1
|
Dunker C, Schlegel K, Junker A. Phenol (bio)isosteres in drug design and development. Arch Pharm (Weinheim) 2025; 358:e2400700. [PMID: 39580699 PMCID: PMC11726161 DOI: 10.1002/ardp.202400700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024]
Abstract
Due to their versatile properties, phenolic compounds are integral to various biologically active molecules, including many pharmaceuticals. However, their application in drug design is often hindered by issues such as poor oral bioavailability, rapid metabolism, and potential toxicity. This review explores the use of phenol bioisosteres-structurally similar compounds that can mimic the biological activity of phenols while potentially offering improved drug-like properties. We provide an extensive analysis of various phenol bioisosteres, including benzimidazolones, benzoxazolones, indoles, quinolinones, and pyridones, highlighting their impact on the pharmacokinetic and pharmacodynamic profiles of drugs. Case studies illustrate the successful application of these bioisosteres in enhancing metabolic stability, receptor selectivity, and overall therapeutic efficacy. Additionally, the review addresses the challenges associated with phenol bioisosterism, such as maintaining potency and avoiding undesirable side effects. By offering a detailed examination of current strategies and potential future directions, this review serves as a valuable resource for medicinal chemists seeking to optimize phenolic scaffolds in drug development. The insights provided herein aim to facilitate the design of more effective and safer therapeutic agents through strategic bioisosteric modifications.
Collapse
Affiliation(s)
- Calvin Dunker
- European Institute for Molecular Imaging (EIMI)University of MuensterMuensterGermany
- Werner Siemens Imaging Center, Department of Preclinical Imaging and RadiopharmacyUniversity of TübingenTübingenGermany
| | - Katja Schlegel
- European Institute for Molecular Imaging (EIMI)University of MuensterMuensterGermany
| | - Anna Junker
- European Institute for Molecular Imaging (EIMI)University of MuensterMuensterGermany
- Werner Siemens Imaging Center, Department of Preclinical Imaging and RadiopharmacyUniversity of TübingenTübingenGermany
| |
Collapse
|
2
|
Phillips M, Cook ED, Marunde MR, Tonelli M, Khan L, Henrickson A, Lignos JM, Stein JL, Stein GS, Frietze S, Demeler B, Glass KC. The CECR2 bromodomain displays distinct binding modes to select for acetylated histone proteins versus non-histone ligands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.627393. [PMID: 39713312 PMCID: PMC11661176 DOI: 10.1101/2024.12.09.627393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The cat eye syndrome chromosome region candidate 2 (CECR2) protein is an epigenetic regulator involved in chromatin remodeling and transcriptional control. The CECR2 bromodomain (CECR2-BRD) plays a pivotal role in directing the activity of CECR2 through its capacity to recognize and bind acetylated lysine residues on histone proteins. This study elucidates the binding specificity and structural mechanisms of CECR2-BRD interactions with both histone and non-histone ligands, employing techniques such as isothermal titration calorimetry (ITC), nuclear magnetic resonance (NMR) spectroscopy, and a high-throughput peptide assay. The CECR2-BRD selectively binds acetylated histone H3 and H4 ligands, exhibiting a preference for multi-acetylated over mono-acetylated targets. The highest affinity was observed for tetra-acetylated histone H4. Neighboring post-translational modifications, including methylation and phosphorylation, modulate acetyllysine recognition, with significant effects observed for histone H3 ligands. Additionally, this study explored the interaction of the CECR2-BRD with the acetylated RelA subunit of NF-κB, a pivotal transcription factor in inflammatory signaling. Dysregulated NF-κB signaling is implicated in numerous pathologies, including cancer progression, with acetylation of RelA at lysine 310 (K310ac) being critical for its transcriptional activity. Recent evidence linking the CECR2-BRD to RelA suggests it plays a role in inflammatory and metastatic pathways, underscoring the need to understand the molecular basis of this interaction. We found the CECR2-BRD binds to acetylated RelA with micromolar affinity, and uses a distinctive binding mode to recognize this non-histone ligand. These results provide new insight on the role of CECR2 in regulating NF-κB-mediated inflammatory pathways. Functional mutagenesis of critical residues, such as Asn514 and Asp464, highlight their roles in ligand specificity and binding dynamics. Notably, the CECR2-BRD remained monomeric in solution and exhibited differential conformational responses upon ligand binding, suggesting adaptive recognition mechanisms. Furthermore, the CECR2-BRD exclusively interacts with nucleosome substrates containing multi-acetylated histones, emphasizing its role in transcriptional activation within euchromatic regions. These findings position the CECR2-BRD as a key chromatin reader and a promising therapeutic target for modulating transcriptional and inflammatory processes, particularly through the development of selective bromodomain inhibitors.
Collapse
Affiliation(s)
- Margaret Phillips
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Elizabeth D. Cook
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | | | - Marco Tonelli
- National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Laiba Khan
- EpiCypher Inc., Durham, North Carolina 27709, USA
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - James M. Lignos
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Janet L. Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Gary S. Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Karen C. Glass
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| |
Collapse
|
3
|
Menendez CA, Accordino SR, Loubet NA, Appignanesi GA. Study of Protein Hydration Water with the V4S Structural Index: Focus on Binding Site Description. J Phys Chem B 2024; 128:11865-11875. [PMID: 39566099 DOI: 10.1021/acs.jpcb.4c04382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
V4S, a new structural indicator for water specially designed to be suitable for hydration and nanoconfined contexts, has been recently introduced and preliminarily applied for water in contact with self-assembled monolayers and graphene-like systems. This index enabled an accurate detection of defective high local density water molecules (called HDA-like given their structural resemblance with the high-density amorphous ice, HDA). In the present work, we shall apply this new metric to characterize protein hydration water with particular interest in protein binding sites. As a first result, we shall find that protein hydration water has a higher concentration of HDA-like molecular arrangements compared to the bulk. Significantly, we shall show that the concentration of HDA-like molecules sharply decreases beyond the first hydration layer. Finally, we shall also reveal a highly nonuniform spatial distribution of the V4S values for the first hydration shell on the protein surface, where the higher hydrophobicity inherent to the ligand binding site will be evident from an enrichment in HDA-like molecules as compared to the population exhibited by the global protein surface.
Collapse
Affiliation(s)
- C A Menendez
- Sección Fisicoquímica, INQUISUR-UNS-CONICET and Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - S R Accordino
- Sección Fisicoquímica, INQUISUR-UNS-CONICET and Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - N A Loubet
- Sección Fisicoquímica, INQUISUR-UNS-CONICET and Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - G A Appignanesi
- Sección Fisicoquímica, INQUISUR-UNS-CONICET and Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| |
Collapse
|
4
|
Ma Z, Zhang C, Bolinger AA, Zhou J. An updated patent review of BRD4 degraders. Expert Opin Ther Pat 2024; 34:929-951. [PMID: 39219068 PMCID: PMC11427152 DOI: 10.1080/13543776.2024.2400166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Bromodomain-containing protein 4 (BRD4), an important epigenetic reader, is closely associated with the pathogenesis and development of many diseases, including various cancers, inflammation, and infectious diseases. Targeting BRD4 inhibition or protein elimination with small molecules represents a promising therapeutic strategy, particularly for cancer therapy. AREAS COVERED The recent advances of patented BRD4 degraders were summarized. The challenges, opportunities, and future directions for developing novel potent and selective BRD4 degraders are also discussed. The patents of BRD4 degraders were searched using the SciFinder and Cortellis Drug Discovery Intelligence database. EXPERT OPINION BRD4 degraders exhibit superior efficacy and selectivity to BRD4 inhibitors, given their unique mechanism of protein degradation instead of protein inhibition. Excitingly, RNK05047 is now in phase I/II clinical trials, indicating that selective BRD4 protein degradation may offer a viable therapeutic strategy, particularly for cancer. Targeting BRD4 with small-molecule degraders provides a promising approach with the potential to overcome therapeutic resistance for treating various BRD4-associated diseases.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Cun Zhang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| |
Collapse
|
5
|
Wang X, Chen X, Chen Z, Xu W, Lai R, Qiu X, Zeng Z, Wang C, Wang Z, Wang J. Integrated Anchored Stapling and Hierarchical Dynamics: MSICDA-Driven CREBBP Bromodomain Inhibition. J Chem Inf Model 2024; 64:4739-4758. [PMID: 38863138 DOI: 10.1021/acs.jcim.4c00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Despite recent success in the computational approaches of cyclic peptide design, current studies face challenges in modeling noncanonical amino acids and nonstandard cyclizations due to limited data. To address this challenge, we developed an integrated framework for the tailored design of stapled peptides (SPs) targeting the bromodomain of CREBBP (CREBBP-BrD). We introduce a powerful combination of anchored stapling and hierarchical molecular dynamics to design and optimize SPs by employing the MultiScale integrative conformational dynamics assessment (MSICDA) strategy, which involves an initial virtual screening of over 1.5 million SPs, followed by comprehensive simulations amounting to 154.54 μs across 5418 of instances. The MSICDA method provides a detailed and holistic stability view of peptide-protein interactions, systematically isolated optimized peptides and identified two leading candidates, DA#430 and DA#99409, characterized by their enhanced stability, optimized binding, and high affinity toward the CREBBP-BrD. In cell-free assays, DA#430 and DA#99409 exhibited 2- to 12-fold greater potency than inhibitor SGC-CBP30. Cell studies revealed higher peptide selectivity for cancerous versus normal cells over small molecules. DA#430 combined with (+)-JQ-1 showed promising synergistic effects. Our approach enables the identification of peptides with optimized binding, high affinity, and enhanced stability, leading to more precise and effective cyclic peptide design, thereby establishing MSICDA as a generalizable and transformative tool for uncovering novel targeted drug development in various therapeutic areas.
Collapse
Affiliation(s)
- Xinpei Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xu Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhidong Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Wanting Xu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ruizhi Lai
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Xiaohui Qiu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zekai Zeng
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Chenglin Wang
- Shenzhen Qiyu Biotechnology Co., Ltd, Shenzhen 518107, China
| | - Zhe Wang
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Junqing Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
6
|
Wu T, Chen Y, You Q, Jiang Z, Chen X. Targeting bromodomian-containing protein 8 (BRD8): An advanced tool to interrogate BRD8. Eur J Med Chem 2024; 268:116271. [PMID: 38401187 DOI: 10.1016/j.ejmech.2024.116271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Epigenetic modifications play crucial roles in physiological processes, including cell differentiation, proliferation, and death. Bromodomain/Brd-containing proteins (BCPs) regulate abnormal gene expression in various diseases by recognizing the lysine-ε-N-acetylated residues (KAc) or by acting as transcriptional co-activators. Small molecule inhibitors targeting BCPs offer an attractive strategy for modulating aberrant gene expression. Besides the extensive research on the bromodomain and extra-terminal (BET) domain family proteins, the non-BET proteins have gained increasing attention. Bromodomain containing protein 8 (BRD8), a reader of KAc and co-activator of nuclear receptors (NRs), plays a key role in various cancers. This review provides a comprehensive analysis of the structure, disease-related functions, and inhibitor development of BRD8. Opportunities and challenges for future studies targeting BRD8 in disease treatment are discussed.
Collapse
Affiliation(s)
- Tingting Wu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yali Chen
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xuetao Chen
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Gou P, Zhang W. Protein lysine acetyltransferase CBP/p300: A promising target for small molecules in cancer treatment. Biomed Pharmacother 2024; 171:116130. [PMID: 38215693 DOI: 10.1016/j.biopha.2024.116130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
CBP and p300 are homologous proteins exhibiting remarkable structural and functional similarity. Both proteins function as acetyltransferase and coactivator, underscoring their significant roles in cellular processes. The function of histone acetyltransferases is to facilitate the release of DNA from nucleosomes and act as transcriptional co-activators to promote gene transcription. Transcription factors recruit CBP/p300 by co-condensation and induce transcriptional bursting. Disruption of CBP or p300 functions is associated with different diseases, especially cancer, which can result from either loss of function or gain of function. CBP and p300 are multidomain proteins containing HAT (histone acetyltransferase) and BRD (bromodomain) domains, which perform acetyltransferase activity and maintenance of HAT signaling, respectively. Inhibitors targeting HAT and BRD have been explored for decades, and some BRD inhibitors have been evaluated in clinical trials for treating hematologic malignancies or advanced solid tumors. Here, we review the development and application of CBP/p300 inhibitors. Several inhibitors have been evaluated in vivo, exhibiting notable potency but limited selectivity. Exploring these inhibitors emphasizes the promise of targeting CBP and p300 with small molecules in cancer therapy.
Collapse
Affiliation(s)
- Panhong Gou
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenchao Zhang
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
8
|
Berlin M, Cantley J, Bookbinder M, Bortolon E, Broccatelli F, Cadelina G, Chan EW, Chen H, Chen X, Cheng Y, Cheung TK, Davenport K, DiNicola D, Gordon D, Hamman BD, Harbin A, Haskell R, He M, Hole AJ, Januario T, Kerry PS, Koenig SG, Li L, Merchant M, Pérez-Dorado I, Pizzano J, Quinn C, Rose CM, Rousseau E, Soto L, Staben LR, Sun H, Tian Q, Wang J, Wang W, Ye CS, Ye X, Zhang P, Zhou Y, Yauch R, Dragovich PS. PROTACs Targeting BRM (SMARCA2) Afford Selective In Vivo Degradation over BRG1 (SMARCA4) and Are Active in BRG1 Mutant Xenograft Tumor Models. J Med Chem 2024; 67:1262-1313. [PMID: 38180485 DOI: 10.1021/acs.jmedchem.3c01781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The identification of VHL-binding proteolysis targeting chimeras (PROTACs) that potently degrade the BRM protein (also known as SMARCA2) in SW1573 cell-based experiments is described. These molecules exhibit between 10- and 100-fold degradation selectivity for BRM over the closely related paralog protein BRG1 (SMARCA4). They also selectively impair the proliferation of the H1944 "BRG1-mutant" NSCLC cell line, which lacks functional BRG1 protein and is thus highly dependent on BRM for growth, relative to the wild-type Calu6 line. In vivo experiments performed with a subset of compounds identified PROTACs that potently and selectively degraded BRM in the Calu6 and/or the HCC2302 BRG1 mutant NSCLC xenograft models and also afforded antitumor efficacy in the latter system. Subsequent PK/PD analysis established a need to achieve strong BRM degradation (>95%) in order to trigger meaningful antitumor activity in vivo. Intratumor quantitation of mRNA associated with two genes whose transcription was controlled by BRM (PLAU and KRT80) also supported this conclusion.
Collapse
Affiliation(s)
- Michael Berlin
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Jennifer Cantley
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Mark Bookbinder
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Elizabeth Bortolon
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Fabio Broccatelli
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Greg Cadelina
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Emily W Chan
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Huifen Chen
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xin Chen
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Yunxing Cheng
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, P. R. China
| | - Tommy K Cheung
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Kim Davenport
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Dean DiNicola
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Debbie Gordon
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Brian D Hamman
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Alicia Harbin
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Roy Haskell
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Mingtao He
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, P. R. China
| | - Alison J Hole
- Evotec (U.K.) Ltd., 95 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Thomas Januario
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Philip S Kerry
- Evotec (U.K.) Ltd., 95 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Stefan G Koenig
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Limei Li
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, P. R. China
| | - Mark Merchant
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Jennifer Pizzano
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Connor Quinn
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Christopher M Rose
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Emma Rousseau
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Leofal Soto
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Leanna R Staben
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Hongming Sun
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, P. R. China
| | - Qingping Tian
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jing Wang
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Weifeng Wang
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, P. R. China
| | - Crystal S Ye
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xiaofen Ye
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Penghong Zhang
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, P. R. China
| | - Yuhui Zhou
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert Yauch
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peter S Dragovich
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
9
|
Wang Z, Yin L, Xiong Z, Huang F, Yang N, Jiang F, Li H, Cui Y, Ren J, Cheng Z, Jia K, Lu T, Zhu J, Hu Q, Chen Y. Discovery of a Bromodomain and Extra Terminal Domain (BET) Inhibitor with the Selectivity for the Second Bromodomain (BD2) and the Capacity for the Treatment of Inflammatory Diseases. J Med Chem 2023; 66:10824-10848. [PMID: 37478496 DOI: 10.1021/acs.jmedchem.3c01028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Selective inhibitors targeting the first bromodomain (BD1) or the second bromodomain (BD2) of the bromodomain and extra terminal domain (BET) proteins have triggered extensive research to produce more specific agents. Herein, we described our efforts to design and synthesize a series of selective BET BD2 inhibitors with novel structures. Among them, compound 45 showed single-digit nanomolar potency against BRD4 BD2 (IC50: 1.6 nM) and a 328-fold selectivity for BRD4 BD2 over BRD4 BD1 (IC50: 524 nM). Besides, 45 possessed potent effects on regulating the differentiation of Th17 cells and reducing the levels of Th17-related cytokines by affecting the activation of STAT3 and NF-κB. Further studies demonstrated that 45 had significant therapeutic efficacy in mouse models of imiquimod (IMQ)-induced psoriasis and dextran sulfate sodium (DSS)-induced inflammatory bowel disease (IBD). This work provides a strong foundation for the development of selective BET BD2 inhibitors and the therapeutic strategy for psoriasis and IBD.
Collapse
Affiliation(s)
- Zhijie Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Li Yin
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Zhenghan Xiong
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Fei Huang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Na Yang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Fei Jiang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Huili Li
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yong Cui
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Jiwei Ren
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Zitian Cheng
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Kun Jia
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Jiapeng Zhu
- School of Medicine and Life Sciences, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Qinghua Hu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yadong Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| |
Collapse
|
10
|
Pan Z, Zhao Y, Wang X, Xie X, Liu M, Zhang K, Wang L, Bai D, Foster LJ, Shu R, He G. Targeting bromodomain-containing proteins: research advances of drug discovery. MOLECULAR BIOMEDICINE 2023; 4:13. [PMID: 37142850 PMCID: PMC10159834 DOI: 10.1186/s43556-023-00127-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/02/2023] [Indexed: 05/06/2023] Open
Abstract
Bromodomain (BD) is an evolutionarily conserved protein module found in 46 different BD-containing proteins (BCPs). BD acts as a specific reader for acetylated lysine residues (KAc) and serves an essential role in transcriptional regulation, chromatin remodeling, DNA damage repair, and cell proliferation. On the other hand, BCPs have been shown to be involved in the pathogenesis of a variety of diseases, including cancers, inflammation, cardiovascular diseases, and viral infections. Over the past decade, researchers have brought new therapeutic strategies to relevant diseases by inhibiting the activity or downregulating the expression of BCPs to interfere with the transcription of pathogenic genes. An increasing number of potent inhibitors and degraders of BCPs have been developed, some of which are already in clinical trials. In this paper, we provide a comprehensive review of recent advances in the study of drugs that inhibit or down-regulate BCPs, focusing on the development history, molecular structure, biological activity, interaction with BCPs and therapeutic potentials of these drugs. In addition, we discuss current challenges, issues to be addressed and future research directions for the development of BCPs inhibitors. Lessons learned from the successful or unsuccessful development experiences of these inhibitors or degraders will facilitate the further development of efficient, selective and less toxic inhibitors of BCPs and eventually achieve drug application in the clinic.
Collapse
Affiliation(s)
- Zhaoping Pan
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuxi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyun Wang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Xie
- College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mingxia Liu
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiyao Zhang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lian Wang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Gu He
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Koravovic M, Mayasundari A, Tasic G, Keramatnia F, Stachowski TR, Cui H, Chai SC, Jonchere B, Yang L, Li Y, Fu X, Hiltenbrand R, Paul L, Mishra V, Klco JM, Roussel MF, Pomerantz WC, Fischer M, Rankovic Z, Savic V. From PROTAC to inhibitor: Structure-guided discovery of potent and orally bioavailable BET inhibitors. Eur J Med Chem 2023; 251:115246. [PMID: 36898329 PMCID: PMC10165889 DOI: 10.1016/j.ejmech.2023.115246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
An X-ray structure of a CLICK chemistry-based BET PROTAC bound to BRD2(BD2) inspired synthesis of JQ1 derived heterocyclic amides. This effort led to the discovery of potent BET inhibitors displaying overall improved profiles when compared to JQ1 and birabresib. A thiadiazole derived 1q (SJ1461) displayed excellent BRD4 and BRD2 affinity and high potency in the panel of acute leukaemia and medulloblastoma cell lines. A structure of 1q co-crystalised with BRD4-BD1 revealed polar interactions with the AZ/BC loops, in particular with Asn140 and Tyr139, rationalising the observed affinity improvements. In addition, exploration of pharmacokinetic properties of this class of compounds suggest that the heterocyclic amide moiety improves drug-like features. Our study led to the discovery of potent and orally bioavailable BET inhibitor 1q (SJ1461) as a promising candidate for further development.
Collapse
Affiliation(s)
- Mladen Koravovic
- University of Belgrade, Faculty of Pharmacy, Department of Organic Chemistry, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Anand Mayasundari
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Gordana Tasic
- University of Belgrade, Faculty of Pharmacy, Department of Organic Chemistry, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Fatemeh Keramatnia
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Timothy R Stachowski
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Huarui Cui
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN, 55455, United States
| | - Sergio C Chai
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Barbara Jonchere
- Department of Tumour Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Lei Yang
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yong Li
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Xiang Fu
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Ryan Hiltenbrand
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Leena Paul
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Vibhor Mishra
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Martine F Roussel
- Department of Tumour Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - William Ck Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN, 55455, United States
| | - Marcus Fischer
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Zoran Rankovic
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Vladimir Savic
- University of Belgrade, Faculty of Pharmacy, Department of Organic Chemistry, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| |
Collapse
|
12
|
Barros EP, Ries B, Champion C, Rieder SR, Riniker S. Accounting for Solvation Correlation Effects on the Thermodynamics of Water Networks in Protein Cavities. J Chem Inf Model 2023; 63:1794-1805. [PMID: 36917685 PMCID: PMC10052353 DOI: 10.1021/acs.jcim.2c01610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Macromolecular recognition and ligand binding are at the core of biological function and drug discovery efforts. Water molecules play a significant role in mediating the protein-ligand interaction, acting as more than just the surrounding medium by affecting the thermodynamics and thus the outcome of the binding process. As individual water contributions are impossible to measure experimentally, a range of computational methods have emerged to identify hydration sites in protein pockets and characterize their energetic contributions for drug discovery applications. Even though several methods model solvation effects explicitly, they focus on determining the stability of specific water sites independently and neglect solvation correlation effects upon replacement of clusters of water molecules, which typically happens in hit-to-lead optimization. In this work, we rigorously determine the conjoint effects of replacing all combinations of water molecules in protein binding pockets through the use of the RE-EDS multistate free-energy method, which combines Hamiltonian replica exchange (RE) and enveloping distribution sampling (EDS). Applications on the small bovine pancreatic trypsin inhibitor and four proteins of the bromodomain family illustrate the extent of solvation correlation effects on water thermodynamics, with the favorability of replacement of the water sites by pharmacophore probes highly dependent on the composition of the water network and the pocket environment. Given the ubiquity of water networks in biologically relevant protein targets, we believe our approach can be helpful for computer-aided drug discovery by providing a pocket-specific and a priori systematic consideration of solvation effects on ligand binding and selectivity.
Collapse
Affiliation(s)
- Emilia P Barros
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Benjamin Ries
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Candide Champion
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Salomé R Rieder
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sereina Riniker
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
13
|
Ali MM, Naz S, Ashraf S, Knapp S, Ul-Haq Z. Epigenetic modulation by targeting bromodomain containing protein 9 (BRD9): Its therapeutic potential and selective inhibition. Int J Biol Macromol 2023; 230:123428. [PMID: 36709803 DOI: 10.1016/j.ijbiomac.2023.123428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
The bromodomain-containing protein 9, a component of the SWI/SNF chromatin remodeling complex, functions as an 'epigenetic reader' selectively recognizing acetyl-lysine marks. It regulates chromatin structure and gene expression by recruitment of acetylated transcriptional regulators and by modulating the function of remodeling complexes. Recent data suggests that BRD9 plays an important role in regulating cellular growth and it has been suggested to drive progression of several malignant diseases such as cervical cancer, and acute myeloid leukemia. Its role in tumorigenesis suggests that selective BRD9 inhibitors may have therapeutic value in cancer therapy. Currently, there has been increasing interest in developing small molecules that can specifically target BRD9 or the closely related bromodomain protein BRD7. Available chemical probes will help to clarify biological functions of BRD9 and its potential for cancer therapy. Since the report of the first BRD9 inhibitor LP99 in 2015, numerous inhibitors have been developed. In this review, we summarized the biological roles of BRD9, structural details and the progress made in the development of BRD9 inhibitors.
Collapse
Affiliation(s)
- Maria Mushtaq Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Sehrish Naz
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Sajda Ashraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Goethe University Frankfurt, Max von Lauestrasse 9, 60438 Frankfurt, Germany; Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Max von Lauestrasse 15, 60438 Frankfurt, Germany
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan.
| |
Collapse
|
14
|
Sethi B, Kumar V, Jayasinghe TD, Dong Y, Ronning DR, Zhong HA, Coulter DW, Mahato RI. Targeting BRD4 and PI3K signaling pathways for the treatment of medulloblastoma. J Control Release 2023; 354:80-90. [PMID: 36599397 PMCID: PMC9974792 DOI: 10.1016/j.jconrel.2022.12.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Medulloblastoma (MB) is a malignant pediatric brain tumor which shows upregulation of MYC and sonic hedgehog (SHH) signaling. SHH inhibitors face acquired resistance, which is a major cause of relapse. Further, direct MYC oncogene inhibition is challenging, inhibition of MYC upstream insulin-like growth factor/ phosphatidylinositol-4,5-bisphosphate 3-kinase (IGF/PI3K) is a promising alternative. While PI3K inhibition activates resistance mechanisms, simultaneous inhibition of bromodomain-containing protein 4 (BRD4) and PI3K can overcome resistance. We synthesized a new molecule 8-(2,3-dihydrobenzo[b] [1, 4] dioxin-6-yl)-2-morpholino-4H-chromen-4-one (MDP5) that targets both BRD4 and PI3K pathways. We used X-ray crystal structures and a molecular modeling approach to confirm the interactions between MDP5 with bromo domains (BDs) from both BRD2 and BRD4, and molecular modeling for PI3K binding. MDP5 was shown to inhibit target pathways and MB cell growth in vitro and in vivo. MDP5 showed higher potency in DAOY cells (IC50 5.5 μM) compared to SF2523 (IC50 12.6 μM), and its IC50 values in HD-MB03 cells were like SF2523. Treatment of MB cells with MDP5 significantly decreased colony formation, increased apoptosis, and halted cell cycle progression. Further, MDP5 was well tolerated in NSG mice bearing either xenograft or orthotopic MB tumors at the dose of 20 mg/kg, and significantly reduced tumor growth and prolonged animal survival.
Collapse
Affiliation(s)
- Bharti Sethi
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Virender Kumar
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Thilina D Jayasinghe
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yuxiang Dong
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Donald R Ronning
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Haizhen A Zhong
- Department of Chemistry, the University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE 68182, USA
| | - Donald W Coulter
- Department of Pediatrics, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
15
|
Jung G, Lee J, Park CH, Yoon E, Heo J. Synthesis and biological evaluation of benzoxepinoindol‐1‐one analogs as
Brd4
bromodomain inhibitors. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Goni Jung
- Therapeutics and Biotechnology Division Korea Research Institute of Chemical Technology Daejeon Republic of Korea
- Graduate School of New Drug Discovery and Development Chungnam National University Daejeon Republic of Korea
| | - Joo‐Youn Lee
- Therapeutics and Biotechnology Division Korea Research Institute of Chemical Technology Daejeon Republic of Korea
| | - Chi Hoon Park
- Therapeutics and Biotechnology Division Korea Research Institute of Chemical Technology Daejeon Republic of Korea
| | - Eunyoung Yoon
- Therapeutics and Biotechnology Division Korea Research Institute of Chemical Technology Daejeon Republic of Korea
| | - Jung‐Nyoung Heo
- Therapeutics and Biotechnology Division Korea Research Institute of Chemical Technology Daejeon Republic of Korea
- Graduate School of New Drug Discovery and Development Chungnam National University Daejeon Republic of Korea
| |
Collapse
|
16
|
Ali MM, Ashraf S, Nure-e-Alam M, Qureshi U, Khan KM, Ul-Haq Z. Identification of Selective BRD9 Inhibitor via Integrated Computational Approach. Int J Mol Sci 2022; 23:13513. [PMID: 36362300 PMCID: PMC9655433 DOI: 10.3390/ijms232113513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 04/12/2024] Open
Abstract
Bromodomain-containing protein 9 (BRD9), a member of the bromodomain and extra terminal domain (BET) protein family, works as an epigenetic reader. BRD9 has been considered an essential drug target for cancer, inflammatory diseases, and metabolic disorders. Due to its high similarity among other isoforms, no effective treatment of BRD9-associated disorders is available. For the first time, we performed a detailed comparative analysis among BRD9, BRD7, and BRD4. The results indicate that residues His42, Gly43, Ala46, Ala54, Val105, and Leu109 can confer the BRD9 isoform selectivity. The predicted crucial residues were further studied. The pharmacophore model's features were precisely mapped with some key residues including, Gly43, Phe44, Phe45, Asn100, and Tyr106, all of which play a crucial role in BRD9 inhibition. Docking-based virtual screening was utilized with the consideration of the conserved water network in the binding cavity to identify the potential inhibitors of BRD9. In this workflow, 714 compounds were shortlisted. To attain selectivity, 109 compounds were re-docked to BRD7 for negative selection. Finally, four compounds were selected for molecular dynamics studies. Our studies pave the way for the identification of new compounds and their role in causing noticeable, functional differences in isoforms and between orthologues.
Collapse
Affiliation(s)
- Maria Mushtaq Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sajda Ashraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Mohammad Nure-e-Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Urooj Qureshi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
17
|
Zhang MF, Luo XY, Zhang C, Wang C, Wu XS, Xiang QP, Xu Y, Zhang Y. Design, synthesis and pharmacological characterization of N-(3-ethylbenzo[d]isoxazol-5-yl) sulfonamide derivatives as BRD4 inhibitors against acute myeloid leukemia. Acta Pharmacol Sin 2022; 43:2735-2748. [PMID: 35264812 PMCID: PMC8905034 DOI: 10.1038/s41401-022-00881-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/25/2022] [Indexed: 11/23/2022] Open
Abstract
BRD4 plays a key role in the regulation of gene transcription and has been identified as an attractive target for cancer treatment. In this study, we designed 26 new compounds by modifying 3-ethyl-benzo[d]isoxazole core with sulfonamides. Most compounds exhibited potent BRD4 binding activities with ΔTm values exceeding 6 °C. Two crystal structures of 11h and 11r in complex with BRD4(1) were obtained to characterize the binding patterns. Compounds 11h and 11r were effective for BRD4(1) binding and showed remarkable anti-proliferative activity against MV4-11 cells with IC50 values of 0.78 and 0.87 μM. Furthermore, 11r (0.5-10 μM) concentration-dependently inhibited the expression levels of oncogenes including c-Myc and CDK6 in MV4-11 cells. Moreover, 11r (0.5-10 μM) concentration-dependently blocked cell cycle in MV4-11 cells at G0/G1 phase and induced cell apoptosis. Compound 11r may serve as a new lead compound for further drug development.
Collapse
Affiliation(s)
- Mao-Feng Zhang
- College of Pharmacy, Taizhou Polytechnic College, Taizhou, 225300, China.
| | - Xiao-Yu Luo
- Guangzhou Younan Technology Co., Ltd, Guangzhou, 510663, China
| | - Cheng Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chao Wang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi-Shan Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qiu-Ping Xiang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yong Xu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China.
| | - Yan Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
18
|
Zu G, Liu Y, Cao J, Zhao B, Zhang H, You L. BRPF1-KAT6A/KAT6B Complex: Molecular Structure, Biological Function and Human Disease. Cancers (Basel) 2022; 14:4068. [PMID: 36077605 PMCID: PMC9454415 DOI: 10.3390/cancers14174068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The bromodomain and PHD finger-containing protein1 (BRPF1) is a member of family IV of the bromodomain-containing proteins that participate in the post-translational modification of histones. It functions in the form of a tetrameric complex with a monocytic leukemia zinc finger protein (MOZ or KAT6A), MOZ-related factor (MORF or KAT6B) or HAT bound to ORC1 (HBO1 or KAT7) and two small non-catalytic proteins, the inhibitor of growth 5 (ING5) or the paralog ING4 and MYST/Esa1-associated factor 6 (MEAF6). Mounting studies have demonstrated that all the four core subunits play crucial roles in different biological processes across diverse species, such as embryonic development, forebrain development, skeletal patterning and hematopoiesis. BRPF1, KAT6A and KAT6B mutations were identified as the cause of neurodevelopmental disorders, leukemia, medulloblastoma and other types of cancer, with germline mutations associated with neurodevelopmental disorders displaying intellectual disability, and somatic variants associated with leukemia, medulloblastoma and other cancers. In this paper, we depict the molecular structures and biological functions of the BRPF1-KAT6A/KAT6B complex, summarize the variants of the complex related to neurodevelopmental disorders and cancers and discuss future research directions and therapeutic potentials.
Collapse
Affiliation(s)
- Gaoyu Zu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ying Liu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jingli Cao
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Baicheng Zhao
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hang Zhang
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Linya You
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Fudan University, Shanghai 200040, China
| |
Collapse
|
19
|
Discovery of BET specific bromodomain inhibitors with a novel scaffold. Bioorg Med Chem 2022; 72:116967. [DOI: 10.1016/j.bmc.2022.116967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022]
|
20
|
Tumor-Promoting ATAD2 and Its Preclinical Challenges. Biomolecules 2022; 12:biom12081040. [PMID: 36008934 PMCID: PMC9405547 DOI: 10.3390/biom12081040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
ATAD2 has received extensive attention in recent years as one prospective oncogene with tumor-promoting features in many malignancies. ATAD2 is a highly conserved bromodomain family protein that exerts its biological functions by mainly AAA ATPase and bromodomain. ATAD2 acts as an epigenetic decoder and transcription factor or co-activator, which is engaged in cellular activities, such as transcriptional regulation, DNA replication, and protein modification. ATAD2 has been reported to be highly expressed in a variety of human malignancies, including gastrointestinal malignancies, reproductive malignancies, urological malignancies, lung cancer, and other types of malignancies. ATAD2 is involved in the activation of multiple oncogenic signaling pathways and is closely associated with tumorigenesis, progression, chemoresistance, and poor prognosis, but the oncogenic mechanisms vary in different cancer types. Moreover, the direct targeting of ATAD2’s bromodomain may be a very challenging task. In this review, we summarized the role of ATAD2 in various types of malignancies and pointed out the pharmacological direction.
Collapse
|
21
|
Hill MD, Fang H, Norris D, Delucca GV, Huang H, DeBenedetto M, Quesnelle C, Schmitz WD, Tokarski JS, Sheriff S, Yan C, Fanslau C, Haarhoff Z, Huang C, Kramer M, Madari S, Menard K, Monereau L, Morrison J, Raghavan N, Shields EE, Simmermacher-Mayer J, Sinz M, Tye CK, Westhouse R, Xie C, Zhang H, Zhang L, Zvyaga T, Lee F, Gavai AV, Degnan AP. Development of BET Inhibitors as Potential Treatments for Cancer: Optimization of Pharmacokinetic Properties. ACS Med Chem Lett 2022; 13:1165-1171. [DOI: 10.1021/acsmedchemlett.2c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Matthew D. Hill
- Research & Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Haiquan Fang
- Research & Development, Bristol Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - Derek Norris
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - George V. Delucca
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Hong Huang
- Research & Development, Bristol Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - Mikkel DeBenedetto
- Research & Development, Bristol Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - Claude Quesnelle
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - William D. Schmitz
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - John S. Tokarski
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Steven Sheriff
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Chunhong Yan
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Caroline Fanslau
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Zuzana Haarhoff
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Christine Huang
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Melissa Kramer
- Research & Development, Bristol Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - Shilpa Madari
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Krista Menard
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Laura Monereau
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - John Morrison
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Nirmala Raghavan
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Eric E. Shields
- Research & Development, Bristol Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - Jean Simmermacher-Mayer
- Research & Development, Bristol Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - Michael Sinz
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Ching Kim Tye
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Richard Westhouse
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Chunshan Xie
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Haiying Zhang
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Lisa Zhang
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Tatyana Zvyaga
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Francis Lee
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Ashvinikumar V. Gavai
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Andrew P. Degnan
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| |
Collapse
|
22
|
Chen L, Liu Z, Li X. Recent Advances in Dual BRD4-Kinase Inhibitors Base on Polypharmacology. ChemMedChem 2022; 17:e202100731. [PMID: 35146935 DOI: 10.1002/cmdc.202100731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Indexed: 11/11/2022]
Abstract
Epigenetic reader BRD4 is involved in chromatin remodeling and transcriptional regulation, making it a promising therapeutic target. However, during the past decades, the results of many BRD4 inhibitors that have entered clinical trials were, in the main, unsatisfactory, due to some therapeutic limitations such as off-target effects and drug resistance. Combining a BRD4 inhibitor with another drug was expected to be an ideal option to overcome these "bottlenecks" and achieve improved therapeutic outcomes. However, combination therapy might trigger toxicity caused by drug-drug interaction, complex pharmacokinetic and additive effects. Recently, the application of dual-target drugs targeting BRD4 and other kinases has emerged to be an attractive approach to remedy defects of a single BRD4 inhibitor. Herein, this review focuses on recent advances in the discovery of dual BRD4-kinase inhibitors, with emphasis on their co-crystal structures and structure-activity relationships (SARs), as well as perspective prospects in the field.
Collapse
Affiliation(s)
- Li Chen
- Shandong University Cheeloo College of Medicine, Medicinal chemistry, West Wenhua Road 44, 250012, Jinnan, CHINA
| | - Zhaopeng Liu
- Institute of Medicinal Chemistry, Department of Organic Chemistry, School of Pharmaceutical Sciences, Shandong Un, No.44 WhenHua XiLu, 250012, Jinan, CHINA
| | - Xun Li
- Shandong First Medical University, Institute of Materia Medica, CHINA
| |
Collapse
|
23
|
Discovery of 1-(5-(1H-benzo[d]imidazole-2-yl)-2,4-dimethyl-1H-pyrrol-3-yl)ethan-1-one derivatives as novel and potent bromodomain and extra-terminal (BET) inhibitors with anticancer efficacy. Eur J Med Chem 2022; 227:113953. [PMID: 34731760 DOI: 10.1016/j.ejmech.2021.113953] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022]
Abstract
As epigenetic readers, bromodomain and extra-terminal domain (BET) family proteins bind to acetylated-lysine residues in histones and recruit protein complexes to promote transcription initiation and elongation. Inhibition of BET bromodomains by small molecule inhibitors has emerged as a promising therapeutic strategy for cancer. Herein, we describe our efforts toward the discovery of a novel series of 1-(5-(1H-benzo[d]imidazole-2-yl)-2,4-dimethyl-1H-pyrrol-3-yl)ethan-1-one derivatives as BET inhibitors. Intensive structural modifications led to the identification of compound 35f as the most active inhibitor of BET BRD4 with selectivity against BET family proteins. Further biological studies revealed that compound 35f can arrest the cell cycle in G0/G1 phase and induce apoptosis via decreasing the expression of c-Myc and other proteins related to cell cycle and apoptosis. More importantly, compound 35f showed favorable pharmacokinetic properties and antitumor efficacy in MV4-11 mouse xenograft model with acceptable tolerability. These results indicated that BET inhibitors could be potentially used to treat hematologic malignancies and some solid tumors.
Collapse
|
24
|
He Z, Jiao H, An Q, Zhang X, Zengyangzong D, Xu J, Liu H, Ma L, Zhao W. Discovery of novel 4-phenylquinazoline-based BRD4 inhibitors for cardiac fibrosis. Acta Pharm Sin B 2022; 12:291-307. [PMID: 35127386 PMCID: PMC8799877 DOI: 10.1016/j.apsb.2021.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/27/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Bromodomain containing protein 4 (BRD4), as an epigenetic reader, can specifically bind to the acetyl lysine residues of histones and has emerged as an attractive therapeutic target for various diseases, including cancer, cardiac remodeling and heart failure. Herein, we described the discovery of hit 5 bearing 4-phenylquinazoline skeleton through a high-throughput virtual screen using 2,003,400 compound library (enamine). Then, structure-activity relationship (SAR) study was performed and 47 new 4-phenylquinazoline derivatives toward BRD4 were further designed, synthesized and evaluated, using HTRF assay set up in our lab. Eventually, we identified compound C-34, which possessed better pharmacokinetic and physicochemical properties as well as lower cytotoxicity against NRCF and NRCM cells, compared to the positive control JQ1. Using computer-based molecular docking and cellular thermal shift assay, we further verified that C-34 could target BRD4 at molecular and cellular levels. Furthermore, treatment with C-34 effectively alleviated fibroblast activation in vitro and cardiac fibrosis in vivo, which was correlated with the decreased expression of BRD4 downstream target c-MYC as well as the depressed TGF-β1/Smad2/3 signaling pathway. Taken together, our findings indicate that novel BRD4 inhibitor C-34 tethering a 4-phenylquinazoline scaffold can serve as a lead compound for further development to treat fibrotic cardiovascular disease.
Collapse
Affiliation(s)
- Zhangxu He
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Haomiao Jiao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qi An
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dan Zengyangzong
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jiale Xu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Liying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- China Meheco Topfond Pharmaceutical Co., Zhumadian 463000, China
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
25
|
Soltan OM, Shoman ME, Abdel-Aziz SA, Narumi A, Konno H, Abdel-Aziz M. Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Eur J Med Chem 2021; 225:113768. [PMID: 34450497 DOI: 10.1016/j.ejmech.2021.113768] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/23/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023]
Abstract
Protein kinases have grown over the past few years as a crucial target for different cancer types. With the multifactorial nature of cancer, and the fast development of drug resistance for conventional chemotherapeutics, a strategy for designing multi-target agents was suggested to potentially increase drug efficacy, minimize side effects and retain the proper pharmacokinetic properties. Kinase inhibitors were used extensively in such strategy. Different kinase inhibitor agents which target EGFR, VEGFR, c-Met, CDK, PDK and other targets were merged into hybrids with conventional chemotherapeutics such as tubulin polymerization and topoisomerase inhibitors. Other hybrids were designed gathering kinase inhibitors with targeted cancer therapy such as HDAC, PARP, HSP 90 inhibitors. Nitric oxide donor molecules were also merged with kinase inhibitors for cancer therapy. The current review presents the hybrids designed in the past five years discussing their design principles, results and highlights their future perspectives.
Collapse
Affiliation(s)
- Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mai E Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| | - Salah A Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, 61111, Minia, Egypt
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| |
Collapse
|
26
|
Hill MD, Quesnelle C, Tokarski J, Fang H, Fanslau C, Haarhoff Z, Kramer M, Madari S, Wiebesiek A, Morrison J, Simmermacher-Mayer J, Sinz M, Westhouse R, Xie C, Zhao J, Huang L, Sheriff S, Yan C, Marsilio F, Everlof G, Zvyaga T, Lee F, Gavai AV, Degnan AP. Development of BET inhibitors as potential treatments for cancer: A new carboline chemotype. Bioorg Med Chem Lett 2021; 51:128376. [PMID: 34560263 DOI: 10.1016/j.bmcl.2021.128376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 11/27/2022]
Abstract
We describe our efforts to introduce structural diversity to a previously described triazole-containing N1-carboline series of bromodomain and extra-terminal (BET) inhibitors. N9 carbolines were designed to retain favorable binding interactions that the N1-carbolines possess. A convergent synthetic route enabled modifications to reduce clearance, enhance physicochemical properties, and improve the overall in vitro profile. This work led to the identification of a potent BET inhibitor, (S)-2-{8-fluoro-5-[(3-fluoropyridin-2-yl)(oxan-4-yl)methyl]-7-[4-(2H3)methyl-1-methyl-1H-1,2,3-triazol-5-yl]-5H-pyrido[3,2-b]indol-3-yl}propan-2-ol (10), a compound with enhanced oral exposure in mice. Subsequent evaluation in a mouse triple-negative breast cancer tumor model revealed efficacy at 4 mg/kg of N9-carboline 10.
Collapse
Affiliation(s)
- Matthew D Hill
- Bristol Myers Squibb Research and Development, 100 Binney St, Cambridge, MA 02142-1096, USA.
| | - Claude Quesnelle
- Bristol Myers Squibb Research and Development, 100 Binney St, Cambridge, MA 02142-1096, USA
| | - John Tokarski
- Bristol Myers Squibb Research and Development, 100 Binney St, Cambridge, MA 02142-1096, USA
| | - Haiquan Fang
- Bristol Myers Squibb Research and Development, 100 Binney St, Cambridge, MA 02142-1096, USA
| | - Carolynn Fanslau
- Bristol Myers Squibb Research and Development, 100 Binney St, Cambridge, MA 02142-1096, USA
| | - Zuzana Haarhoff
- Bristol Myers Squibb Research and Development, 100 Binney St, Cambridge, MA 02142-1096, USA
| | - Melissa Kramer
- Bristol Myers Squibb Research and Development, 100 Binney St, Cambridge, MA 02142-1096, USA
| | - Shilpa Madari
- Bristol Myers Squibb Research and Development, 100 Binney St, Cambridge, MA 02142-1096, USA
| | - Amy Wiebesiek
- Bristol Myers Squibb Research and Development, 100 Binney St, Cambridge, MA 02142-1096, USA
| | - John Morrison
- Bristol Myers Squibb Research and Development, 100 Binney St, Cambridge, MA 02142-1096, USA
| | | | - Michael Sinz
- Bristol Myers Squibb Research and Development, 100 Binney St, Cambridge, MA 02142-1096, USA
| | - Richard Westhouse
- Bristol Myers Squibb Research and Development, 100 Binney St, Cambridge, MA 02142-1096, USA
| | - Chunshan Xie
- Bristol Myers Squibb Research and Development, 100 Binney St, Cambridge, MA 02142-1096, USA
| | - Jiuqiao Zhao
- Bristol Myers Squibb Research and Development, 100 Binney St, Cambridge, MA 02142-1096, USA
| | - Lisa Huang
- Bristol Myers Squibb Research and Development, 100 Binney St, Cambridge, MA 02142-1096, USA
| | - Steven Sheriff
- Bristol Myers Squibb Research and Development, 100 Binney St, Cambridge, MA 02142-1096, USA
| | - Chunhong Yan
- Bristol Myers Squibb Research and Development, 100 Binney St, Cambridge, MA 02142-1096, USA
| | - Frank Marsilio
- Bristol Myers Squibb Research and Development, 100 Binney St, Cambridge, MA 02142-1096, USA
| | - Gerry Everlof
- Bristol Myers Squibb Research and Development, 100 Binney St, Cambridge, MA 02142-1096, USA
| | - Tatyana Zvyaga
- Bristol Myers Squibb Research and Development, 100 Binney St, Cambridge, MA 02142-1096, USA
| | - Francis Lee
- Bristol Myers Squibb Research and Development, 100 Binney St, Cambridge, MA 02142-1096, USA
| | - Ashvinikumar V Gavai
- Bristol Myers Squibb Research and Development, 100 Binney St, Cambridge, MA 02142-1096, USA
| | - Andrew P Degnan
- Bristol Myers Squibb Research and Development, 100 Binney St, Cambridge, MA 02142-1096, USA
| |
Collapse
|
27
|
Feng L, Wang G, Chen Y, He G, Liu B, Liu J, Chiang CM, Ouyang L. Dual-target inhibitors of bromodomain and extra-terminal proteins in cancer: A review from medicinal chemistry perspectives. Med Res Rev 2021; 42:710-743. [PMID: 34633088 DOI: 10.1002/med.21859] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/14/2021] [Accepted: 09/26/2021] [Indexed: 02/05/2023]
Abstract
Bromodomain-containing protein 4 (BRD4), as the most studied member of the bromodomain and extra-terminal (BET) family, is a chromatin reader protein interpreting epigenetic codes through binding to acetylated histones and non-histone proteins, thereby regulating diverse cellular processes including cell cycle, cell differentiation, and cell proliferation. As a promising drug target, BRD4 function is closely related to cancer, inflammation, cardiovascular disease, and liver fibrosis. Currently, clinical resistance to BET inhibitors has limited their applications but synergistic antitumor effects have been observed when used in combination with other tumor inhibitors targeting additional cellular components such as PLK1, HDAC, CDK, and PARP1. Therefore, designing dual-target inhibitors of BET bromodomains is a rational strategy in cancer treatment to increase potency and reduce drug resistance. This review summarizes the protein structures and biological functions of BRD4 and discusses recent advances of dual BET inhibitors from a medicinal chemistry perspective. We also discuss the current design and discovery strategies for dual BET inhibitors, providing insight into potential discovery of additional dual-target BET inhibitors.
Collapse
Affiliation(s)
- Lu Feng
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Fang F, Hu S, Li C, Wang Q, Wang R, Han X, Zhou Y, Liu H. Catalytic System‐Controlled Divergent Reaction Strategies for the Construction of Diversified Spiropyrazolone Skeletons from Pyrazolidinones and Diazopyrazolones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Feifei Fang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry China Pharmaceutical University 24 Tong Jia Xiang Nanjing Jiangsu 210009 China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Shulei Hu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry China Pharmaceutical University 24 Tong Jia Xiang Nanjing Jiangsu 210009 China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Chunpu Li
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Qian Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Run Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Xu Han
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Yu Zhou
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Hong Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry China Pharmaceutical University 24 Tong Jia Xiang Nanjing Jiangsu 210009 China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| |
Collapse
|
29
|
Evans CM, Phillips M, Malone KL, Tonelli M, Cornilescu G, Cornilescu C, Holton SJ, Gorjánácz M, Wang L, Carlson S, Gay JC, Nix JC, Demeler B, Markley JL, Glass KC. Coordination of Di-Acetylated Histone Ligands by the ATAD2 Bromodomain. Int J Mol Sci 2021; 22:9128. [PMID: 34502039 PMCID: PMC8430952 DOI: 10.3390/ijms22179128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
The ATPase Family, AAA domain-containing protein 2 (ATAD2) bromodomain (BRD) has a canonical bromodomain structure consisting of four α-helices. ATAD2 functions as a co-activator of the androgen and estrogen receptors as well as the MYC and E2F transcription factors. ATAD2 also functions during DNA replication, recognizing newly synthesized histones. In addition, ATAD2 is shown to be up-regulated in multiple forms of cancer including breast, lung, gastric, endometrial, renal, and prostate. Furthermore, up-regulation of ATAD2 is strongly correlated with poor prognosis in many types of cancer, making the ATAD2 bromodomain an innovative target for cancer therapeutics. In this study, we describe the recognition of histone acetyllysine modifications by the ATAD2 bromodomain. Residue-specific information on the complex formed between the histone tail and the ATAD2 bromodomain, obtained through nuclear magnetic resonance spectroscopy (NMR) and X-ray crystallography, illustrates key residues lining the binding pocket, which are involved in coordination of di-acetylated histone tails. Analytical ultracentrifugation, NMR relaxation data, and isothermal titration calorimetry further confirm the monomeric state of the functionally active ATAD2 bromodomain in complex with di-acetylated histone ligands. Overall, we describe histone tail recognition by ATAD2 BRD and illustrate that one acetyllysine group is primarily engaged by the conserved asparagine (N1064), the "RVF" shelf residues, and the flexible ZA loop. Coordination of a second acetyllysine group also occurs within the same binding pocket but is essentially governed by unique hydrophobic and electrostatic interactions making the di-acetyllysine histone coordination more specific than previously presumed.
Collapse
Affiliation(s)
- Chiara M. Evans
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; (C.M.E.); (M.P.); (K.L.M.); (S.C.); (J.C.G.)
| | - Margaret Phillips
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; (C.M.E.); (M.P.); (K.L.M.); (S.C.); (J.C.G.)
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Kiera L. Malone
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; (C.M.E.); (M.P.); (K.L.M.); (S.C.); (J.C.G.)
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.T.); (G.C.); (C.C.); (J.L.M.)
| | - Gabriel Cornilescu
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.T.); (G.C.); (C.C.); (J.L.M.)
| | - Claudia Cornilescu
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.T.); (G.C.); (C.C.); (J.L.M.)
| | - Simon J. Holton
- Bayer AG, Pharmaceuticals, Research & Early Development Oncology, 13353 Berlin, Germany; (S.J.H.); (M.G.)
| | - Mátyás Gorjánácz
- Bayer AG, Pharmaceuticals, Research & Early Development Oncology, 13353 Berlin, Germany; (S.J.H.); (M.G.)
| | - Liping Wang
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.W.); (B.D.)
| | - Samuel Carlson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; (C.M.E.); (M.P.); (K.L.M.); (S.C.); (J.C.G.)
| | - Jamie C. Gay
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; (C.M.E.); (M.P.); (K.L.M.); (S.C.); (J.C.G.)
| | - Jay C. Nix
- Molecular Biology Consortium, Advanced Light Source, Berkeley, CA 94720, USA;
| | - Borries Demeler
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.W.); (B.D.)
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - John L. Markley
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.T.); (G.C.); (C.C.); (J.L.M.)
| | - Karen C. Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; (C.M.E.); (M.P.); (K.L.M.); (S.C.); (J.C.G.)
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
30
|
Fang D, Wang MR, Guan JL, Han YY, Sheng JQ, Tian DA, Li PY. Bromodomain-containing protein 9 promotes hepatocellular carcinoma progression via activating the Wnt/β-catenin signaling pathway. Exp Cell Res 2021; 406:112727. [PMID: 34370992 DOI: 10.1016/j.yexcr.2021.112727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/08/2021] [Accepted: 07/02/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Epigenetic dysregulation participates in the initiation and progression of hepatocellular carcinoma (HCC). Bromodomain-containing protein 9 (BRD9) can identify acetylated lysine residues, contributing to several cancers. The function and molecular mechanism of BRD9 in HCC remain poorly understood. METHODS BRD9 levels in tissues and cells of HCC and normal liver were evaluated using bioinformatic analysis, real-time PCR, and western blot. BRD9's association with clinical outcomes was investigated via survival analyses. Biological behaviors and pathways related to BRD9 were predicted using gene set enrichment analysis. BRD9's role in proliferation was verified via cell counting kit 8, colony formation, and 5-Ethynyl-2'-deoxyuridine assays. Its role in the cell cycle and apoptosis was assessed using flow cytometry. The role of BRD9 in vivo was investigated using xenograft tumor models. A rescue assay was performed to investigate the molecular mechanism of BRD9. RESULTS BRD9 was markedly upregulated in HCC and higher BRD9 expression was associated with higher grade, advanced stage, greater tumor size, and poorer prognosis. BRD9 overexpression enhanced cell proliferation, cell cycle progress, but impeded cell apoptosis. BRD9 downregulation had the opposite effects. In vivo, BRD9 promoted xenograft tumor growth. Mechanistically, BRD9 activated Wnt/β-catenin signaling, obstruction of which abrogated BRD9-mediated tumorigenesis. CONCLUSION Increased BRD9 in HCC correlated with poor prognosis, which functioned via activating Wnt/β-catenin signaling. Thus, BRD9 might be a promising biomarker and therapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Dan Fang
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Mu-Ru Wang
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jia-Lun Guan
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ying-Ying Han
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jia-Qi Sheng
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China.
| | - De-An Tian
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Pei-Yuan Li
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Gastroenterology, Wenchang People's Hospital, Hainan, China.
| |
Collapse
|
31
|
Boyson SP, Gao C, Quinn K, Boyd J, Paculova H, Frietze S, Glass KC. Functional Roles of Bromodomain Proteins in Cancer. Cancers (Basel) 2021; 13:3606. [PMID: 34298819 PMCID: PMC8303718 DOI: 10.3390/cancers13143606] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Histone acetylation is generally associated with an open chromatin configuration that facilitates many cellular processes including gene transcription, DNA repair, and DNA replication. Aberrant levels of histone lysine acetylation are associated with the development of cancer. Bromodomains represent a family of structurally well-characterized effector domains that recognize acetylated lysines in chromatin. As part of their fundamental reader activity, bromodomain-containing proteins play versatile roles in epigenetic regulation, and additional functional modules are often present in the same protein, or through the assembly of larger enzymatic complexes. Dysregulated gene expression, chromosomal translocations, and/or mutations in bromodomain-containing proteins have been correlated with poor patient outcomes in cancer. Thus, bromodomains have emerged as a highly tractable class of epigenetic targets due to their well-defined structural domains, and the increasing ease of designing or screening for molecules that modulate the reading process. Recent developments in pharmacological agents that target specific bromodomains has helped to understand the diverse mechanisms that bromodomains play with their interaction partners in a variety of chromatin processes, and provide the promise of applying bromodomain inhibitors into the clinical field of cancer treatment. In this review, we explore the expression and protein interactome profiles of bromodomain-containing proteins and discuss them in terms of functional groups. Furthermore, we highlight our current understanding of the roles of bromodomain-containing proteins in cancer, as well as emerging strategies to specifically target bromodomains, including combination therapies using bromodomain inhibitors alongside traditional therapeutic approaches designed to re-program tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Samuel P. Boyson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Cong Gao
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Kathleen Quinn
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Joseph Boyd
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Hana Paculova
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Karen C. Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| |
Collapse
|
32
|
Brand M, Clayton J, Moroglu M, Schiedel M, Picaud S, Bluck JP, Skwarska A, Bolland H, Chan AKN, Laurin CMC, Scorah AR, See L, Rooney TPC, Andrews KH, Fedorov O, Perell G, Kalra P, Vinh KB, Cortopassi WA, Heitel P, Christensen KE, Cooper RI, Paton RS, Pomerantz WCK, Biggin PC, Hammond EM, Filippakopoulos P, Conway SJ. Controlling Intramolecular Interactions in the Design of Selective, High-Affinity Ligands for the CREBBP Bromodomain. J Med Chem 2021; 64:10102-10123. [PMID: 34255515 PMCID: PMC8311651 DOI: 10.1021/acs.jmedchem.1c00348] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
CREBBP (CBP/KAT3A)
and its paralogue EP300 (KAT3B) are lysine acetyltransferases
(KATs) that are essential for human development. They each comprise
10 domains through which they interact with >400 proteins, making
them important transcriptional co-activators and key nodes in the
human protein–protein interactome. The bromodomains of CREBBP
and EP300 enable the binding of acetylated lysine residues from histones
and a number of other important proteins, including p53, p73, E2F,
and GATA1. Here, we report a work to develop a high-affinity, small-molecule
ligand for the CREBBP and EP300 bromodomains [(−)-OXFBD05]
that shows >100-fold selectivity over a representative member of
the
BET bromodomains, BRD4(1). Cellular studies using this ligand demonstrate
that the inhibition of the CREBBP/EP300 bromodomain in HCT116 colon
cancer cells results in lowered levels of c-Myc and a reduction in
H3K18 and H3K27 acetylation. In hypoxia (<0.1% O2),
the inhibition of the CREBBP/EP300 bromodomain results in the enhanced
stabilization of HIF-1α.
Collapse
Affiliation(s)
- Michael Brand
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - James Clayton
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Mustafa Moroglu
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Matthias Schiedel
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Sarah Picaud
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 3TA, U.K
| | - Joseph P Bluck
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.,Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Anna Skwarska
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, U.K
| | - Hannah Bolland
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, U.K
| | - Anthony K N Chan
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Corentine M C Laurin
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Amy R Scorah
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Larissa See
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Timothy P C Rooney
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Katrina H Andrews
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Oleg Fedorov
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 3TA, U.K
| | - Gabriella Perell
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Prakriti Kalra
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Kayla B Vinh
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Wilian A Cortopassi
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Pascal Heitel
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Kirsten E Christensen
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Richard I Cooper
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Robert S Paton
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.,Department of Chemistry, Colorado State University, 1301 Center Ave, Ft. Collins, Colorado 80523-1872, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Ester M Hammond
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, U.K
| | - Panagis Filippakopoulos
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 3TA, U.K
| | - Stuart J Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
33
|
Zhang G, Li S, Cheng KW, Chou TF. AAA ATPases as therapeutic targets: Structure, functions, and small-molecule inhibitors. Eur J Med Chem 2021; 219:113446. [PMID: 33873056 PMCID: PMC8165034 DOI: 10.1016/j.ejmech.2021.113446] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 01/07/2023]
Abstract
ATPases Associated with Diverse Cellular Activity (AAA ATPase) are essential enzymes found in all organisms. They are involved in various processes such as DNA replication, protein degradation, membrane fusion, microtubule serving, peroxisome biogenesis, signal transduction, and the regulation of gene expression. Due to the importance of AAA ATPases, several researchers identified and developed small-molecule inhibitors against these enzymes. We discuss six AAA ATPases that are potential drug targets and have well-developed inhibitors. We compare available structures that suggest significant differences of the ATP binding pockets among the AAA ATPases with or without ligand. The distances from ADP to the His20 in the His-Ser-His motif and the Arg finger (Arg353 or Arg378) in both RUVBL1/2 complex structures bound with or without ADP have significant differences, suggesting dramatically different interactions of the binding site with ADP. Taken together, the inhibitors of six well-studied AAA ATPases and their structural information suggest further development of specific AAA ATPase inhibitors due to difference in their structures. Future chemical biology coupled with proteomic approaches could be employed to develop variant specific, complex specific, and pathway specific inhibitors or activators for AAA ATPase proteins.
Collapse
Affiliation(s)
- Gang Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| |
Collapse
|
34
|
Fang F, Hu S, Li C, Wang Q, Wang R, Han X, Zhou Y, Liu H. Catalytic System-Controlled Divergent Reaction Strategies for the Construction of Diversified Spiropyrazolone Skeletons from Pyrazolidinones and Diazopyrazolones. Angew Chem Int Ed Engl 2021; 60:21327-21333. [PMID: 34180572 DOI: 10.1002/anie.202105857] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/15/2021] [Indexed: 12/13/2022]
Abstract
A catalytic system-controlled divergent reaction strategy was here reported to construct four types of intriguing spiroheterocyclic skeletons from simple and readily available starting materials via a precise chemical bond activation/[n+1] annulation cascade. The tetraazaspiroheterocyclic and trizazspiroheterocyclic scaffolds could be independently constructed by a selective N-N bond activation/[n+1] annulation cascade, a C(sp2 )-H activation/[4+1] annulation and a novel tandem C(sp2 )-H/C(sp3 )-H bond activation/[4+1] annulation strategy, along with a broad scope of substrates, moderate to excellent yields and valuable transformations. More importantly, in these transformations, we are the first time to capture a N-N bond activation and a C(sp3 )-H bond activation of pyrazolidinones under different catalytic system.
Collapse
Affiliation(s)
- Feifei Fang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Shulei Hu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Qian Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Run Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Xu Han
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Hong Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
35
|
Development of BET inhibitors as potential treatments for cancer: A search for structural diversity. Bioorg Med Chem Lett 2021; 44:128108. [PMID: 33991625 DOI: 10.1016/j.bmcl.2021.128108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022]
Abstract
We describe our efforts to identify structurally diverse leads in the triazole-containing N1-carboline series of bromodomain and extra-terminal inhibitors. Replacement of the N5 "cap" phenyl moiety with various heteroaryls, coupled with additional modifications to the carboline core, provided analogs with similar potency, improved pharmacokinetic properties, and increased solubility compared to our backup lead, BMS-986225 (2). Rapid SAR exploration was enabled by a convergent, synthetic route. These efforts provided a potent BET inhibitor, 3-fluoropyridyl 12, that demonstrated robust efficacy in a multiple myeloma mouse tumor model at 1 mg/kg.
Collapse
|
36
|
Wang L, Wang Y, Yang Z, Xu S, Li H. Binding Selectivity of Inhibitors toward Bromodomains BAZ2A and BAZ2B Uncovered by Multiple Short Molecular Dynamics Simulations and MM-GBSA Calculations. ACS OMEGA 2021; 6:12036-12049. [PMID: 34056358 PMCID: PMC8154142 DOI: 10.1021/acsomega.1c00687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Two Bromodomain-Containing proteins BAZ2A and BAZ2B are responsible for remodeling chromatin and regulating noncoding RNAs. As for our current studies, integration of multiple short molecular dynamics simulations (MSMDSs) with molecular mechanics generalized Born surface area (MM-GBSA) method is adopted for insights into binding selectivity of three small molecules D8Q, D9T and UO1 to BAZ2A against BAZ2B. The calculations of MM-GBSA unveil that selectivity of inhibitors toward BAZ2A and BAZ2B highly depends on the enthalpy changes and the details uncover that D8Q has better selectivity toward BAZ2A than BAZ2B, D9T more favorably bind to BAZ2B than BAZ2A, and UO1 does not show obvious selectivity toward these two proteins. The analysis of interaction network between residues and inhibitors indicates that seven residues are mainly responsible for the selectivity of D8Q, six residues for D9T and four residues provide significant contributions to associations of UO1 with two proteins. Moreover the analysis of interaction network not only reveals warm spots of inhibitor bindings to BAZ2A and BAZ2B but also unveils that common residue pairs, including (W1816, W1887), (P1817, P1888), (F1818, F1889), (V1822, V1893), (N1823, N1894),(L1826, L1897), (V1827, V1898), (F1872, F1943), (N1873, N1944) and (V1879, I1950) belonging to (BAZ2A, BAZ2B), induce mainly binding differences of inhibitors to BAZ2A and BAZ2B. Hence, insights from our current studies offer useful dynamics information relating with conformational alterations and structure-affinity relationship at atomistic levels for novel therapeutic strategies toward BAZ2A and BAZ2B.
Collapse
Affiliation(s)
- Lifei Wang
- School
of Science, Shandong Jiaotong University, 5001 Haitang Road, Changqing District, Jinan, Shandong Province 250357, China
| | - Yan Wang
- School
of Science, Shandong Jiaotong University, 5001 Haitang Road, Changqing District, Jinan, Shandong Province 250357, China
| | - Zhiyong Yang
- Department
of Physics, Jiangxi Agricultural University, 1101 Zhimin Road, Economic and Technological
Development Zone, Nanchang, Jiangxi Province 330045, China
| | - Shuobo Xu
- School
of Information Science and Electrical Engineering, Shandong Jiaotong University, 5001 Haitang Road, Changqing District, Jinan, Shandong Province 250357, China
| | - Hongyun Li
- School
of Science, Shandong Jiaotong University, 5001 Haitang Road, Changqing District, Jinan, Shandong Province 250357, China
| |
Collapse
|
37
|
Current status in the discovery of dual BET/HDAC inhibitors. Bioorg Med Chem Lett 2021; 38:127829. [PMID: 33685790 DOI: 10.1016/j.bmcl.2021.127829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The development of desired multitarget agents may provide an attractive and cost-effective complement or alternative to drug combinations. Bromodomain and extraterminal domain (BET) and histone deacetylase (HDAC), as important epigenetic modulators, are attractive targets in drug discovery and development. Considering the fact that BET and HDAC inhibitors exert a synergistic effect on cellular processes in cancer cells, the design of dual BET/HDAC inhibitors may be a rational strategy to improve the efficacy of their single-target drugs for tumor treatment. In the current review, we depict the development of dual BET/HDAC inhibitors and particularly highlight their structure-activity relationships (SARs), binding modes, and biological functions with the aim to facilitate rational drug design and develop more dual BET/HDAC inhibitors.
Collapse
|
38
|
Synthesis and Structure-Activity Relationships of Aristoyagonine Derivatives as Brd4 Bromodomain Inhibitors with X-ray Co-Crystal Research. Molecules 2021; 26:molecules26061686. [PMID: 33802888 PMCID: PMC8002823 DOI: 10.3390/molecules26061686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic regulation is known to play a key role in progression of anti-cancer therapeutics. Lysine acetylation is an important mechanism in controlling gene expression. There has been increasing interest in bromodomain owing to its ability to modulate transcription of various genes as an epigenetic 'reader.' Herein, we report the design, synthesis, and X-ray studies of novel aristoyagonine (benzo[6,7]oxepino[4,3,2-cd]isoindol-2(1H)-one) derivatives and investigate their inhibitory effect against Brd4 bromodomain. Five compounds 8ab, 8bc, 8bd, 8be, and 8bf have been discovered with high binding affinity over the Brd4 protein. Co-crystal structures of these five inhibitors with human Brd4 bromodomain demonstrated that it has a key binding mode occupying the hydrophobic pocket, which is known to be the acetylated lysine binding site. These novel Brd4 bromodomain inhibitors demonstrated impressive inhibitory activity and mode of action for the treatment of cancer diseases.
Collapse
|
39
|
Sato M, Kondo T, Kohno Y, Seto S. Discovery of benzo[f]pyrido[4,3-b][1,4]oxazepin-10-one derivatives as orally available bromodomain and extra-terminal domain (BET) inhibitors with efficacy in an in vivo psoriatic animal model. Bioorg Med Chem 2021; 34:116015. [PMID: 33549905 DOI: 10.1016/j.bmc.2021.116015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 11/25/2022]
Abstract
Bromodomain and extra-terminal domain (BET) protein plays an important role in epigenetic regulation, and the regulation of disruption contributes to the pathogenesis of cancer and inflammatory disease. With the goal of discovering novel BET inhibitors, especially BRD4 inhibitors, we designed and synthesized several compounds starting from our previously reported pyrido-benzodiazepinone derivative 4 to enhance BRD4 inhibitory activity while avoiding hERG inhibition. Molecular docking studies and structure-activity relationship studies led to the identification of 9-fluorobenzo[f]pyrido[4,3-b][1,4]oxazepin-10-one derivative 43, which exhibited potent BRD4 inhibitory activity with excellent potency in imiquimod-induced psoriasis model mice.
Collapse
Affiliation(s)
- Masanori Sato
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co., Ltd., 1848, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Takekazu Kondo
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co., Ltd., 1848, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Yasushi Kohno
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co., Ltd., 1848, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Shigeki Seto
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co., Ltd., 1848, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan.
| |
Collapse
|
40
|
Dragovich PS, Pillow TH, Blake RA, Sadowsky JD, Adaligil E, Adhikari P, Chen J, Corr N, Dela Cruz-Chuh J, Del Rosario G, Fullerton A, Hartman SJ, Jiang F, Kaufman S, Kleinheinz T, Kozak KR, Liu L, Lu Y, Mulvihill MM, Murray JM, O'Donohue A, Rowntree RK, Sawyer WS, Staben LR, Wai J, Wang J, Wei B, Wei W, Xu Z, Yao H, Yu SF, Zhang D, Zhang H, Zhang S, Zhao Y, Zhou H, Zhu X. Antibody-Mediated Delivery of Chimeric BRD4 Degraders. Part 2: Improvement of In Vitro Antiproliferation Activity and In Vivo Antitumor Efficacy. J Med Chem 2021; 64:2576-2607. [PMID: 33596073 DOI: 10.1021/acs.jmedchem.0c01846] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heterobifunctional compounds that direct the ubiquitination of intracellular proteins in a targeted manner via co-opted ubiquitin ligases have enormous potential to transform the field of medicinal chemistry. These chimeric molecules, often termed proteolysis-targeting chimeras (PROTACs) in the chemical literature, enable the controlled degradation of specific proteins via their direction to the cellular proteasome. In this report, we describe the second phase of our research focused on exploring antibody-drug conjugates (ADCs), which incorporate BRD4-targeting chimeric degrader entities. We employ a new BRD4-binding fragment in the construction of the chimeric ADC payloads that is significantly more potent than the corresponding entity utilized in our initial studies. The resulting BRD4-degrader antibody conjugates exhibit potent and antigen-dependent BRD4 degradation and antiproliferation activities in cell-based experiments. Multiple ADCs bearing chimeric BRD4-degrader payloads also exhibit strong, antigen-dependent antitumor efficacy in mouse xenograft assessments that employ several different tumor models.
Collapse
Affiliation(s)
- Peter S Dragovich
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas H Pillow
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert A Blake
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jack D Sadowsky
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Emel Adaligil
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Pragya Adhikari
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jinhua Chen
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Nicholas Corr
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | | | - Aaron Fullerton
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven J Hartman
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Fan Jiang
- Viva Biotech, Structural Biology, 334 Aidisheng Road, Zhangjiang High-Tech Park, Shanghai 201203, China
| | - Susan Kaufman
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Tracy Kleinheinz
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Katherine R Kozak
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Liling Liu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ying Lu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Melinda M Mulvihill
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jeremy M Murray
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Aimee O'Donohue
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rebecca K Rowntree
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - William S Sawyer
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Leanna R Staben
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John Wai
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jian Wang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - BinQing Wei
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wentao Wei
- Viva Biotech, Structural Biology, 334 Aidisheng Road, Zhangjiang High-Tech Park, Shanghai 201203, China
| | - Zijin Xu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hui Yao
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Shang-Fan Yu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Donglu Zhang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Hongyan Zhang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Shenhua Zhang
- Viva Biotech, Structural Biology, 334 Aidisheng Road, Zhangjiang High-Tech Park, Shanghai 201203, China
| | - Yongxin Zhao
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hao Zhou
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xiaoyu Zhu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| |
Collapse
|
41
|
Zhang Y, Rong D, Li B, Wang Y. Targeting Epigenetic Regulators with Covalent Small-Molecule Inhibitors. J Med Chem 2021; 64:7900-7925. [PMID: 33599482 DOI: 10.1021/acs.jmedchem.0c02055] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetic regulation of gene expression plays a critical role in various physiological processes, and epigenetic dysregulation is implicated in a number of diseases, prominently including cancer. Epigenetic regulators have been validated as potential therapeutic targets, and significant progress has been made in the discovery and development of epigenetic-based inhibitors. However, successful epigenetic drug discovery is still facing challenges, including moderate selectivity, limited efficacy, and acquired drug resistance. Inspired by the advantages of covalent small-molecule inhibitors, targeted covalent inhibition has attracted increasing interest in epigenetic drug discovery. In this review, we comprehensively summarize the structure-based design and characterization of covalent inhibitors targeting epigenetic writers, readers, and erasers and highlight their potential benefits in enhancing selectivity across the enzyme family and improving in vivo efficacy. We also discuss the challenges and opportunities of covalent small-molecule inhibitors and hope to shed light on future epigenetic drug discovery.
Collapse
Affiliation(s)
- Yi Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Deqin Rong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Bingbing Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuanxiang Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
42
|
Dragovich PS, Pillow TH, Blake RA, Sadowsky JD, Adaligil E, Adhikari P, Bhakta S, Blaquiere N, Chen J, Dela Cruz-Chuh J, Gascoigne KE, Hartman SJ, He M, Kaufman S, Kleinheinz T, Kozak KR, Liu L, Liu L, Liu Q, Lu Y, Meng F, Mulvihill MM, O'Donohue A, Rowntree RK, Staben LR, Staben ST, Wai J, Wang J, Wei B, Wilson C, Xin J, Xu Z, Yao H, Zhang D, Zhang H, Zhou H, Zhu X. Antibody-Mediated Delivery of Chimeric BRD4 Degraders. Part 1: Exploration of Antibody Linker, Payload Loading, and Payload Molecular Properties. J Med Chem 2021; 64:2534-2575. [PMID: 33596065 DOI: 10.1021/acs.jmedchem.0c01845] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The biological and medicinal impacts of proteolysis-targeting chimeras (PROTACs) and related chimeric molecules that effect intracellular degradation of target proteins via ubiquitin ligase-mediated ubiquitination continue to grow. However, these chimeric entities are relatively large compounds that often possess molecular characteristics, which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. We therefore explored the conjugation of such molecules to monoclonal antibodies using technologies originally developed for cytotoxic payloads so as to provide alternate delivery options for these novel agents. In this report, we describe the first phase of our systematic development of antibody-drug conjugates (ADCs) derived from bromodomain-containing protein 4 (BRD4)-targeting chimeric degrader entities. We demonstrate the antigen-dependent delivery of the degrader payloads to PC3-S1 prostate cancer cells along with related impacts on MYC transcription and intracellular BRD4 levels. These experiments culminate with the identification of one degrader conjugate, which exhibits antigen-dependent antiproliferation effects in LNCaP prostate cancer cells.
Collapse
Affiliation(s)
- Peter S Dragovich
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas H Pillow
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert A Blake
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jack D Sadowsky
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Emel Adaligil
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Pragya Adhikari
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sunil Bhakta
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Nicole Blaquiere
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jinhua Chen
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | | | - Karen E Gascoigne
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven J Hartman
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Mingtao He
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, China
| | - Susan Kaufman
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Tracy Kleinheinz
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Katherine R Kozak
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Liang Liu
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, China
| | - Liling Liu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Qi Liu
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, China
| | - Ying Lu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Fanwei Meng
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, China
| | - Melinda M Mulvihill
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Aimee O'Donohue
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rebecca K Rowntree
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Leanna R Staben
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven T Staben
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John Wai
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jian Wang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - BinQing Wei
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Catherine Wilson
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jianfeng Xin
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, China
| | - Zijin Xu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hui Yao
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Donglu Zhang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Hongyan Zhang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hao Zhou
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xiaoyu Zhu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| |
Collapse
|
43
|
Xiong L, Mao X, Guo Y, Zhou Y, Chen M, Chen P, Yang S, Li L. Discovery of selective BPTF bromodomain inhibitors by screening and structure-based optimization. Biochem Biophys Res Commun 2021; 545:125-131. [PMID: 33548625 DOI: 10.1016/j.bbrc.2021.01.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 02/08/2023]
Abstract
Bromodomain and PHD finger containing transcription factor (BPTF) is a multidomain protein that regulates the transcription of chromatin and is related to many cancers. Herein, we report the screening-based discovery of Cpd1, a compound with micromolar affinity to the BPTF bromodomain. Through structure-guided optimization, we synthesized a variety of new inhibitors. Among these compounds, Cpd8 and Cpd10 were highly potent and selective inhibitors, with KD values of 428 nM and 655 nM in ITC assays, respectively. The high activity was explained by the cocrystal structure of Cpd8 in complex with the BPTF bromodomain protein. Cpd8 and Cpd10 were able to stabilize the BPTF bromodomain protein in cells in a cellular thermal shift assay (CETSA). Cpd8 downregulated c-MYC expression in A549 cells. All experiments prove that these two compounds are potential BPTF inhibitors.
Collapse
Affiliation(s)
- Liang Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Mao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yinping Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yangli Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Mingxin Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Pei Chen
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Linli Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
44
|
Wu Q, Chen DQ, Sun L, Huan XJ, Bao XB, Tian CQ, Hu J, Lv KK, Wang YQ, Xiong B, Miao ZH. Novel bivalent BET inhibitor N2817 exhibits potent anticancer activity and inhibits TAF1. Biochem Pharmacol 2021; 185:114435. [PMID: 33539817 DOI: 10.1016/j.bcp.2021.114435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 01/14/2023]
Abstract
Bromodomain and extra-terminal domain (BET) family proteins are promising anticancer targets. Most BET inhibitors in clinical trials are monovalent. They competitively bind to one of the bromodomains (BD1 and BD2) in BET proteins and exhibit relatively weak anticancer activity, poor pharmacokinetics, and low metabolic stability. Here, we evaluated the anticancer activity of a novel bivalent BET inhibitor, N2817, which consists of two molecules of the monovalent BET inhibitor 8124-053 connected by a common piperazine ring, rendering a long linker unnecessary. Compared with ABBV-075, one of the potent monovalent BET inhibitors reported to date, N2817 showed greater potency in inhibiting proliferation, arresting cell-cycle, inducing apoptosis, and suppressing the growth of tumor xenografts. Moreover, N2817 showed high metabolic stability, a relatively long half-life, and no brain penetration after oral administration. Additionally, N2817 directly bound and inhibited another BD-containing protein, TAF1 (BD2), as evidenced by a reduction in mRNA and protein levels. TAF1 inhibition contributed to the anticancer effect of N2817. Therefore, this study offers a new paradigm for designing bivalent BET inhibitors and introduces a novel potent bivalent BET inhibitor and a new anticancer mechanism.
Collapse
Affiliation(s)
- Qian Wu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China
| | - Dan-Qi Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Lin Sun
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China
| | - Xia-Juan Huan
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Xu-Bin Bao
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Chang-Qing Tian
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China
| | - Jianping Hu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Kai-Kai Lv
- University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Ying-Qing Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China.
| | - Bing Xiong
- University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.
| | - Ze-Hong Miao
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
45
|
Ozawa T, Ozawa M. Application of FMO to Ligand Design: SBDD, FBDD, and Protein–Protein Interaction. RECENT ADVANCES OF THE FRAGMENT MOLECULAR ORBITAL METHOD 2021:205-251. [DOI: 10.1007/978-981-15-9235-5_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
46
|
Current status in the discovery of dual BET/HDAC inhibitors. Bioorg Med Chem Lett 2021; 31:127671. [PMID: 33229136 DOI: 10.1016/j.bmcl.2020.127671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/22/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
The development of desired multitarget agents may provide an attractive and cost-effective complement or alternative to drug combinations. BET and HDAC, as important epigenetic modulators, are both attractive targets in drug discovery and development. Considering the fact that BET and HDAC inhibitors exert a synergistic effect on cellular processes in cancer cells, the design of dual BET/HDAC inhibitors may be a rational strategy to improve the efficacy of their single-target drugs for tumor treatment. In current review, we depict the development of dual BET/HDAC inhibitors and particularly highlight their SARs, binding modes and biological functions with the aim to facilitate rational design and develop more dual BET/HDAC inhibitors.
Collapse
|
47
|
Hügle M, Regenass P, Warstat R, Hau M, Schmidtkunz K, Lucas X, Wohlwend D, Einsle O, Jung M, Breit B, Günther S. 4-Acyl Pyrroles as Dual BET-BRD7/9 Bromodomain Inhibitors Address BETi Insensitive Human Cancer Cell Lines. J Med Chem 2020; 63:15603-15620. [PMID: 33275431 DOI: 10.1021/acs.jmedchem.0c00478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Various malignant human diseases show disturbed signaling pathways due to increased activity of proteins within the epigenetic machinery. Recently, various novel inhibitors for epigenetic regulation have been introduced which promise a great therapeutic benefit. Inhibitors for the bromo- and extra-terminal domain (BET) family were of particular interest after inhibitors had shown a strong antiproliferative effect. More recently, the focus has increasingly shifted to bromodomains (BDs) outside the BET family. Based on previously developed inhibitors, we have optimized a small series of 4-acyl pyrroles, which we further analyzed by ITC, X-ray crystallography, selectivity studies, the NCI60 cell-panel, and GI50 determinations for several cancer cell lines. The inhibitors address both, BET and BRD7/9 BDs, with very high affinity and show a strong antiproliferative effect on various cancer cell lines that could not be observed for BD family selective inhibitors. Furthermore, a synergistic effect on breast cancer (MCF-7) and melanoma (SK-MEL-5) was proven.
Collapse
Affiliation(s)
- Martin Hügle
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 8, D-79104 Freiburg, Germany.,Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, D-79104 Freiburg, Germany
| | - Pierre Regenass
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, D-79104 Freiburg, Germany
| | - Robin Warstat
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, D-79104 Freiburg, Germany
| | - Mirjam Hau
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, D-79104 Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, Schänzlestr. 18, D-79104 Freiburg, Germany
| | - Karin Schmidtkunz
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, D-79104 Freiburg, Germany
| | - Xavier Lucas
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 8, D-79104 Freiburg, Germany
| | - Daniel Wohlwend
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, D-79104 Freiburg, Germany
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, D-79104 Freiburg, Germany
| | - Manfred Jung
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, D-79104 Freiburg, Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, D-79104 Freiburg, Germany
| | - Stefan Günther
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 8, D-79104 Freiburg, Germany
| |
Collapse
|
48
|
Lee D, Lee DY, Hwang YS, Seo HR, Lee SA, Kwon J. The Bromodomain Inhibitor PFI-3 Sensitizes Cancer Cells to DNA Damage by Targeting SWI/SNF. Mol Cancer Res 2020; 19:900-912. [PMID: 33208498 DOI: 10.1158/1541-7786.mcr-20-0289] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/17/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022]
Abstract
Many chemotherapeutic drugs produce double-strand breaks (DSB) on cancer cell DNA, thereby inducing cell death. However, the DNA damage response (DDR) enables cancer cells to overcome DNA damage and escape cell death, often leading to therapeutic resistance and unsuccessful outcomes. It is therefore important to develop inhibitors that target DDR proteins to render cancer cells hypersensitive to DNA damage. Here, we investigated the applicability of PFI-3, a recently developed bromodomain inhibitor specifically targeting the SWI/SNF chromatin remodeler that functions to promote DSB repair, in cancer treatment. We verified that PFI-3 effectively blocks chromatin binding of its target bromodomains and dissociates the corresponding SWI/SNF proteins from chromatin. We then found that, while having little toxicity as a single agent, PFI-3 synergistically sensitizes several human cancer cell lines to DNA damage induced by chemotherapeutic drugs such as doxorubicin. This PFI-3 activity occurs only for the cancer cells that require SWI/SNF for DNA repair. Our mechanism studies show that PFI-3 exerts the DNA damage-sensitizing effect by directly blocking SWI/SNF's chromatin binding, which leads to defects in DSB repair and aberrations in damage checkpoints, eventually resulting in increase of cell death primarily via necrosis and senescence. This work therefore demonstrates the activity of PFI-3 to sensitize cancer cells to DNA damage and its mechanism of action via SWI/SNF targeting, providing an experimental rationale for developing PFI-3 as a sensitizing agent in cancer chemotherapy. IMPLICATIONS: This study, revealing the activity of PFI-3 to sensitize cancer cells to chemotherapeutic drugs, provides an experimental rationale for developing this bromodomain inhibitor as a sensitizing agent in cancer chemotherapy.
Collapse
Affiliation(s)
- Daye Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of South Korea
| | - Da-Yeon Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of South Korea
| | - You-Son Hwang
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of South Korea
| | - Hye-Ran Seo
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of South Korea
| | - Shin-Ai Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of South Korea
| | - Jongbum Kwon
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of South Korea.
| |
Collapse
|
49
|
Yao D, Zhang J, Wang J, Pan D, He Z. Discovery of novel ATAD2 bromodomain inhibitors that trigger apoptosis and autophagy in breast cells by structure-based virtual screening. J Enzyme Inhib Med Chem 2020; 35:713-725. [PMID: 32174193 PMCID: PMC7144325 DOI: 10.1080/14756366.2020.1740924] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
ATAD2 has been reported to play an important role in the processes of numerous cancers and validated to be a potential therapeutic target. This work is to discover potent ATAD2 inhibitors and elucidate the underlying mechanisms in breast cancer. A novel ATAD2 bromodomain inhibitor (AM879) was discovered by combining structure-based virtual screening with biochemical analyses. AM879 presents potent inhibitory activity towards ATAD2 bromodomain (IC50 = 3565 nM), presenting no inhibitory activity against BRD2-4. Moreover, AM879 inhibited MDA-MB-231 cells proliferation with IC50 value of 2.43 µM, suppressed the expression of c-Myc, and induced significant apoptosis. Additionally, AM978 could induce autophagy via PI3K-AKT-mTOR signalling in MDA-MB-231 cells. This study demonstrates the development of potent ATAD2 inhibitors with novel scaffolds for breast cancer therapy.
Collapse
Affiliation(s)
- Dahong Yao
- Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural small molecule Drugs, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Shenzhen University Health Science Center, Shenzhen, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jinhui Wang
- Shenzhen Honghui Bio-Pharmaceutical Co. Ltd., Shenzhen, China
| | - Dabo Pan
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, P. R. China
| | - Zhendan He
- Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural small molecule Drugs, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
50
|
Padmanabhan A, Alexanian M, Linares-Saldana R, González-Terán B, Andreoletti G, Huang Y, Connolly AJ, Kim W, Hsu A, Duan Q, Winchester SAB, Felix F, Perez-Bermejo JA, Wang Q, Li L, Shah PP, Haldar SM, Jain R, Srivastava D. BRD4 (Bromodomain-Containing Protein 4) Interacts with GATA4 (GATA Binding Protein 4) to Govern Mitochondrial Homeostasis in Adult Cardiomyocytes. Circulation 2020; 142:2338-2355. [PMID: 33094644 DOI: 10.1161/circulationaha.120.047753] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Gene regulatory networks control tissue homeostasis and disease progression in a cell type-specific manner. Ubiquitously expressed chromatin regulators modulate these networks, yet the mechanisms governing how tissue specificity of their function is achieved are poorly understood. BRD4 (bromodomain-containing protein 4), a member of the BET (bromo- and extraterminal domain) family of ubiquitously expressed acetyl-lysine reader proteins, plays a pivotal role as a coactivator of enhancer signaling across diverse tissue types in both health and disease and has been implicated as a pharmacological target in heart failure. However, the cell-specific role of BRD4 in adult cardiomyocytes remains unknown. METHODS We combined conditional mouse genetics, unbiased transcriptomic and epigenomic analyses, and classic molecular biology and biochemical approaches to understand the mechanism by which BRD4 in adult cardiomyocyte homeostasis. RESULTS Here, we show that cardiomyocyte-specific deletion of Brd4 in adult mice leads to acute deterioration of cardiac contractile function with mutant animals demonstrating a transcriptomic signature characterized by decreased expression of genes critical for mitochondrial energy production. Genome-wide occupancy data show that BRD4 enriches at many downregulated genes (including the master coactivators Ppargc1a, Ppargc1b, and their downstream targets) and preferentially colocalizes with GATA4 (GATA binding protein 4), a lineage-determining cardiac transcription factor not previously implicated in regulation of adult cardiac metabolism. BRD4 and GATA4 form an endogenous complex in cardiomyocytes and interact in a bromodomain-independent manner, revealing a new functional interaction partner for BRD4 that can direct its locus and tissue specificity. CONCLUSIONS These results highlight a novel role for a BRD4-GATA4 module in cooperative regulation of a cardiomyocyte-specific gene program governing bioenergetic homeostasis in the adult heart.
Collapse
Affiliation(s)
- Arun Padmanabhan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (A.P., M.A., B.G.-T., Y.H., A.H., Q.D., S.A.B.W., F.F., J.A.P.-B., S.M.H., D.S.).,Division of Cardiology, Department of Medicine (A.P., S.M.H.), University of California, San Francisco
| | - Michael Alexanian
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (A.P., M.A., B.G.-T., Y.H., A.H., Q.D., S.A.B.W., F.F., J.A.P.-B., S.M.H., D.S.)
| | - Ricardo Linares-Saldana
- Institute of Regenerative Medicine, Penn Cardiovascular Institute, Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA (R.L.-S., W.K., Q.W., L.L., P.P.S., R.J.)
| | - Bárbara González-Terán
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (A.P., M.A., B.G.-T., Y.H., A.H., Q.D., S.A.B.W., F.F., J.A.P.-B., S.M.H., D.S.)
| | - Gaia Andreoletti
- Bakar Computational Health Sciences Institute (G.A.), University of California, San Francisco
| | - Yu Huang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (A.P., M.A., B.G.-T., Y.H., A.H., Q.D., S.A.B.W., F.F., J.A.P.-B., S.M.H., D.S.)
| | - Andrew J Connolly
- Department of Pathology (A.J.C.), University of California, San Francisco
| | - Wonho Kim
- Institute of Regenerative Medicine, Penn Cardiovascular Institute, Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA (R.L.-S., W.K., Q.W., L.L., P.P.S., R.J.)
| | - Austin Hsu
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (A.P., M.A., B.G.-T., Y.H., A.H., Q.D., S.A.B.W., F.F., J.A.P.-B., S.M.H., D.S.)
| | - Qiming Duan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (A.P., M.A., B.G.-T., Y.H., A.H., Q.D., S.A.B.W., F.F., J.A.P.-B., S.M.H., D.S.)
| | - Sarah A B Winchester
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (A.P., M.A., B.G.-T., Y.H., A.H., Q.D., S.A.B.W., F.F., J.A.P.-B., S.M.H., D.S.)
| | - Franco Felix
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (A.P., M.A., B.G.-T., Y.H., A.H., Q.D., S.A.B.W., F.F., J.A.P.-B., S.M.H., D.S.)
| | - Juan A Perez-Bermejo
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (A.P., M.A., B.G.-T., Y.H., A.H., Q.D., S.A.B.W., F.F., J.A.P.-B., S.M.H., D.S.)
| | - Qiaohong Wang
- Institute of Regenerative Medicine, Penn Cardiovascular Institute, Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA (R.L.-S., W.K., Q.W., L.L., P.P.S., R.J.)
| | - Li Li
- Institute of Regenerative Medicine, Penn Cardiovascular Institute, Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA (R.L.-S., W.K., Q.W., L.L., P.P.S., R.J.)
| | - Parisha P Shah
- Institute of Regenerative Medicine, Penn Cardiovascular Institute, Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA (R.L.-S., W.K., Q.W., L.L., P.P.S., R.J.)
| | - Saptarsi M Haldar
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (A.P., M.A., B.G.-T., Y.H., A.H., Q.D., S.A.B.W., F.F., J.A.P.-B., S.M.H., D.S.).,Division of Cardiology, Department of Medicine (A.P., S.M.H.), University of California, San Francisco
| | - Rajan Jain
- Institute of Regenerative Medicine, Penn Cardiovascular Institute, Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA (R.L.-S., W.K., Q.W., L.L., P.P.S., R.J.)
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (A.P., M.A., B.G.-T., Y.H., A.H., Q.D., S.A.B.W., F.F., J.A.P.-B., S.M.H., D.S.).,Department of Pediatrics (D.S.), University of California, San Francisco.,Department of Biochemistry and Biophysics (D.S.), University of California, San Francisco.,Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA (D.S.)
| |
Collapse
|