1
|
Viana GM, da Cunha-Junior EF, Assumpção PWMC, Rezende MG, Emiliano YSDS, Soares LMDS, Pereira GRC, Rodrigues CR, Cabral LM, Torres-Santos EC. Synthesis and Structure-Activity Relationship of Thiourea Derivatives Against Leishmania amazonensis. Pharmaceuticals (Basel) 2024; 17:1573. [PMID: 39770415 PMCID: PMC11677126 DOI: 10.3390/ph17121573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Leishmaniasis, caused by Leishmania protozoa and transmitted by vectors, presents varied clinical manifestations based on parasite species and host immunity. The lack of effective vaccines or treatments has prompted research into new therapies, including thiourea derivatives, which have demonstrated antiprotozoal activities. Methods: We synthesized two series of N,N'-disubstituted thiourea derivatives through the reaction of isothiocyanates with amines. These compounds were evaluated in vitro against promastigote and amastigote forms of L. amazonensis, alongside cytotoxicity assessments on macrophages. In silico studies were conducted to analyze structure-activity relationships (SARs) and drug-likeness. Results: A total of fifty thiourea derivatives were synthesized and tested. Compound 3e from the first generation exhibited significant anti-leishmanial activity with an IC50 of 4.9 ± 1.2 µM and over 80-fold selectivity compared to that of miltefosine (IC50 = 7.5 ± 1.2 µM). The introduction of a piperazine ring in the second-generation thioureas enhanced potency and selectivity, with compound 5i achieving an IC50 of 1.8 ± 0.5 µM and a selectivity index of approximately 70. Pharmacokinetic predictions indicated favorable profiles for the active compounds. Conclusions: SAR and ADMET analyses identified compound 5i as the most promising candidate for further preclinical evaluation, suggesting that piperazine thiourea derivatives represent a novel class of anti-leishmanial agents.
Collapse
Affiliation(s)
- Gil Mendes Viana
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (G.M.V.); (P.W.M.C.A.); (M.G.R.)
| | - Edézio Ferreira da Cunha-Junior
- Laboratório de Imunoparasitologia, Unidade Integrada de Pesquisa em Produtos Bioativos e Biociências, Centro Multidisciplinar UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Macaé 27970-000, Brazil;
| | - Paloma Wetler Meireles Carreiros Assumpção
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (G.M.V.); (P.W.M.C.A.); (M.G.R.)
| | - Marianne Grilo Rezende
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (G.M.V.); (P.W.M.C.A.); (M.G.R.)
| | - Yago Sousa dos Santos Emiliano
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (Y.S.d.S.E.); (L.M.d.S.S.)
| | - Laiza Maria da Silva Soares
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (Y.S.d.S.E.); (L.M.d.S.S.)
| | - Gabriel Rodrigues Coutinho Pereira
- Laboratório ModMolQSAR, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (G.R.C.P.); (C.R.R.)
| | - Carlos Rangel Rodrigues
- Laboratório ModMolQSAR, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (G.R.C.P.); (C.R.R.)
| | - Lucio Mendes Cabral
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (G.M.V.); (P.W.M.C.A.); (M.G.R.)
| | - Eduardo Caio Torres-Santos
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (Y.S.d.S.E.); (L.M.d.S.S.)
| |
Collapse
|
2
|
Sundar S, Singh VK, Agrawal N, Singh OP, Kumar R. Investigational new drugs for the treatment of leishmaniasis. Expert Opin Investig Drugs 2024; 33:1029-1046. [PMID: 39225742 DOI: 10.1080/13543784.2024.2400139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/05/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Over the past 20 years, significant progress has been made in anti-leishmanial therapy. Three new drugs/formulations are available for the treatment of various forms of leishmaniasis, namely oral miltefosine, paromomycin and liposomal amphotericin B. However, these advances in drug development have added considerable complexity for clinicians including toxicity, emergence of resistance and decreased sensitivity of available drugs. The development of newer drugs with less toxicity and more efficacy is urgently needed. AREAS COVERED This review comprehensively examines the latest developments and current status of antileishmanial drugs for the treatment of leishmaniasis across the world. Several new investigational drugs that showed anti-leishmanial activity under in vitro or in vivo conditions and either underwent the phase-I/II clinical trials or are on the verge of entering the trials were reviewed. We also delve into the challenges of drug resistance and discuss the emergence of new and effective antileishmanial compounds. EXPERT OPINION The available treatments for leishmaniasis are limited in number, toxic, expensive, and demand extensive healthcare resources. Every available antileishmanial drug is associated with several disadvantages, such as drug resistance and toxicity or high cost. Miltefosine is potentially teratogenic. New antileishmanial drugs/treatment modalities are sorely needed for expanding future treatment options.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Neha Agrawal
- Department of Medicine, University of Florida, Jacksonville, FL, USA
| | - Om Prakash Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Winge T, Imberg L, Perry B, Matheeussen A, Caljon G, Kalinin D, Wünsch B. N-Pyrazolyl- and N-Triazolylamines and -Ureas as Antileishmanial and Antitrypanosomal Drugs. ChemMedChem 2024; 19:e202400220. [PMID: 38687962 DOI: 10.1002/cmdc.202400220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Three types of modifications of antileishmanial pyrazole lead compounds 7 and 8 were conducted to expand understanding of the relationships between structural features and antileishmanial/antitrypanosomal activity: (1) the pyrazole core was retained or replaced by a 1,2,4-triazole ring; (2) various aryl moieties including 2-fluorophenyl, pyridin-3-yl and pyrazin-2-yl rings were attached at 3-position of the core azole; (3) either arylmethylamino or ureido substituents were introduced at 5-position of the azole core. The synthesis followed established routes starting with esters 9 or 15 and anhydride 21. The synthesized 3-arylpyrazoles and 3-aryl-1,2,4-triazoles had only very low antileishmanial activity. The 2-fluorophenyl-substituted pyrazole 18c revealed the highest antileishmanial activity of this series of compounds, but its IC50 value (20 μM) still indicates low activity. However, low micromolar antitrypanosomal activity was detected for the pyridin-3-yl-substituted pyrazoles 12b (IC50=4.7 μM) and 14a (IC50=2.1 μM). Their IC50 values are comparable with the IC50 values of the reference compounds benznidazole and nifurtimox. Whereas only low unspecific cytotoxicity at the primary peritoneal mouse macrophages (PMM) was detected, considerable cytotoxicity at MRC-5 human fibroblast cells was found for both pyrazoles 12b an 14a. The activity of pyrazole 12b against T. cruzi is 4-fold higher than its unspecific MRC-5 cytotoxicity.
Collapse
Affiliation(s)
- Tobias Winge
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149, Münster, Germany
| | - Lukas Imberg
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149, Münster, Germany
| | - Ben Perry
- Drugs for Neglected Diseases initiative, 15 chemin Camille-Vidart, 1202, Geneva, Switzerland
- current Address: Medicxi Ventures, 10 Cours de Rive, 1204, Geneva, Switzerland
| | - An Matheeussen
- University of Antwerpen, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, Campus CDE, S7.24, Universiteitsplein 1, B-2610, Wilrijk-Antwerpen
| | - Guy Caljon
- University of Antwerpen, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, Campus CDE, S7.24, Universiteitsplein 1, B-2610, Wilrijk-Antwerpen
| | - Dmitrii Kalinin
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149, Münster, Germany
| | - Bernhard Wünsch
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149, Münster, Germany
- GRK 2515, Chemical biology of ion channels (Chembion), Universität Münster, Corrensstr. 48, D-48149, Münster, Germany
| |
Collapse
|
4
|
Khoumeri O, Hutter S, Primas N, Castera-Ducros C, Carvalho S, Wyllie S, Efrit ML, Fayolle D, Since M, Vanelle P, Verhaeghe P, Azas N, El-Kashef H. Synthesis of Nitrostyrylthiazolidine-2,4-dione Derivatives Displaying Antileishmanial Potential. Pharmaceuticals (Basel) 2024; 17:878. [PMID: 39065730 PMCID: PMC11280390 DOI: 10.3390/ph17070878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
A series of 61 thiazolidine-2,4-diones bearing a styryl group at position 5 was synthesized in 2-5 steps and their structure was proved by elemental and spectral analyses. The compounds obtained were evaluated in vitro against the promastigote stage of the kinetoplastid parasite Leishmania infantum and the human HepG2 cell line, to determine selectivity indices and to compare their activities with those of antileishmanial reference drugs. The study of structure-activity relationships indicated the potential of some derivatives bearing a nitro group on the phenyl ring, especially when located at the meta position. Thus, among the tested series, compound 14c appeared as a hit compound with good antileishmanial activity (EC50 = 7 µM) and low cytotoxicity against both the hepatic HepG2 and macrophage THP-1 human cell lines (CC50 = 101 and 121 µM, respectively), leading to good selectivity indices (respectively, 14 and 17), in comparison with the reference antileishmanial drug compound miltefosine (EC50 = 3.3 µM, CC50 = 85 and 30 µM, SI = 26 and 9). Regarding its mechanism of action, among several possibilities, it was demonstrated that compound 14c is a prodrug bioactivated, predominantly by L. donovani nitroreductase 1, likely leading to the formation of cytotoxic metabolites that form covalent adducts in the parasite. Finally, compound 14c is lipophilic (measured CHI LogD7.7 = 2.85) but remains soluble in water (measured PBS solubility at pH7.4 = 16 µM), highlighting the antileishmanial potential of the nitrostyrylthiazolidine-2,4-dione scaffold.
Collapse
Affiliation(s)
- Omar Khoumeri
- Team Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Aix Marseille University, CNRS, ICR UMR 7273, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France; (O.K.); (C.C.-D.); (P.V.)
| | - Sébastien Hutter
- IHU Méditerranée Infection, UMR RITMES, TEAM-VEPTE, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (S.H.); (N.A.)
| | - Nicolas Primas
- Team Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Aix Marseille University, CNRS, ICR UMR 7273, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France; (O.K.); (C.C.-D.); (P.V.)
- Service Central de la Qualité et de l’Information Pharmaceutiques, Hôpital de la Conception, AP-HM, 147 Boulevard Baille, 13005 Marseille, France
| | - Caroline Castera-Ducros
- Team Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Aix Marseille University, CNRS, ICR UMR 7273, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France; (O.K.); (C.C.-D.); (P.V.)
- Service Central de la Qualité et de l’Information Pharmaceutiques, Hôpital de la Conception, AP-HM, 147 Boulevard Baille, 13005 Marseille, France
| | - Sandra Carvalho
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK; (S.C.); (S.W.)
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK; (S.C.); (S.W.)
| | - Mohamed Lotfi Efrit
- Laboratoire de Synthèse Organique et Hétérocyclique Sélective-Evaluation D’activité Biologique, LR17ES01, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire, Tunis 2092, Tunisia;
| | - Dimitri Fayolle
- Normandie Université, UNICAEN, CERMN, DruiD Platform, Boulevard Becquerel, 14000 Caen, France; (D.F.); (M.S.)
| | - Marc Since
- Normandie Université, UNICAEN, CERMN, DruiD Platform, Boulevard Becquerel, 14000 Caen, France; (D.F.); (M.S.)
| | - Patrice Vanelle
- Team Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Aix Marseille University, CNRS, ICR UMR 7273, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France; (O.K.); (C.C.-D.); (P.V.)
- Service Central de la Qualité et de l’Information Pharmaceutiques, Hôpital de la Conception, AP-HM, 147 Boulevard Baille, 13005 Marseille, France
| | - Pierre Verhaeghe
- CNRS, Département de Pharmacochimie Moléculaire UMR 5063, University Grenoble Alpes, 38041 Grenoble, France;
- LCC-CNRS, UPR8241, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Nadine Azas
- IHU Méditerranée Infection, UMR RITMES, TEAM-VEPTE, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (S.H.); (N.A.)
| | - Hussein El-Kashef
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
- Faculty of Pharmacy, Sphinx University, Regional Road, New Assiut 71515, Egypt
| |
Collapse
|
5
|
Winge T, Perry B, Matheeussen A, Caljon G, Wünsch B. Late-Stage Diversification of Pyrazoles as Antileishmanial Agents. ChemMedChem 2024; 19:e202400028. [PMID: 38289147 DOI: 10.1002/cmdc.202400028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/29/2024] [Indexed: 02/17/2024]
Abstract
N-Pyrazolylcarboxamides and N-pyrazolylureas represent promising lead compounds for the development of novel antileishmanial drugs. Herein, we report the late-stage diversification of 3-bromopyrazoles 10 A/B and 14 A by Pd-catalyzed Sonogashira and Suzuki-Miyaura cross coupling reactions. The electron-withdrawing properties of the cyano moiety in 4-position of the pyrazole ring limited the acylation of the primary amino moiety in 5-position. A large set of pyrazoles bearing diverse aryl and alkynyl substituents in 3-position was prepared and the antileishmanial and antitrypanosomal activity was recorded. The urea 38 lacking the electron withdrawing cyano moiety in 4-position and containing the large 4-benzylpiperidinoo moiety exhibited a modest antileishmanial (IC50=19 μM) and antitrypanosomal activity (IC50=7.9 μM)). However, its considerable toxicity against the PMM and MRC-5 cells indicates low selectivity, i. e. a small gap between the desired antiparasitic activity and undesired cytotoxicity of <2- to 4-fold.
Collapse
Affiliation(s)
- Tobias Winge
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149, Münster, Germany
| | - Ben Perry
- Drugs for Neglected Diseases initiative, 15 chemin Camille-Vidart, 1202, Geneva, Switzerland
- current Address: Medicxi Ventures, 10 Cours de Rive, 1204, Geneva, Switzerland
| | - An Matheeussen
- University of Antwerpen, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, Campus CDE, S7.24, Universiteitsplein 1 B, 2610 Wilrijk-, Antwerpen
| | - Guy Caljon
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149, Münster, Germany
| | - Bernhard Wünsch
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149, Münster, Germany
- GRK 2515, Chemical biology of ion channels (Chembion), Universität Münster, Corrensstr. 48, D-48149, Münster, Germany
| |
Collapse
|
6
|
Matta R, Pochampally J, Dhoddi BN, Bhookya S, Bitla S, Akkiraju AG. Synthesis, antimicrobial and antioxidant activity of triazole, pyrazole containing thiazole derivatives and molecular docking studies on COVID-19. BMC Chem 2023; 17:61. [PMID: 37330518 DOI: 10.1186/s13065-023-00965-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/26/2023] [Indexed: 06/19/2023] Open
Abstract
New series of biologically active triazole and pyrazole compounds containing 2, 4-disubstituted thiazole analogues (12a-l) were synthesized from p-hydroxy benzaldehyde and phenyl hydrazine in excellent yields and purity. All the synthesized compounds were unambiguously identified based on their spectral data analyses (IR, 1H-NMR, 13C-NMR spectra, and HRMS). The final derivatives were evaluated for their in vitro anti-microbial activity after thorough purification. Among all the tested compounds, the compound 12e, 12f and 12 k possess the highest growth inhibitory activity at MIC values of 4.8, 5.1 and 4.0 μg/ml respectively. The antioxidant properties of these compounds demonstrated and revealed remarkable activity compared to the standard antioxidant by using the DPPH free radical-scavenging assay. Moreover, molecular docking studies to evaluate the probable interactions with the catalytic domain of the gram-positive S. aureus topoisomerase IV enzyme may provide new insights for developing these new hybrids as potential antimicrobial agents. The binding affinities of compounds 12a-l were ranging from - 10.0 to - 11.0 kcal/mol with topoisomerase IV enzyme and with COVID-19 main protease binding affinities are ranging from - 8.2 to - 9.3 kcal/mol. These docking studies reveal that the compounds 12a-l could be the best inhibitors for the novel SARS Cov-2 virus and have more future in discovery of potent drug candidates.
Collapse
Affiliation(s)
- Raghavender Matta
- Department of Chemistry, Osmania University, Hyderabad, 500007, India
| | | | | | - Shankar Bhookya
- Department of Chemistry, Sreenidhi University, Hyderabad, 501301, India
| | - Sampath Bitla
- Department of Chemistry, Osmania University, Hyderabad, 500007, India
| | - Anjini Gayatri Akkiraju
- Molecular Medicine Lab, Department of Genetics & Biotechnology, Osmania University, Hyderabad, 500007, India
| |
Collapse
|
7
|
Ansari SB, Kamboj S, Ramalingam K, Meena R, Lal J, Kant R, Shukla SK, Goyal N, Reddy DN. Design and synthesis of N-acyl and dimeric N-Arylpiperazine derivatives as potential antileishmanial agents. Bioorg Chem 2023; 137:106593. [PMID: 37186964 DOI: 10.1016/j.bioorg.2023.106593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
The current regime for leishmaniasis is associated with several adverse effects, expensive, parenteral treatment for longer periods and the emergence of drug resistance. To develop affordable and potent antileishmanial agents, a series of N-acyl and homodimeric aryl piperazines were synthesized with high purity, predicted druggable properties by in silico methods and investigated their antileishmanial activity. The in vitro biological activity of synthesized compounds against clinically validated intracellular amastigote and extracellular promastigote form of Leishmania donovani parasite showed eight compounds inhibited 50% amastigotes growth below 25 µM. The half maximal inhibitory concentration (IC50) and cytotoxicity assessment of eight active compounds, 4a, 4d and 4e demonstrated activity with an IC50 2.0 - 9.1 µM and selectivity index 10 - 42. Compound 4d (IC50 2.0 µM, SI = 42) found to be the best among them with four-folds more potent and eight-folds less toxic than the control drug miltefosine. Overall, results demonstrated that compound 4d is a promising lead candidate for further development as antileishmanial drug.
Collapse
Affiliation(s)
- Shabina B Ansari
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Sakshi Kamboj
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Karthik Ramalingam
- Division Of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Rachana Meena
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Jhajan Lal
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Ruchir Kant
- Division Of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sanjeev K Shukla
- Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Neena Goyal
- Division Of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Damodara N Reddy
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India.
| |
Collapse
|
8
|
Jacques Dit Lapierre TJW, Cruz MGFDML, Brito NPF, Resende DDM, Souza FDO, Pilau EJ, da Silva MFB, Neves BJ, Murta SMF, Rezende Júnior CDO. Hit-to-lead optimization of a pyrazinylpiperazine series against Leishmania infantum and Leishmania braziliensis. Eur J Med Chem 2023; 256:115445. [PMID: 37156183 DOI: 10.1016/j.ejmech.2023.115445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
An early hit-to-lead optimization of a novel pyrazinylpiperazine series against L. infantum and L. braziliensis has been performed after an extensive SAR focusing on the benzoyl fragment of hit (4). Deletion of the meta-Cl of (4) led to the obtention of the para-hydroxyl derivative (12), on which the design of most monosubstituted derivatives of the SAR was based. Further optimization of the series, involving disubstituted benzoyl fragments and the hydroxyl substituent of (12), allowed the obtention of a total of 15 compounds with increased antileishmanial potency (IC50 < 10 μM), nine of which displayed activity in the low micromolar range (IC50 < 5 μM). This optimization ultimately identified the ortho, meta-dihydroxyl derivative (46) as an early lead for this series (IC50 (L. infantum) = 2.8 μM, IC50 (L. braziliensis) = 0.2 μM). Additional assessment of some selected compounds against other trypanosomatid parasites revealed that this series is selective towards Leishmania parasites, and in silico ADMET predictions revealed satisfactory profiles for these compounds, allowing further lead optimization of the pyrazinylpiperazine class against Leishmania.
Collapse
Affiliation(s)
| | | | - Nícolas Peterson Ferreira Brito
- Laboratório de Síntese de Candidatos a Fármacos, Instituto de Química, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, 38400-902, Brazil
| | - Daniela de Melo Resende
- Grupo de Genômica Funcional de Parasitos, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ Minas), Belo Horizonte, MG, 30190-002, Brazil
| | - Felipe de Oliveira Souza
- Laboratório de Biomoléculas e Espectrometria de Massas (LaBioMass), Universidade Estadual de Maringá (UEM), Maringá, PR, 807020-900, Brazil
| | - Eduardo Jorge Pilau
- Laboratório de Biomoléculas e Espectrometria de Massas (LaBioMass), Universidade Estadual de Maringá (UEM), Maringá, PR, 807020-900, Brazil
| | - Meryck Felipe Brito da Silva
- Laboratory of Cheminformatics (LabChem), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
| | - Bruno Junior Neves
- Laboratory of Cheminformatics (LabChem), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
| | - Silvane Maria Fonseca Murta
- Grupo de Genômica Funcional de Parasitos, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ Minas), Belo Horizonte, MG, 30190-002, Brazil
| | - Celso de Oliveira Rezende Júnior
- Laboratório de Síntese de Candidatos a Fármacos, Instituto de Química, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, 38400-902, Brazil.
| |
Collapse
|
9
|
Lal J, Ramalingam K, Meena R, Ansari SB, Saxena D, Chopra S, Goyal N, Reddy DN. Design and synthesis of novel halogen rich salicylanilides as potential antileishmanial agents. Eur J Med Chem 2023; 246:114996. [PMID: 36565533 DOI: 10.1016/j.ejmech.2022.114996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
The available therapeutic treatment for leishmaniasis is inadequate and toxic due to side effects, expensive and emergence of drug resistance. Affordable and safe antileishmanial agents are urgently needed and toward this objective, we synthesized a series of 32 novel halogen rich salicylanilides including niclosamide and oxyclozanide and investigated their antileishmanial activity against amastigotes of Leishmania donovani. In vitro data showed fifteen compounds inhibited intracellular amastigotes with an IC50 of below 5 μM and selectivity index above 10. Among 15 active compounds, 14 and 24 demonstrated better activity with an IC50 of 2.89 μM and 2.09 μM respectively and selectivity index is 18. Compound 24 exhibited significant in vivo antileishmanial efficacy and reduced 65% of the splenic parasite load on day 28th post-treatment in the experimental visceral leishmaniasis golden hamster model. The data suggest that 24 can be a promising lead candidate possessing potential to be developed into a leishmanial drug candidate.
Collapse
Affiliation(s)
- Jhajan Lal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Karthik Ramalingam
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rachana Meena
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Shabina B Ansari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Deepanshi Saxena
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Neena Goyal
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| | - Damodara N Reddy
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Pawar S, Kumawat MK, Kundu M, Kumar K. Synthetic and medicinal perspective of antileishmanial agents: An overview. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.133977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Hada AM, Burduja N, Abbate M, Stagno C, Caljon G, Maes L, Micale N, Cordaro M, Scala A, Mazzaglia A, Piperno A. Supramolecular assembly of pentamidine and polymeric cyclodextrin bimetallic core-shell nanoarchitectures. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1361-1369. [PMID: 36474926 PMCID: PMC9679597 DOI: 10.3762/bjnano.13.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Advanced nanoscale antimicrobials, originated from the combination of noble metal nanoparticles (NPs) with conventional antimicrobial drugs, are considered the next generation of antimicrobial agents. Therefore, there is an increasing demand for rapid, eco-friendly, and relatively inexpensive synthetic approaches for the preparation of nontoxic metallic nanostructures endowed with unique physicochemical properties. Recently, we have proposed a straightforward synthetic strategy that exploits the properties of polymeric β-cyclodextrin (PolyCD) to act as both the reducing and stabilizing agent to produce monodispersed and stable gold-based NPs either as monometallic (nanoG) structures or core-shell bimetallic (nanoGS) architectures with an external silver layer. Here, we describe the preparation of a supramolecular assembly between nanoGS and pentamidine, an antileishmanial drug endowed with a wide range of therapeutic properties (i.e., antimicrobial, anti-inflammatory, and anticancer). The physicochemical characterization of the supramolecular assembly (nanoGSP) in terms of size and colloidal stability was investigated by complementary spectroscopic techniques, such as UV-vis, ζ-potential, and dynamic light scattering (DLS). Furthermore, the role of PolyCD during the reduction/stabilization of metal NPs was investigated for the first time by NMR spectroscopy.
Collapse
Affiliation(s)
- Alexandru-Milentie Hada
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania
- Department of Biomolecular Physics, Faculty of Physics, Babes-Bolyai University, M Kogalniceanu Str. 1, 400084 Cluj-Napoca, Romania
| | - Nina Burduja
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
- National Council of Research, Institute for the Study of Nanostructured Materials (CNR-ISMN), URT of Messina c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Marco Abbate
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Claudio Stagno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, S7, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, S7, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Massimiliano Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
- CNR-ITAE, Istituto di Tecnologie Avanzate per l’Energia, 98126, Messina, Italy
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonino Mazzaglia
- National Council of Research, Institute for the Study of Nanostructured Materials (CNR-ISMN), URT of Messina c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
12
|
Kabi AK, Sravani S, Gujjarappa R, Garg A, Vodnala N, Tyagi U, Kaldhi D, Singh V, Gupta S, Malakar CC. Overview on Biological Activities of Pyrazole Derivatives. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2022:229-306. [DOI: 10.1007/978-981-16-8399-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Zulfiqar B, Avery VM. Assay development in leishmaniasis drug discovery: a comprehensive review. Expert Opin Drug Discov 2021; 17:151-166. [PMID: 34818139 DOI: 10.1080/17460441.2022.2002843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Cutaneous, muco-cutaneous and visceral leishmaniasis occur due to an infection with the protozoan parasite Leishmania. The current therapeutic options are limited mainly due to extensive toxicity, emerging resistance and variation in efficacy based on species and strain of the Leishmania parasite. There exists a high unmet medical need to identify new chemical starting points for drug discovery to tackle the disease. AREAS COVERED The authors have highlighted the recent progress, limitations and successes achieved in assay development for leishmaniasis drug discovery. EXPERT OPINION It is true that sophisticated and robust phenotypic in vitro assays have been developed during the last decade, however limitations and challenges remain with respect to variation in activity reported between different research groups and success in translating in vitro outcomes in vivo. The variability is not only due to strain and species differences but also a lack of well-defined criteria and assay conditions, e.g. culture media, host cell type, assay formats, parasite form used, multiplicity of infection and incubation periods. Thus, there is an urgent need for more physiologically relevant assays that encompass multi-species phenotypic approaches to identify new chemical starting points for leishmaniasis drug discovery.
Collapse
Affiliation(s)
- Bilal Zulfiqar
- Discovery Biology, Griffith University, Brisbane, Australia
| | - Vicky M Avery
- Discovery Biology, Griffith University, Brisbane, Australia.,Discovery Biology, Griffith University Drug Discovery Programme for Cancer Therapeutics, Brisbane, Australia.,School of Environment and Sciences, Griffith University, Brisbane, Australia
| |
Collapse
|
14
|
Jilloju PC, Persoons L, Kurapati SK, Schols D, De Jonghe S, Daelemans D, Vedula RR. Discovery of ( ±)-3-(1H-pyrazol-1-yl)-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4] thiadiazine derivatives with promising in vitro anticoronavirus and antitumoral activity. Mol Divers 2021; 26:1357-1371. [PMID: 34165689 PMCID: PMC8223195 DOI: 10.1007/s11030-021-10258-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022]
Abstract
A new series of ( ±)-(3-(3,5-dimethyl-1H-pyrazol-1-yl)-6-phenyl-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-7-yl)(phenyl)methanones were efficiently synthesized starting from 4-amino-5-hydrazinyl-4H-1,2,4-triazole-3-thiol 1, acetyl acetone 2, various aromatic and heterocyclic aldehydes 3 and phenacyl bromides 4. All the newly synthesized compounds were tested for their antiviral and antitumoral activity. It was shown that subtle structural variations on the phenyl moiety allowed to tune biological properties toward antiviral or antitumoral activity. Mode-of-action studies revealed that the antitumoral activity was due to inhibition of tubulin polymerization.
Collapse
Affiliation(s)
| | - Leentje Persoons
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, Rega Institute for Medical Research, Herestraat 49, Leuven, Belgium
| | - Sathish Kumar Kurapati
- Department of Chemistry, National Institute of Technology, Andhra Pradesh, 534101, India.,Department of Chemistry, Chaithanya Bharati Institute of Technology, Hyderabad, Telangana, 500075, India
| | - Dominique Schols
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, Rega Institute for Medical Research, Herestraat 49, Leuven, Belgium
| | - Steven De Jonghe
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, Rega Institute for Medical Research, Herestraat 49, Leuven, Belgium
| | - Dirk Daelemans
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, Rega Institute for Medical Research, Herestraat 49, Leuven, Belgium
| | - Rajeswar Rao Vedula
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
15
|
Rathnakar B, Sinha KK, Prasad SR, Khan MI, Narsaiah C, Rameshwar N, Satyanarayana M. Design, Synthesis of Biaryl Piperidine Derivatives and Their Evaluation as Potential Antileishmanial Agents against Leishmania donovani Strain Ag83. Chem Biodivers 2021; 18:e2100105. [PMID: 34036717 DOI: 10.1002/cbdv.202100105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/21/2021] [Indexed: 01/19/2023]
Abstract
We have developed a new series of simple biaryl piperidine derivatives (11-19) based on biaryl naphthylisoquinoline alkaloid Ealamine-A. The target compounds were synthesized, analyzed by spectral data, and evaluated for antileishmanial activity against Leishmania donovani strain Ag83 by MTT assay. The compounds have shown the best to moderate antileishmanial activity. The 5'-fluoro-2'-methoxyphenyl derivative 14 and 3',5'-difluorophenyl derivative 16 have inhibited the promastigotes by 86 % and 85 % after 24 h and 92 % and 91 % after 48 h incubation, respectively, at 400 μM concentration. The % inhibition was lower with the lowering of the concentration and increased with the incubation time. Compounds 12, 15, and 18 have solubility issues and proved to be less active than the rest of the compounds. Molecular docking studies were performed on selective active compounds and the results indicate that these compounds may act by binding to the Leishmanolysin and the docking scores are in good correlation with the antileishmanial activity. These results provide an initial insight into the design of new therapeutics for neglected tropical diseases.
Collapse
Affiliation(s)
- Bethi Rathnakar
- Department of Pharmaceutical Chemistry, Telangana University, Dichpally, Nizamabad, 503322, India
| | - Kislay Kumar Sinha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, 844102, India
| | - Surendra Rajit Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, 844102, India
| | - Mohd Imran Khan
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, 844102, India
| | - Chelimela Narsaiah
- Department of Pharmaceutical Chemistry, Telangana University, Dichpally, Nizamabad, 503322, India
| | - Nimma Rameshwar
- Department of Pharmaceutical Chemistry, Telangana University, Dichpally, Nizamabad, 503322, India
| | - Mavurapu Satyanarayana
- Department of Pharmaceutical Chemistry, Telangana University, Dichpally, Nizamabad, 503322, India
| |
Collapse
|
16
|
Mishra S, Parmar N, Chandrakar P, Sharma CP, Parveen S, Vats RP, Seth A, Goel A, Kar S. Design, synthesis, in vitro and in vivo biological evaluation of pyranone-piperazine analogs as potent antileishmanial agents. Eur J Med Chem 2021; 221:113516. [PMID: 33992928 DOI: 10.1016/j.ejmech.2021.113516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 10/21/2022]
Abstract
The current therapeutic regimen for visceral leishmaniasis is inadequate and unsatisfactory due to toxic side effects, high cost and emergence of drug resistance. Alternative, safe and affordable antileishmanials are, therefore, urgently needed and toward these we synthesized a series of arylpiperazine substituted pyranone derivatives and screened them against both in vitro and in vivo model of visceral leishmaniasis. Among 22 synthesized compounds, 5a and 5g showed better activity against intracellular amastigotes with an IC50 of 11.07 μM and 15.3 μM, respectively. In the in vivo, 5a significantly reduced hepatic and splenic amastigotes burden in Balb/c mice model of visceral leishmaniasis. On a mechanistic node, we observed that 5a induced direct Leishmania killing via mitochondrial dysfunction like cytochrome c release and loss of membrane potential. Taken together, our results suggest that 5a is a promising lead for further development of antileishmanial drugs.
Collapse
Affiliation(s)
- Shachi Mishra
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Naveen Parmar
- Molecular Parasitology & Immunology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Pragya Chandrakar
- Molecular Parasitology & Immunology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Chandra Prakash Sharma
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sajiya Parveen
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India; Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Ravi P Vats
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India; Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Anuradha Seth
- Molecular Parasitology & Immunology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Atul Goel
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India; Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| | - Susanta Kar
- Molecular Parasitology & Immunology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
17
|
Van Bocxlaer K, Croft SL. Pharmacokinetics and pharmacodynamics in the treatment of cutaneous leishmaniasis - challenges and opportunities. RSC Med Chem 2021; 12:472-482. [PMID: 34041488 PMCID: PMC8128043 DOI: 10.1039/d0md00343c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Pharmacological efficacy is obtained when adequate concentrations of a potent drug reach the target site. In cutaneous leishmaniasis, a heterogeneous disease characterised by a variety of skin manifestations from simple nodules, skin discoloration, plaques to extensive disseminated forms, the parasites are found in the dermal layers of the skin. Treatment thus involves the release of the active compound from the formulation (administered either topically or systemically), it's permeation into the skin, accumulation by the local macrophages and further transport into the phagolysosome of the macrophage. The pharmacodynamic activity of a drug against the parasite is relatively straight forward to evaluate both in vivo and in vitro. The pharmacokinetic processes taking place inside the skin are more complex to elucidate due to the multi-lamellar structure of the skin, heterogeneous distribution of drugs within the tissue, the difficulty of accessing the site of infection complicating sampling and the lack of surrogate markers reflecting the activity of a drug in the skin. This review will discuss the difficulties encountered when investigating drug distribution, PK PD relationships and efficacy in the skin with a focus on cutaneous leishmaniasis treatment.
Collapse
Affiliation(s)
- Katrien Van Bocxlaer
- Department of Biology, York Biomedical Research Institute, University of York York YO10 5DD UK +44 (0) 19 0432 8855
| | - Simon L Croft
- Department of Infection Biology, London School of Hygiene & Tropical Medicine London WC1E 7HT UK
| |
Collapse
|
18
|
Bhattacharya A, Corbeil A, do Monte-Neto RL, Fernandez-Prada C. Of Drugs and Trypanosomatids: New Tools and Knowledge to Reduce Bottlenecks in Drug Discovery. Genes (Basel) 2020; 11:genes11070722. [PMID: 32610603 PMCID: PMC7397081 DOI: 10.3390/genes11070722] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Leishmaniasis (Leishmania species), sleeping sickness (Trypanosoma brucei), and Chagas disease (Trypanosoma cruzi) are devastating and globally spread diseases caused by trypanosomatid parasites. At present, drugs for treating trypanosomatid diseases are far from ideal due to host toxicity, elevated cost, limited access, and increasing rates of drug resistance. Technological advances in parasitology, chemistry, and genomics have unlocked new possibilities for novel drug concepts and compound screening technologies that were previously inaccessible. In this perspective, we discuss current models used in drug-discovery cascades targeting trypanosomatids (from in vitro to in vivo approaches), their use and limitations in a biological context, as well as different examples of recently discovered lead compounds.
Collapse
Affiliation(s)
- Arijit Bhattacharya
- Department of Microbiology, Adamas University, Kolkata, West Bengal 700 126, India;
| | - Audrey Corbeil
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | | | - Christopher Fernandez-Prada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
- Correspondence: ; Tel.: +1-450-773-8521 (ext. 32802)
| |
Collapse
|
19
|
Phan TN, Baek KH, Lee N, Byun SY, Shum D, No JH. In Vitro and in Vivo Activity of mTOR Kinase and PI3K Inhibitors Against Leishmania donovani and Trypanosoma brucei. Molecules 2020; 25:molecules25081980. [PMID: 32340370 PMCID: PMC7221892 DOI: 10.3390/molecules25081980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/02/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022] Open
Abstract
Kinetoplastid parasites, including Leishmania and Trypanosoma spp., are life threatening pathogens with a worldwide distribution. Next-generation therapeutics for treatment are needed as current treatments have limitations, such as toxicity and drug resistance. In this study, we examined the activities of established mammalian target of rapamycin (mTOR)/phosphoinositide 3-kinase (PI3K) inhibitors against these tropical diseases. High-throughput screening of a library of 1742 bioactive compounds against intracellular L. donovani was performed, and seven mTOR/PI3K inhibitors were identified. Dose-dilution assays revealed that these inhibitors had half maximal effective concentration (EC50) values ranging from 0.14 to 13.44 μM for L. donovani amastigotes and from 0.00005 to 8.16 μM for T. brucei. The results of a visceral leishmaniasis mouse model indicated that treatment with Torin2, dactolisib, or NVP-BGT226 resulted in reductions of 35%, 53%, and 54%, respectively, in the numbers of liver parasites. In an acute T. brucei mouse model using NVP-BGT226 parasite numbers were reduced to under the limits of detection by five consecutive days of treatment. Multiple sequence and structural alignment results indicated high similarities between mTOR and kinetoplastid TORs; the inhibitors are predicted to bind in a similar manner. Taken together, these results indicated that the TOR pathways of parasites have potential for the discovery of novel targets and new potent inhibitors.
Collapse
Affiliation(s)
- Trong-Nhat Phan
- Leishmania Research Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463–400, Korea; (T.-N.P.); (K.-H.B.)
| | - Kyung-Hwa Baek
- Leishmania Research Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463–400, Korea; (T.-N.P.); (K.-H.B.)
| | - Nakyung Lee
- Screening Development Platform, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463–400, Korea; (N.L.); (S.Y.B.); (D.S.)
| | - Soo Young Byun
- Screening Development Platform, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463–400, Korea; (N.L.); (S.Y.B.); (D.S.)
| | - David Shum
- Screening Development Platform, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463–400, Korea; (N.L.); (S.Y.B.); (D.S.)
| | - Joo Hwan No
- Leishmania Research Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463–400, Korea; (T.-N.P.); (K.-H.B.)
- Correspondence:
| |
Collapse
|
20
|
Metwally NH, Ragab EA, Mohamed MS. Synthesis of some novelN5‐sulfonylated andN1‐alkyated pyrazole derivatives and their antimicrobial activity in conjunction with molecular docking study. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nadia H. Metwally
- Department of Chemistry, Faculty of ScienceCairo University Giza Egypt
| | - Eman A. Ragab
- Department of Chemistry, Faculty of ScienceCairo University Giza Egypt
| | - Mona S. Mohamed
- Department of Chemistry, Faculty of ScienceCairo University Giza Egypt
| |
Collapse
|
21
|
Zinad DS, Mahal A, Shareef OA. Antifungal activity and theoretical study of synthesized pyrazole-imidazole hybrids. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1757-899x/770/1/012053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Santos SS, de Araújo RV, Giarolla J, Seoud OE, Ferreira EI. Searching for drugs for Chagas disease, leishmaniasis and schistosomiasis: a review. Int J Antimicrob Agents 2020; 55:105906. [PMID: 31987883 DOI: 10.1016/j.ijantimicag.2020.105906] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/16/2022]
Abstract
Chagas disease, leishmaniasis and schistosomiasis are neglected diseases (NDs) and are a considerable global challenge. Despite the huge number of people infected, NDs do not create interest from pharmaceutical companies because the associated revenue is generally low. Most of the research on these diseases has been conducted in academic institutions. The chemotherapeutic armamentarium for NDs is scarce and inefficient and better drugs are needed. Researchers have found some promising potential drug candidates using medicinal chemistry and computational approaches. Most of these compounds are synthetic but some are from natural sources or are semi-synthetic. Drug repurposing or repositioning has also been greatly stimulated for NDs. This review considers some potential drug candidates and provides details of their design, discovery and activity.
Collapse
Affiliation(s)
- Soraya Silva Santos
- Laboratory of Design and Synthesis of Chemotherapeutics Potentially Active in Neglected Diseases (LAPEN), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo-USP, Avenue Professor Lineu Prestes, 580-Building 13, São Paulo SP, 05508-900, Brazil
| | - Renan Vinicius de Araújo
- Laboratory of Design and Synthesis of Chemotherapeutics Potentially Active in Neglected Diseases (LAPEN), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo-USP, Avenue Professor Lineu Prestes, 580-Building 13, São Paulo SP, 05508-900, Brazil
| | - Jeanine Giarolla
- Laboratory of Design and Synthesis of Chemotherapeutics Potentially Active in Neglected Diseases (LAPEN), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo-USP, Avenue Professor Lineu Prestes, 580-Building 13, São Paulo SP, 05508-900, Brazil
| | - Omar El Seoud
- Laboratory of Design and Synthesis of Chemotherapeutics Potentially Active in Neglected Diseases (LAPEN), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo-USP, Avenue Professor Lineu Prestes, 580-Building 13, São Paulo SP, 05508-900, Brazil
| | - Elizabeth Igne Ferreira
- Laboratory of Design and Synthesis of Chemotherapeutics Potentially Active in Neglected Diseases (LAPEN), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo-USP, Avenue Professor Lineu Prestes, 580-Building 13, São Paulo SP, 05508-900, Brazil.
| |
Collapse
|
23
|
Van Bocxlaer K, Caridha D, Black C, Vesely B, Leed S, Sciotti RJ, Wijnant GJ, Yardley V, Braillard S, Mowbray CE, Ioset JR, Croft SL. Novel benzoxaborole, nitroimidazole and aminopyrazoles with activity against experimental cutaneous leishmaniasis. Int J Parasitol Drugs Drug Resist 2019; 11:129-138. [PMID: 30922847 PMCID: PMC6904836 DOI: 10.1016/j.ijpddr.2019.02.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Drugs for Neglected Diseases initiative (DNDi) has identified three chemical lead series, the nitroimidazoles, benzoxaboroles and aminopyrazoles, as innovative treatments for visceral leishmaniasis. The leads discovered using phenotypic screening, were optimised following disease- and compound-specific criteria. Several leads of each series were progressed and preclinical drug candidates have been nominated. Here we evaluate the efficacy of the lead compounds of each of these three chemical classes in in vitro and in vivo models of cutaneous leishmaniasis. METHODS The in vitro activity of fifty-five compounds was evaluated against the intracellular amastigotes of L. major, L. aethiopica, L. amazonensis, L. panamensis, L. mexicana and L. tropica. The drugs demonstrating potent activity (EC50 < 5 μM) against at least 4 of 6 species were subsequently evaluated in vivo in different L. major - BALB/c mouse models using a 5 or 10-day treatment with either the oral or topical formulations. Efficacy was expressed as lesion size (measured daily using callipers), parasite load (by quantitative PCR - DNA) and bioluminescence signal reduction relative to the untreated controls. RESULTS The selected drug compounds (3 nitroimidazoles, 1 benzoxaborole and 3 aminopyrazoles) showed consistent and potent activity across a range of Leishmania species that are known to cause CL with EC50 values ranging from 0.29 to 18.3 μM. In all cases, this potent in vitro antileishmanial activity translated into high levels of efficacy with a linear dose-response against murine CL. When administered at 50 mg/kg/day, DNDI-0690 (nitroimidazole), DNDI-1047 (aminopyrazole) and DNDI-6148 (benzoxaborole) all resulted in a significant lesion size reduction (no visible nodule) and an approximate 2-log-fold reduction of the parasite load as measured by qPCR compared to the untreated control. CONCLUSIONS The lead compounds DNDI-0690, DNDI-1047 and DNDI-6148 showed excellent activity across a range of Leishmania species in vitro and against L. major in mice. These compounds offer novel potential drugs for the treatment of CL.
Collapse
Affiliation(s)
- Katrien Van Bocxlaer
- London School of Hygiene & Tropical Medicine, Faculty of Infections and Tropical Diseases, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Diana Caridha
- Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Chad Black
- Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Brian Vesely
- Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Susan Leed
- Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Richard J Sciotti
- National Institutes of Health, Office of Biodefense, Research Resources and Translational Research, 5601 Fishers Lane, Bethesda, MD, 20892, USA
| | - Gert-Jan Wijnant
- London School of Hygiene & Tropical Medicine, Faculty of Infections and Tropical Diseases, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Vanessa Yardley
- London School of Hygiene & Tropical Medicine, Faculty of Infections and Tropical Diseases, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Stéphanie Braillard
- Drugs for Neglected Disease initiative (DNDi), Chemin Louis Dunant 15, 1202, Geneva, Switzerland
| | - Charles E Mowbray
- Drugs for Neglected Disease initiative (DNDi), Chemin Louis Dunant 15, 1202, Geneva, Switzerland
| | - Jean-Robert Ioset
- Drugs for Neglected Disease initiative (DNDi), Chemin Louis Dunant 15, 1202, Geneva, Switzerland
| | - Simon L Croft
- London School of Hygiene & Tropical Medicine, Faculty of Infections and Tropical Diseases, Keppel Street, London, WC1E 7HT, United Kingdom.
| |
Collapse
|
24
|
Corman HN, Shoue DA, Norris-Mullins B, Melancon BJ, Morales MA, McDowell MA. Development of a target-free high-throughput screening platform for the discovery of antileishmanial compounds. Int J Antimicrob Agents 2019; 54:496-501. [PMID: 31323307 DOI: 10.1016/j.ijantimicag.2019.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/28/2019] [Accepted: 07/10/2019] [Indexed: 12/22/2022]
Abstract
Leishmania parasites are the causative agents of a wide spectrum of human diseases. The clinical manifestations of leishmaniasis range from self-healing skin lesions to fatality. The World Health Organization has classed leishmaniasis as a category 1 neglected tropical disease. Leishmaniasis represents a major international health challenge, affecting 12 million people per year and with nearly 310 million people at risk. The first-line chemotherapies used to treat leishmaniasis are intravenous pentavalent antimonials; however, these drugs are highly toxic. As the use of oral treatment options such as paromomycin and miltefosine has increased, the incidence of disease relapse has increased and drug resistance to antimonials has developed, emphasizing the importance of identifying new chemotherapies. A novel, target-free fluorometric high-throughput screen with an average Z-score of 0.73 +/- 0.13 has been developed to identify small molecules with antileishmanial activity. Screening of 10,000 small molecules from the ChemBridge DIVER-set™ library cassette #5 yielded 210 compounds that killed 80% of parasites, resulting in a hit rate of 2.1%. One hundred and nine molecular scaffolds were represented within the hit compounds, and one scaffold that exhibited potent antileishmanial activity was 2,4-diaminoquinazoline. Host cell toxicity was determined prior to in-vitro infection of human THP-1 macrophages with Leishmania donovani mCherry expressing promastigotes; successful drug treatment was considered when the half maximal inhibitory concentration was <10 µM. BALB/c mice were infected with Leishmania major mCherry promastigotes and treated with small molecules that were successful during in-vitro infections. Several small molecules tested were as efficacious at resolving cutaneous leishmaniasis lesions in mice as known antimonial treatments.
Collapse
Affiliation(s)
- Hannah N Corman
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Warren Family Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, USA
| | - Douglas A Shoue
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Warren Family Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, USA
| | - Brianna Norris-Mullins
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Bruce J Melancon
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA; Warren Family Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, USA
| | - Miguel A Morales
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Mary Ann McDowell
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Warren Family Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
25
|
Abstract
Abstract
Leishmaniasis is a group of zoonotic diseases caused by a trypanosomatid parasite mostly in impoverished populations of low-income countries. In their different forms, leishmaniasis is prevalent in more than 98 countries all over the world and approximately 360-million people are at risk. Since no vaccine is currently available to prevent any form of the disease, the control strategy of leishmaniasis mainly relies on early case detection followed by adequate pharmacological treatment that may improve the prognosis and can reduce transmission. A handful of compounds and formulations are available for the treatment of leishmaniasis in humans, but only few of them are currently in use since most of these agents are associated with toxicity problems such as nephrotoxicity and cardiotoxicity in addition to resistance problems. In recent decades, very few novel drugs, new formulations of standard drugs or combinations of them have been approved against leishmaniasis. This review highlights the current drugs and combinations that are used medical practice and recent advances in new treatments against leishmaniasis that were pointed out in the recent 2nd Conference, Global Challenges in Neglected Tropical Diseases, held in San Juan, Puerto Rico in June 2018, emphasizing the plethora of new families of molecules that are bridging the gap between preclinical and first-in-man trials in next future.
Collapse
|
26
|
Insights into the current status of privileged N-heterocycles as antileishmanial agents. Mol Divers 2019; 24:525-569. [DOI: 10.1007/s11030-019-09953-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/16/2019] [Indexed: 02/04/2023]
|
27
|
Synthesis and Leishmanicidal Activity of Novel Urea, Thiourea, and Selenourea Derivatives of Diselenides. Antimicrob Agents Chemother 2019; 63:AAC.02200-18. [PMID: 30782984 DOI: 10.1128/aac.02200-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/13/2019] [Indexed: 11/20/2022] Open
Abstract
A novel series of thirty-one N-substituted urea, thiourea, and selenourea derivatives containing diphenyldiselenide entities were synthesized, fully characterized by spectroscopic and analytical methods, and screened for their in vitro leishmanicidal activities. The cytotoxic activity of these derivatives was tested against Leishmania infantum axenic amastigotes, and selectivity was assessed in human THP-1 cells. Thirteen of the synthesized compounds showed a significant antileishmanial activity, with 50% effective concentration (EC50) values lower than that for the reference drug miltefosine (EC50, 2.84 μM). In addition, the derivatives 9, 11, 42, and 47, with EC50 between 1.1 and 1.95 μM, also displayed excellent selectivity (selectivity index ranged from 12.4 to 22.7) and were tested against infected macrophages. Compound 11, a derivative with a cyclohexyl chain, exhibited the highest activity against intracellular amastigotes, with EC50 values similar to those observed for the standard drug edelfosine. Structure-activity relationship analyses revealed that N-aliphatic substitution in urea and selenourea is recommended for the leishmanicidal activity of these analogs. Preliminary studies of the mechanism of action for the hit compounds was carried out by measuring their ability to inhibit trypanothione reductase. Even though the obtained results suggest that this enzyme is not the target for most of these derivatives, their activity comparable to that of the standards and lack of toxicity in THP-1 cells highlight the potential of these compounds to be optimized for leishmaniasis treatment.
Collapse
|
28
|
Balaña-Fouce R, Pérez Pertejo MY, Domínguez-Asenjo B, Gutiérrez-Corbo C, Reguera RM. Walking a tightrope: drug discovery in visceral leishmaniasis. Drug Discov Today 2019; 24:1209-1216. [PMID: 30876846 DOI: 10.1016/j.drudis.2019.03.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/29/2019] [Accepted: 03/06/2019] [Indexed: 12/14/2022]
Abstract
The current commitment of the pharma industry, nongovernmental organizations and academia to find better treatments against neglected tropical diseases should end decades of challenge caused by these global scourges. The initial result of these efforts has been the introduction of enhanced combinations of drugs, currently in clinical use, or formulations thereof. Phenotypic screening based on intracellular parasite infections has been revealed as the first key tool of antileishmanial drug discovery, because most first-in-class drugs entering Phase I trials were discovered this way. The professional commitment among stakeholders has enabled the availability of a plethora of new chemical entities that fit the target product profile for these diseases. However, the rate of hit discovery in leishmaniasis is far behind that for other neglected diseases. This review defends the need to develop new screening methods that consider the part played not only by intracellular parasites but also by the host's immune system to generate disease-relevant assays and improve clinical outcomes.
Collapse
Affiliation(s)
- Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana, E-24071 León, Spain
| | - M Yolanda Pérez Pertejo
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana, E-24071 León, Spain
| | - Bárbara Domínguez-Asenjo
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana, E-24071 León, Spain
| | - Camino Gutiérrez-Corbo
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana, E-24071 León, Spain
| | - Rosa M Reguera
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana, E-24071 León, Spain.
| |
Collapse
|
29
|
Leishmania treatment and prevention: Natural and synthesized drugs. Eur J Med Chem 2018; 160:229-244. [DOI: 10.1016/j.ejmech.2018.10.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022]
|
30
|
Recent Development of Visceral Leishmaniasis Treatments: Successes, Pitfalls, and Perspectives. Clin Microbiol Rev 2018; 31:31/4/e00048-18. [PMID: 30158301 DOI: 10.1128/cmr.00048-18] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Research in visceral leishmaniasis in the last decade has been focused on how better to use the existing medicines as monotherapy or in combination. Systematic research by geographical regions has shown that a universal treatment is far from today's reality. Substantial progress has been made in the elimination of kala-azar in South Asia, with a clear strategy on first- and second-line therapy options of single-dose liposomal amphotericin B and a combination of paromomycin and miltefosine, respectively, among other interventions. In Eastern Africa, sodium stibogluconate (SSG) and paromomycin in combination offer an advantage compared to the previous SSG monotherapy, although not exempted of limitations, as this therapy requires 17 days of painful double injections and bears the risk of SSG-related cardiotoxicity. In this region, attempts to improve the combination therapy have been unsuccessful. However, pharmacokinetic studies have led to a better understanding of underlying mechanisms, like the underexposure of children to miltefosine treatment, and an improved regimen using an allometric dosage. Given this global scenario of progress and pitfalls, we here review what steps need to be taken with existing medicines and highlight the urgent need for oral drugs. Furthermore, it should be noted that six candidates belonging to five new chemical classes are reaching phase I, ensuring an optimistic near future.
Collapse
|
31
|
De Luca L, Ferro S, Buemi MR, Monforte AM, Gitto R, Schirmeister T, Maes L, Rescifina A, Micale N. Discovery of benzimidazole-based Leishmania mexicana cysteine protease CPB2.8ΔCTE inhibitors as potential therapeutics for leishmaniasis. Chem Biol Drug Des 2018; 92:1585-1596. [PMID: 29729080 DOI: 10.1111/cbdd.13326] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 02/22/2018] [Accepted: 04/15/2018] [Indexed: 02/07/2023]
Abstract
Chemotherapy is currently the only effective approach to treat all forms of leishmaniasis. However, its effectiveness is severely limited due to high toxicity, long treatment length, drug resistance, or inadequate mode of administration. As a consequence, there is a need to identify new molecular scaffolds and targets as potential therapeutics for the treatment of this disease. We report a small series of 1,2-substituted-1H-benzo[d]imidazole derivatives (9a-d) showing affinity in the submicromolar range (Ki = 0.15-0.69 μM) toward Leishmania mexicanaCPB2.8ΔCTE, one of the more promising targets for antileishmanial drug design. The compounds confirmed activity in vitro against intracellular amastigotes of Leishmania infantum with the best result being obtained with derivative 9d (IC50 = 6.8 μM), although with some degree of cytotoxicity (CC50 = 8.0 μM on PMM and CC50 = 32.0 μM on MCR-5). In silico molecular docking studies and ADME-Tox properties prediction were performed to validate the hypothesis of the interaction with the intended target and to assess the drug-likeness of these derivatives.
Collapse
Affiliation(s)
- Laura De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Stefania Ferro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maria Rosa Buemi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Anna-Maria Monforte
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosaria Gitto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Tanja Schirmeister
- Institute of Pharmacy and Biochemistry, University of Mainz, Mainz, Germany
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | | | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
32
|
Chander S, Ashok P, Reguera RM, Perez-Pertejo MY, Carbajo-Andres R, Balana-Fouce R, Gowri Chandra Sekhar KV, Sankaranarayanan M. Synthesis and activity of benzopiperidine, benzopyridine and phenyl piperazine based compounds against Leishmania infantum. Exp Parasitol 2018; 189:49-60. [PMID: 29702355 DOI: 10.1016/j.exppara.2018.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/25/2018] [Accepted: 04/15/2018] [Indexed: 10/17/2022]
Abstract
In the present study, anti-leishmanial evaluation of twenty four structurally diverse compounds based on benzopiperidine, benzopyridine and phenylpiperazine nucleuses against Leishmania infantum has been reported. Cytotoxicity studies of all the compounds were performed on murine non-infected splenocytes. Tested compounds exhibited weak to potent activity against promastigote (IC50 3.21 ± 1.40 to >100 μM) as well as amastigote (IC50 6.84 ± 2.5 to 92.47 ± 17.61 μM) forms of tested strains. Moreover, two compounds F13 and F15 exhibited potent activity (IC50 < 10 μM) against both forms of the parasite with selectivity index ranges from 11.40 to 22.10. Overall, the current study afforded few hits with novel anti-leishmanial activity in low micromolar concentration, further hit optimization studies can be performed to get more potent candidates against the selected species of parasite.
Collapse
Affiliation(s)
- Subhash Chander
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Pilani Campus, Pilani, 333031, Rajasthan, India; School of Pharmacy, Maharaja Agrasen University, Baddi, 174103, Solan, Himachal Pradesh, India.
| | - Penta Ashok
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Rosa M Reguera
- Departmento de Ciencias Biomedicas, Facultad de Veterinaria, Universidad de Leon, Leon, 24071, Spain
| | - M Yolanda Perez-Pertejo
- Departmento de Ciencias Biomedicas, Facultad de Veterinaria, Universidad de Leon, Leon, 24071, Spain
| | - Ruben Carbajo-Andres
- Departmento de Ciencias Biomedicas, Facultad de Veterinaria, Universidad de Leon, Leon, 24071, Spain
| | - Rafael Balana-Fouce
- Departmento de Ciencias Biomedicas, Facultad de Veterinaria, Universidad de Leon, Leon, 24071, Spain
| | - Kondapalli Venkata Gowri Chandra Sekhar
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R.R. Dist, Hyderabad, 500078, Telangana, India
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Pilani Campus, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
33
|
Aldrich CC, Calderón F. 2 nd SCI/RSC Symposium on Medicinal Chemistry for Global Health: A Unique Opportunity for the Field. ACS Infect Dis 2018; 4:424-428. [PMID: 29649878 DOI: 10.1021/acsinfecdis.8b00022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Courtney C. Aldrich
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, 8-174 Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, Minneosta 55455, United States
| | - Félix Calderón
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| |
Collapse
|
34
|
Thompson AM, O'Connor PD, Marshall AJ, Blaser A, Yardley V, Maes L, Gupta S, Launay D, Braillard S, Chatelain E, Wan B, Franzblau SG, Ma Z, Cooper CB, Denny WA. Development of (6 R)-2-Nitro-6-[4-(trifluoromethoxy)phenoxy]-6,7-dihydro-5 H-imidazo[2,1- b][1,3]oxazine (DNDI-8219): A New Lead for Visceral Leishmaniasis. J Med Chem 2018; 61:2329-2352. [PMID: 29461823 PMCID: PMC5867678 DOI: 10.1021/acs.jmedchem.7b01581] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
Discovery
of the potent antileishmanial effects of antitubercular
6-nitro-2,3-dihydroimidazo[2,1-b][1,3]oxazoles and
7-substituted 2-nitro-5,6-dihydroimidazo[2,1-b][1,3]oxazines
stimulated the examination of further scaffolds (e.g., 2-nitro-5,6,7,8-tetrahydroimidazo[2,1-b][1,3]oxazepines), but the results for these seemed less
attractive. Following the screening of a 900-compound pretomanid analogue
library, several hits with more suitable potency, solubility, and
microsomal stability were identified, and the superior efficacy of
newly synthesized 6R enantiomers with phenylpyridine-based
side chains was established through head-to-head assessments in a Leishmania donovani mouse model. Two such leads (R-84 and R-89) displayed promising activity in the more stringent Leishmania
infantum hamster model but were unexpectedly found to be
potent inhibitors of hERG. An extensive structure–activity
relationship investigation pinpointed two compounds (R-6 and pyridine R-136)
with better solubility and pharmacokinetic properties that also provided
excellent oral efficacy in the same hamster model (>97% parasite
clearance
at 25 mg/kg, twice daily) and exhibited minimal hERG inhibition. Additional
profiling earmarked R-6 as the favored
backup development candidate.
Collapse
Affiliation(s)
- Andrew M Thompson
- Auckland Cancer Society Research Centre, School of Medical Sciences , The University of Auckland , Private Bag 92019, Auckland 1142 , New Zealand
| | - Patrick D O'Connor
- Auckland Cancer Society Research Centre, School of Medical Sciences , The University of Auckland , Private Bag 92019, Auckland 1142 , New Zealand
| | - Andrew J Marshall
- Auckland Cancer Society Research Centre, School of Medical Sciences , The University of Auckland , Private Bag 92019, Auckland 1142 , New Zealand
| | - Adrian Blaser
- Auckland Cancer Society Research Centre, School of Medical Sciences , The University of Auckland , Private Bag 92019, Auckland 1142 , New Zealand
| | - Vanessa Yardley
- Faculty of Infectious & Tropical Diseases , London School of Hygiene & Tropical Medicine , Keppel Street , London WC1E 7HT , United Kingdom
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences , University of Antwerp , Universiteitsplein 1 , B-2610 Antwerp , Belgium
| | - Suman Gupta
- Division of Parasitology , CSIR-Central Drug Research Institute , Lucknow 226031 , India
| | - Delphine Launay
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant , 1202 Geneva , Switzerland
| | - Stephanie Braillard
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant , 1202 Geneva , Switzerland
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant , 1202 Geneva , Switzerland
| | - Baojie Wan
- Institute for Tuberculosis Research, College of Pharmacy , University of Illinois at Chicago , 833 South Wood Street , Chicago , Illinois 60612 , United States
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy , University of Illinois at Chicago , 833 South Wood Street , Chicago , Illinois 60612 , United States
| | - Zhenkun Ma
- Global Alliance for TB Drug Development , 40 Wall Street , New York , New York 10005 , United States
| | - Christopher B Cooper
- Global Alliance for TB Drug Development , 40 Wall Street , New York , New York 10005 , United States
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences , The University of Auckland , Private Bag 92019, Auckland 1142 , New Zealand
| |
Collapse
|
35
|
Van den Kerkhof M, Mabille D, Chatelain E, Mowbray CE, Braillard S, Hendrickx S, Maes L, Caljon G. In vitro and in vivo pharmacodynamics of three novel antileishmanial lead series. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:81-86. [PMID: 29425734 PMCID: PMC6114106 DOI: 10.1016/j.ijpddr.2018.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/13/2022]
Abstract
Objectives Three new chemical series (bicyclic nitroimidazoles, aminopyrazoles and oxaboroles) were selected by Drugs for Neglected Diseases initiative as potential new drug leads for leishmaniasis. Pharmacodynamics studies included both in vitro and in vivo efficacy, cross-resistance profiling against the current antileishmanial reference drugs and evaluation of their cidal activity potential. Methods Efficacy against the reference laboratory strains of Leishmania infantum (MHOM/MA(BE)/67/ITMAP263) and L. donovani (MHOM/ET/67/L82) was evaluated in vitro on intracellular amastigotes and in vivo in the early curative hamster model. Cidal activity was assessed over a period of 15 days in an in vitro ‘time-to-kill’ assay. Cross-resistance was assessed in vitro on a panel of L. infantum strains with different degrees of resistance to either antimony, miltefosine or paromomycin. Results All lead compounds showed potent and selective in vitro activity against the Leishmania strains tested and no cross-resistance could be demonstrated against any of the current antileishmanial drugs. Cidal activity was obtained in vitro for all series within 15 days of exposure with some differences noted between L. donovani and L. infantum. When evaluated in vivo, all lead compounds showed high efficacy and no adverse effects were observed. Conclusions The new lead series were shown to have cidal pharmacodynamic activity. The absence of cross-resistance with any of the current antileishmanial drugs opens possibilities for combination treatment to reduce the likelihood of treatment failures and drug resistance. Good efficacy was evaluated for all series in vitro and in vivo. No cross-resistance towards current anti-leishmanial drugs was observed. Cidal activity was obtained in vitro for all series within 15 days of exposure. Some differences were observed between L. infantum and L. donovani.
Collapse
Affiliation(s)
- M Van den Kerkhof
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Belgium
| | - D Mabille
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Belgium
| | - E Chatelain
- Drugs for Neglected Disease initiative (DNDi), Geneva, Switzerland
| | - C E Mowbray
- Drugs for Neglected Disease initiative (DNDi), Geneva, Switzerland
| | - S Braillard
- Drugs for Neglected Disease initiative (DNDi), Geneva, Switzerland
| | - S Hendrickx
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Belgium
| | - L Maes
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Belgium
| | - G Caljon
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Belgium.
| |
Collapse
|
36
|
Ahmed BM, Mezei G. Selective, Ambient-Temperature C-4 Deuteration of Pyrazole Derivatives by D2O. J Org Chem 2018; 83:1649-1653. [DOI: 10.1021/acs.joc.7b03062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Basil M. Ahmed
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Gellert Mezei
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| |
Collapse
|
37
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018; 23:molecules23010134. [PMID: 29329257 PMCID: PMC6017056 DOI: 10.3390/molecules23010134] [Citation(s) in RCA: 477] [Impact Index Per Article: 68.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 12/31/2022] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
38
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018. [PMID: 29329257 DOI: 10.3390/molecules23010134k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
39
|
Scala A, Rescifina A, Micale N, Piperno A, Schirmeister T, Maes L, Grassi G. Ensemble-based ADME-Tox profiling and virtual screening for the discovery of new inhibitors of the Leishmania mexicana cysteine protease CPB2.8ΔCTE. Chem Biol Drug Des 2017; 91:597-604. [PMID: 29045053 DOI: 10.1111/cbdd.13124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/05/2017] [Accepted: 09/16/2017] [Indexed: 12/12/2022]
Abstract
In an effort to identify novel molecular warheads able to inhibit Leishmania mexicana cysteine protease CPB2.8ΔCTE, fused benzo[b]thiophenes and β,β'-triketones emerged as covalent inhibitors binding the active site cysteine residue. Enzymatic screening showed a moderate-to-excellent activity (12%-90% inhibition of the target enzyme at 20 μm). The most promising compounds were selected for further profiling including in vitro cell-based assays and docking studies. Computational data suggest that benzo[b]thiophenes act immediately as non-covalent inhibitors and then as irreversible covalent inhibitors, whereas a reversible covalent mechanism emerged for the 1,3,3'-triketones with a Y-topology. Based on the predicted physicochemical and ADME-Tox properties, compound 2b has been identified as a new drug-like, non-mutagen, non-carcinogen, and non-neurotoxic lead candidate.
Collapse
Affiliation(s)
- Angela Scala
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Catania, Italy
| | - Nicola Micale
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Anna Piperno
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Tanja Schirmeister
- Institute of Pharmacy and Biochemistry, University of Mainz, Mainz, Germany
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Giovanni Grassi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| |
Collapse
|
40
|
Faria JV, Vegi PF, Miguita AGC, dos Santos MS, Boechat N, Bernardino AMR. Recently reported biological activities of pyrazole compounds. Bioorg Med Chem 2017; 25:5891-5903. [DOI: 10.1016/j.bmc.2017.09.035] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022]
|
41
|
Synthesis, in vitro evaluation of antibacterial, antifungal and larvicidal activities of pyrazole/pyridine based compounds and their nanocrystalline MS (M = Cu and Cd) derivatives. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2002-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Zulfiqar B, Jones AJ, Sykes ML, Shelper TB, Davis RA, Avery VM. Screening a Natural Product-Based Library against Kinetoplastid Parasites. Molecules 2017; 22:E1715. [PMID: 29023425 PMCID: PMC6151456 DOI: 10.3390/molecules22101715] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 01/06/2023] Open
Abstract
Kinetoplastid parasites cause vector-borne parasitic diseases including leishmaniasis, human African trypanosomiasis (HAT) and Chagas disease. These Neglected Tropical Diseases (NTDs) impact on some of the world's lowest socioeconomic communities. Current treatments for these diseases cause severe toxicity and have limited efficacy, highlighting the need to identify new treatments. In this study, the Davis open access natural product-based library was screened against kinetoplastids (Leishmania donovani DD8, Trypanosoma brucei brucei and Trypanosoma cruzi) using phenotypic assays. The aim of this study was to identify hit compounds, with a focus on improved efficacy, selectivity and potential to target several kinetoplastid parasites. The IC50 values of the natural products were obtained for L. donovani DD8, T. b. brucei and T. cruzi in addition to cytotoxicity against the mammalian cell lines, HEK-293, 3T3 and THP-1 cell lines were determined to ascertain parasite selectivity. Thirty-one compounds were identified with IC50 values of ≤ 10 µM against the kinetoplastid parasites tested. Lissoclinotoxin E (1) was the only compound identified with activity across all three investigated parasites, exhibiting IC50 values < 5 µM. In this study, natural products with the potential to be new chemical starting points for drug discovery efforts for kinetoplastid diseases were identified.
Collapse
Affiliation(s)
- Bilal Zulfiqar
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| | - Amy J Jones
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| | - Melissa L Sykes
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| | - Todd B Shelper
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| | - Rohan A Davis
- Natural Product Chemistry, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
43
|
|
44
|
Giulianotti MA, Vesely BA, Azhari A, Souza A, LaVoi T, Houghten RA, Kyle DE, Leahy JW. Identification of a Hit Series of Antileishmanial Compounds through the Use of Mixture-Based Libraries. ACS Med Chem Lett 2017; 8:802-807. [PMID: 28835792 DOI: 10.1021/acsmedchemlett.7b00045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/10/2017] [Indexed: 11/28/2022] Open
Abstract
From a screening campaign that included mixture-based libraries containing more than 6 million compounds, a lead series of bis-cyclic guanidines was identified as the most promising. Lead optimization resulted in the identification of potent (IC50 < 500 nM) and selective compounds within this series as well as potent and selective monoguanidines.
Collapse
Affiliation(s)
- Marc A. Giulianotti
- Department of Chemistry, University of South Florida, CHE 205, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Brian A. Vesely
- Department
of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, Florida 33612, United States
| | - Ala Azhari
- Department
of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, Florida 33612, United States
| | - Ashley Souza
- Department
of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, Florida 33612, United States
| | - Travis LaVoi
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Richard A. Houghten
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Dennis E. Kyle
- Department
of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, Florida 33612, United States
| | - James W. Leahy
- Department of Chemistry, University of South Florida, CHE 205, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
- Florida Center of Excellence for Drug Discovery
and Innovation, University of South Florida, 3720 Spectrum Boulevard, Suite 303, Tampa, Florida 33612, United States
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, MDC 7, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| |
Collapse
|
45
|
Thompson AM, O'Connor PD, Marshall AJ, Yardley V, Maes L, Gupta S, Launay D, Braillard S, Chatelain E, Franzblau SG, Wan B, Wang Y, Ma Z, Cooper CB, Denny WA. 7-Substituted 2-Nitro-5,6-dihydroimidazo[2,1-b][1,3]oxazines: Novel Antitubercular Agents Lead to a New Preclinical Candidate for Visceral Leishmaniasis. J Med Chem 2017; 60:4212-4233. [PMID: 28459575 PMCID: PMC7722354 DOI: 10.1021/acs.jmedchem.7b00034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Within a backup program for the clinical investigational agent pretomanid (PA-824), scaffold hopping from delamanid inspired the discovery of a novel class of potent antitubercular agents that unexpectedly possessed notable utility against the kinetoplastid disease visceral leishmaniasis (VL). Following the identification of delamanid analogue DNDI-VL-2098 as a VL preclinical candidate, this structurally related 7-substituted 2-nitro-5,6-dihydroimidazo[2,1-b][1,3]oxazine class was further explored, seeking efficacious backup compounds with improved solubility and safety. Commencing with a biphenyl lead, bioisosteres formed by replacing one phenyl by pyridine or pyrimidine showed improved solubility and potency, whereas more hydrophilic side chains reduced VL activity. In a Leishmania donovani mouse model, two racemic phenylpyridines (71 and 93) were superior, with the former providing >99% inhibition at 12.5 mg/kg (b.i.d., orally) in the Leishmania infantum hamster model. Overall, the 7R enantiomer of 71 (79) displayed more optimal efficacy, pharmacokinetics, and safety, leading to its selection as the preferred development candidate.
![]()
Collapse
Affiliation(s)
- Andrew M Thompson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Patrick D O'Connor
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Andrew J Marshall
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Vanessa Yardley
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine , Keppel Street, London WC1E 7HT, United Kingdom
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp , Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Suman Gupta
- Division of Parasitology, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | - Delphine Launay
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - Stephanie Braillard
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Baojie Wan
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Yuehong Wang
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Zhenkun Ma
- Global Alliance for TB Drug Development , 40 Wall Street, New York 10005, United States
| | - Christopher B Cooper
- Global Alliance for TB Drug Development , 40 Wall Street, New York 10005, United States
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
46
|
Anand D, Yadav PK, Patel OPS, Parmar N, Maurya RK, Vishwakarma P, Raju KSR, Taneja I, Wahajuddin M, Kar S, Yadav PP. Antileishmanial Activity of Pyrazolopyridine Derivatives and Their Potential as an Adjunct Therapy with Miltefosine. J Med Chem 2017; 60:1041-1059. [DOI: 10.1021/acs.jmedchem.6b01447] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Pawan Kumar Yadav
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | | | - Naveen Parmar
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | | | - Preeti Vishwakarma
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | - Kanumuri S. R. Raju
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | - Isha Taneja
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | - M. Wahajuddin
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | - Susanta Kar
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | - Prem P. Yadav
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| |
Collapse
|
47
|
Tejería A, Pérez-Pertejo Y, Reguera RM, Balaña-Fouce R, Alonso C, Fuertes M, González M, Rubiales G, Palacios F. Antileishmanial effect of new indeno-1,5-naphthyridines, selective inhibitors of Leishmania infantum type IB DNA topoisomerase. Eur J Med Chem 2016; 124:740-749. [DOI: 10.1016/j.ejmech.2016.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 12/11/2022]
|
48
|
In(OTf)3-HBF4Assisted Multicomponent Approach for One-Pot Synthesis of Pyrazolopyridinone Fused Imidazopyridines. ChemistrySelect 2016. [DOI: 10.1002/slct.201601133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|