q1) and the SVM model (Model Q2) were 0.72 and 0.74 on the test set, respectively.
Collapse
Affiliation(s)
- Mengdi Zhang
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, P.O. Box 53, 15 BeiSanHuan East Road, Beijing, 100029, People's Republic of China
| | - Zhonghua Xia
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, P.O. Box 53, 15 BeiSanHuan East Road, Beijing, 100029, People's Republic of China
| | - Aixia Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, P.O. Box 53, 15 BeiSanHuan East Road, Beijing, 100029, People's Republic of China. .,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, People's Republic of China.
| |
Collapse
|
35
|
Li HX, Wang ZC, Qian YM, Yan XQ, Lu YD, Zhu HL. Design, synthesis, and biological evaluation of chrysin derivatives as potential FabH inhibitors. Chem Biol Drug Des 2016; 89:136-140. [PMID: 27860280 DOI: 10.1111/cbdd.12839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/27/2016] [Accepted: 06/11/2016] [Indexed: 12/19/2022]
Abstract
New series of chrysin derivatives (4a-4t) were designed and synthesized by introducing different substituted piperazines at C-7 position. Their inhibitory effects on FabH were evaluated using two Gram-negative bacterial strains, Escherichia coli and Pseudomonas aeruginosa, and two Gram-positive bacterial strains, Bacillus subtilis and Staphylococcus aureus. To our delight, most of these compounds exhibited a dramatic increase in inhibitory potency, compared with the control positive drugs. Among them, compound 4s exhibited the most potent inhibitory activity with IC50 values of 5.78 ± 0.24 μm inhibiting E. coli FabH and potent antibacterial activity against S. aureus and E. coli with MIC of 1.25 ± 0.01, 1.15 ± 0.12 μg/mL, respectively, comparing to the control positive drugs penicillin G (7.56 ± 0.30 μm). Docking simulation was performed to position compound 4s into the FabH active site, and the result showed that compound 4s could bind well with the FabH as potent FabH inhibitor.
Collapse
Affiliation(s)
- Hong-Xia Li
- School of Life and Food Engineering, Suzhou University, Suzhou Anhui, People's Republic of China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, People's Republic of China
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, People's Republic of China
| | - Yu-Mei Qian
- School of Life and Food Engineering, Suzhou University, Suzhou Anhui, People's Republic of China
| | - Xiao-Qiang Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, People's Republic of China
| | - Ya-Dong Lu
- Neonatal Medical Center, Nanjing Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
36
|
Kaur J, Kaur S, Singh P. Rational modification of the lead molecule: Enhancement in the anticancer and dihydrofolate reductase inhibitory activity. Bioorg Med Chem Lett 2016; 26:1936-40. [PMID: 26979156 DOI: 10.1016/j.bmcl.2016.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/26/2016] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
By using molecular docking studies, the practice of fragment based drug discovery is conceptualized by introducing oxindole and iso-propanol moieties in our previous lead molecule 1. The resulting compound 2 exhibited competitive inhibition and favorable Ka and Ki for hDHFR. The screening of compound 2 at 60 cell line panel of human tumor cell lines showed its considerably better efficacy than compound 1 and hence put the candidature of 2 on stronghold for further studies.
Collapse
Affiliation(s)
- Jagroop Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Sukhmeet Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Palwinder Singh
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
37
|
Singh P, Kaur S, Kaur J, Singh G, Bhatti R. Rational Design of Small Peptides for Optimal Inhibition of Cyclooxygenase-2: Development of a Highly Effective Anti-Inflammatory Agent. J Med Chem 2016; 59:3920-34. [DOI: 10.1021/acs.jmedchem.6b00134] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Palwinder Singh
- UGC
Sponsored Centre for Advanced Studies - Department of Chemistry and ‡Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Sukhmeet Kaur
- UGC
Sponsored Centre for Advanced Studies - Department of Chemistry and ‡Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Jagroop Kaur
- UGC
Sponsored Centre for Advanced Studies - Department of Chemistry and ‡Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Gurjit Singh
- UGC
Sponsored Centre for Advanced Studies - Department of Chemistry and ‡Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Rajbir Bhatti
- UGC
Sponsored Centre for Advanced Studies - Department of Chemistry and ‡Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar 143005, India
| |
Collapse
|