1
|
Batin Rahaman SK, Nandi SK, Mandal SK, Debnath U. Structural Diversity and Mutational Challenges of Toll-Like Receptor 4 Antagonists as Inflammatory Pathway Blocker. Drug Dev Res 2025; 86:e70031. [PMID: 39690962 DOI: 10.1002/ddr.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024]
Abstract
Toll-like receptor 4 (TLR4) is an important mediator that activates bacterial inflammation through its signaling pathway. It binds lipopolysaccharide (LPS) in the presence of myeloid differentiation protein 2 (MD2) to dimerise the TLR4-MD2-LPS complex. The TLR4 mediated signaling pathway stimulates cytokine production in humans, initiating inflammatory responses. Overactivation of the TLR4 pathway can trigger binding of LPS to the TLR4-MD2 complex, which may lead to the development of several inflammatory disorders. Therefore, the TLR4-MD2 complex is a potential therapeutic target for the identification of new and effective anti-inflammatory agents. Various biologically active TLR4 and MD2 targeting natural and synthetic molecules are explored with anti-inflammatory activity in micromolar ranges. But no FDA-approved drugs are available in the market as of now, and some are discontinued in clinical trials due to drug resistance and severe side effects. In this review, we have assessed recent molecular advancements in TLR4-MD2 antagonists which are showing direct inhibition in lower micro and nanomolar levels. Along with it, protein informatics analysis of the binding pockets of wild type and mutated TLR4-MD2 proteins are also discussed here to give a new insight about the changes in physicochemical properties of the ligand binding area. We have also pointed out several important residues in three different sites of the large LPS binding pocket of TLR4-MD2 complex to understand probable binding affinity of small molecule inhibitors (SMIs). In addition, the present status of clinical trials for TLR4 antagonists is also reviewed. The current assessment will pave a future perspective to design different small molecules as a direct inhibitor of TLR4-MD2 complex for anti-inflammatory activities.
Collapse
Affiliation(s)
- S K Batin Rahaman
- Department of Pharmaceutical Science, School of Health Science and Technology, UPES, Dehradun, Uttarakhand, India
| | - Sandip K Nandi
- Department of Chemistry, BITS Pilani K. K. Birla Goa Campus, Goa, India
| | - Sudip Kumar Mandal
- Department of Pharmaceutical Chemistry, Dr B. C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, India
| | - Utsab Debnath
- Department of Pharmaceutical Science, School of Health Science and Technology, UPES, Dehradun, Uttarakhand, India
| |
Collapse
|
2
|
Yu J, You Z, Wong VKW, Chen M, Liu W. Novel Cinnamic Acid Derivatives Containing Naproxen as NLRP3 Inhibitors: Synthesis and Evaluation of Their Biological Activity. Chem Biodivers 2024:e202402700. [PMID: 39737737 DOI: 10.1002/cbdv.202402700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/01/2025]
Abstract
Long-term use of naproxen can lead to serious side effects. Inspired by the biological activity of cinnamic acid, a series of cinnamic acid derivatives containing naproxen were designed and synthesized, and their anti-inflammatory activities and mechanisms were explored in vitro. Our results indicated that all of naproxen derivatives showed more significant inhibition against lipopolysaccharide (LPS)-induced nitric oxide (NO) production and had a lower degree of cytotoxicity than that of naproxen. The present studies revealed that compound 23 (IC50 = 5.66 ± 1.66 µM) markedly inhibited the LPS-induced NO production and the over-expression of pro-inflammatory cytokines, including interleukin (IL)-1β, inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). Furthermore, it blocked the activation of NF-κB signaling pathway and pyrin domain-containing protein 3 (NLRP-3) inflammasome in a concentration-dependent manner. Additionally, docking studies confirmed that compound 23 exhibited a well-fitting into the NLRP3 active site. Considering these results, compound 23 might be a novel NLRP3 inhibitor to treat inflammatory diseases.
Collapse
Affiliation(s)
- Jialin Yu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Zonglin You
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Vincent Kam Wai Wong
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Min Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Wenfeng Liu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| |
Collapse
|
3
|
Oo TT, Sumneang N, Chunchai T, Apaijai N, Pratchayasakul W, Liang G, Chattipakorn N, Chattipakorn SC. Blocking Brain Myeloid Differentiation Factor 2-Toll-like Receptor 4 Signaling Improves Cognition by Diminishing Brain Pathologies and Preserving Adult Hippocampal Neurogenesis in Obese Rats. J Neuroimmune Pharmacol 2024; 19:51. [PMID: 39373789 DOI: 10.1007/s11481-024-10151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
The myeloid differentiation factor 2 (MD-2)-toll-like receptor 4 (TLR4) signaling pathway has been linked to cognitive decline in obese rats. However, more research is required to fully understand the mechanistic role of MD-2-TLR4 signalling pathway in obese-related cognitive impairment. In this study, we used two novel MD-2 inhibitors-MAC28 (a mono-carbonyl analogue of curcumin 28) and 2i-10 (a cinnamamide-derivative compound)-to better comprehend the mechanistic role of the MD-2-TLR4 signalling pathway in obese-related cognitive impairment. A normal diet (ND) (n = 16) and a high-fat diet (HFD) (n = 64) were given to randomly divided groups of male Wistar rats for 16-weeks. At week 13, 2 types of vehicles were randomly administered to ND-fed and HFD-fed rats, whereas MAC28 (3-doses) and 2i-10 (3-doses) were randomly given to HFD-fed rats until week 16. HFD-fed rats developed obesity with metabolic disturbances, a variety of brain pathologies and cognitive decline. In obese rats, blocking the brain MD-2-TLR4 signalling pathway with MAC28 or 2i-10 improved cognition via reducing brain inflammation, neurodegeneration, microglial activation, dendritic spine loss, brain oxidative stress, as well as preserving adult hippocampal neurogenesis. Our findings highlight to better understand the role of MD-2-TLR4 signaling pathway in obese-related cognitive decline, and MD-2 could be a potential therapeutic target for brain pathologies and cognitive decline in obesity.
Collapse
Affiliation(s)
- Thura Tun Oo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Natticha Sumneang
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Guang Liang
- Hangzhou Medical College, Hangzhou, 310053, China
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
4
|
Ying Q, Rong J, Hong M, Heng Z, Zhang Z, Xu Y. The emerging role of adaptor proteins in regulating innate immunity of sepsis. Pharmacol Res 2024; 205:107223. [PMID: 38797359 DOI: 10.1016/j.phrs.2024.107223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Sepsis is a life-threatening syndrome caused by a dysregulated immune response. A large number of adaptor proteins have been found to play a pivotal role in sepsis via protein-protein interactions, thus participating in inflammatory cascades, leading to the generation of numerous inflammatory cytokines, as well as oxidative stress and regulated cell death. Although available strategies for the diagnosis and management of sepsis have improved, effective and specific treatments are lacking. This review focuses on the emerging role of adaptor proteins in regulating the innate immunity of sepsis and evaluates the potential value of adaptor protein-associated therapeutic strategy for sepsis.
Collapse
Affiliation(s)
- Qiaoyu Ying
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jiabing Rong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Min Hong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zetao Heng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhaocai Zhang
- Department of Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Yinchuan Xu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
5
|
Li X, Huang X, Zhao Y, Zheng Z, Guo M, Chen Z, Chen P, Li X, Liao J, Jiang M, Cho WJ, Cho YC, Zeng R, Tang Q, Liang G. Design, synthesis and bioactivity evaluation of 4-hydroxycoumarin derivatives as potential anti-inflammatory agents against acute lung injury and colitis. Eur J Med Chem 2024; 272:116487. [PMID: 38759452 DOI: 10.1016/j.ejmech.2024.116487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
Acute lung injury (ALI) and inflammatory bowel disease (IBD) are common inflammatory illnesses that seriously affect people's health. Herein, a series of 4-hydroxylcoumarin (4-HC) derivatives were designed and synthesized. The inhibitory effects of these compounds on LPS-induced interleukin-6 (IL-6) release from J774A.1 cells were then screened via ELISA assay, compound B8 showed 3 times more active than the lead compound 4-HC. The most active compound B8 had the IC50 values of 4.57 μM and 6.51 μM for IL-6 release on mouse cells J774A.1 and human cells THP-1, respectively. Furthermore, we also found that B8 could act on the MAPK pathway. Based on the target prediction results of computer virtual docking, kinase inhibitory assay was carried out, and it revealed that targeting IRAK1 was a key mechanism for B8 to exert anti-inflammatory activity. Moreover, B8 exerted a good therapeutic effect on the dextran sulfate sodium (DSS)-induced colitis model and liposaccharide (LPS)-induced ALI mouse models. The acute toxicity experiments indicated that high-dose B8 caused no adverse reactions in mice, confirming its safety in vivo. Additionally, the preliminary pharmacokinetic (PK) parameters of B8 in SD rats were also examined, revealing a bioavailability (F) of 28.72 %. In conclusion, B8 is a potential candidate of drug for the treatment of ALI and colitis.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Peoples Hospital, Affiliated Peoples Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinyi Huang
- Department of Nursing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Yunxi Zhao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhiwei Zheng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Mi Guo
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhicao Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Pan Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiang Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jing Liao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Miao Jiang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Ruifeng Zeng
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Qidong Tang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Peoples Hospital, Affiliated Peoples Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
6
|
Zhang J, Xie X, Qin T, Yao H, Ling Z, Deng F, Yue X, He L. Development of novel nitric oxide production inhibitors based on the 7H-pyrrolo[2,3-d]pyrimidine scaffold. Mol Divers 2024:10.1007/s11030-024-10866-0. [PMID: 38709458 DOI: 10.1007/s11030-024-10866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/28/2024] [Indexed: 05/07/2024]
Abstract
Nitric oxide (NO), the smallest signaling molecule known, can be excessively produced by overexpressed inducible nitric oxide synthase (iNOS), and eventually leads to multiple inflammatory related diseases. Thus, reducing the overexpression of NO represents as very potential anti-inflammatory strategy. In current study, a series of compounds were designed and synthesized based on the hybridization of 7H-pyrrolo[2,3-d]pyrimidine and cinnamamide fragments in order to develop novel NO production inhibitors. Among them, compound S2h displayed a vigorous inhibitory activity on NO production with an IC50 value of 3.21 ± 0.67 µM, which was much lower than that of the positive control Nω-nitro-L-arginine (L-NNA, IC50 = 28.36 ± 3.13 µM). Due to its obeying Lipinski's and Veber's rules that guarantee compounds with good oral bioavailability, S2h effectively suppressed the paw swelling in carrageenan-induced mice. Additionally, compound S2h formed clear interactions with iNOS protein according to the docking analysis. Therefore, compounds S2h is a promising lead compound for further development of potent iNOS inhibitors or anti-inflammatory agents.
Collapse
Affiliation(s)
- Jie Zhang
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, Guangxi, China
| | - Xin Xie
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, Guangxi, China
| | - Tingsheng Qin
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, Guangxi, China
| | - Hualiang Yao
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhen Ling
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, Guangxi, China
| | - Fengyuan Deng
- College of Basic Medical Science, Key Laboratory of Basic Research on Regional Diseases, Guangxi Medical University, Guangxi, China
| | - Xiaoyang Yue
- College of Basic Medical Science, Key Laboratory of Basic Research on Regional Diseases, Guangxi Medical University, Guangxi, China.
| | - Linhong He
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
7
|
Zheng Y, Gao Y, Zhu W, Bai XG, Qi J. Advances in molecular agents targeting toll-like receptor 4 signaling pathways for potential treatment of sepsis. Eur J Med Chem 2024; 268:116300. [PMID: 38452729 DOI: 10.1016/j.ejmech.2024.116300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/23/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Sepsis is a systemic inflammatory response syndrome caused by an infection. Toll-like receptor 4 (TLR4) is activated by endogenous molecules released by injured or necrotic tissues. Additionally, TLR4 is remarkably sensitive to infection of various bacteria and can rapidly stimulate host defense responses. The TLR4 signaling pathway plays an important role in sepsis by activating the inflammatory response. Accordingly, as part of efforts to improve the inflammatory response and survival rate of patients with sepsis, several drugs have been developed to regulate the inflammatory signaling pathways mediated by TLR4. Inhibition of TLR4 signal transduction can be directed toward either TLR4 directly or other proteins in the TLR4 signaling pathway. Here, we review the advances in the development of small-molecule agents and peptides targeting regulation of the TLR4 signaling pathway, which are characterized according to their structural characteristics as polyphenols, terpenoids, steroids, antibiotics, anthraquinones, inorganic compounds, and others. Therefore, regulating the expression of the TLR4 signaling pathway and modulating its effects has broad prospects as a target for the treatment of lung, liver, kidneys, and other important organs injury in sepsis.
Collapse
Affiliation(s)
- Yunyun Zheng
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Yingying Gao
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Weiru Zhu
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Xian-Guang Bai
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China.
| | - Jinxu Qi
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China.
| |
Collapse
|
8
|
Rullah K, Shamsudin NF, Koeberle A, Tham CL, Fasihi Mohd Aluwi MF, Leong SW, Jantan I, Lam KW. Flavonoid diversity and roles in the lipopolysaccharide-mediated inflammatory response of monocytes and macrophages. Future Med Chem 2024; 16:75-99. [PMID: 38205612 DOI: 10.4155/fmc-2023-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024] Open
Abstract
Targeting lipopolysaccharide (LPS)/toll-like receptor 4 signaling in mononuclear phagocytes has been explored for the treatment of inflammation and inflammation-related disorders. However, only a few key targets have been translated into clinical applications. Flavonoids, a class of ubiquitous plant secondary metabolites, possess a privileged scaffold which serves as a valuable template for designing pharmacologically active compounds directed against diseases with inflammatory components. This perspective provides a general overview of the diversity of flavonoids and their multifaceted mechanisms that interfere with LPS-induced signaling in monocytes and macrophages. Focus is placed on flavonoids targeting MD-2, IκB kinases, c-Jun N-terminal kinases, extracellular signal-regulated kinase, p38 MAPK and PI3K/Akt or modulating LPS-related gene expression.
Collapse
Affiliation(s)
- Kamal Rullah
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Nur Farisya Shamsudin
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Sze-Wei Leong
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
| | - Kok Wai Lam
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Vaseenon S, Srisuwan T, Liang G, Chattipakorn N, Chattipakorn SC. Myeloid differentiation factor 2 inhibitors exert protective effects on lipopolysaccharides-treated human dental pulp cells via suppression of toll-like receptor 4-mediated signaling. J Dent Sci 2024; 19:220-230. [PMID: 38303896 PMCID: PMC10829556 DOI: 10.1016/j.jds.2023.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Indexed: 02/03/2024] Open
Abstract
Background/purpose The toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD-2) complex is known to have a role in inflammation. Blocking MD-2 can suppress inflammatory process. However, the actual action of MD-2 inhibitors, including MAC28, L6H21, and 2i-10, on the inflamed human dental pulp cells (HDPCs) has never been examined. This study aims to determine the pharmacological effects of these 3 compounds on cell viability, inflammation, and osteo/odontogenic differentiation of lipopolysaccharide (LPS)-treated HDPCs. Materials and methods HDPCs were pretreated with 10 μM of MAC28, L6H21, or 2i-10 for 2 h followed by either 20 μg/mL LPS or vehicle for 24 h. Cell viability was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The mRNA and expression of the proteins TLR4, MD-2, tumor necrosis factor alpha (TNF-α), and interleukin 6 (IL-6) were determined using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis. Osteo/odontogenic differentiation was investigated using qRT-PCR and Alizarin Red staining. Results LPS did not alter cell viability but significantly increased the expression levels of TLR4, MD-2, TNF-α, and IL-6 in HDPCs while the osteo/odontogenic differentiation ability decreased significantly when compared to the vehicle-treated group. MAC28, L6H21, and 2i-10-pretreatment in LPS-treated HDPCs reduced inflammation and restored osteo/odontogenic differentiation to similar levels as the vehicle-treated group. Conclusion MAC28, L6H21, and 2i-10 exhibited equal efficacy in attenuating inflammation through downregulation of TLR4-MD-2 signaling and restored osteo/odontogenic differentiation in LPS-treated HDPCs. These MD-2 inhibitors could be considered as the potential therapeutic supplement for curing inflammation of dental pulp in future studies.
Collapse
Affiliation(s)
- Savitri Vaseenon
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Tanida Srisuwan
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C. Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
10
|
Chen P, Yang J, Zhou Y, Li X, Zou Y, Zheng Z, Guo M, Chen Z, Cho WJ, Chattipakorn N, Wu W, Tang Q, Liang G. Design, synthesis, and bioactivity evaluation of novel amide/sulfonamide derivatives as potential anti-inflammatory agents against acute lung injury and ulcerative colitis. Eur J Med Chem 2023; 259:115706. [PMID: 37572538 DOI: 10.1016/j.ejmech.2023.115706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
The uneven regulation of inflammation is related to various diseases, making anti-inflammation a potential option for the development of novel therapies. In this study, we designed and synthesized a total of fifty-eight novel amide/sulfonamide derivatives based on our previously reported anti-inflammatory compounds. The anti-inflammatory activities of these compounds were evaluated upon LPS-stimulated J774A.1 cells. Compounds 11a, 11b, 11c, and 11d potently reduced the release of IL-6 and TNF-α, and decreased the mRNA level of cytokines in J774A.1 cells. The most active compound 11d with IC50 value of 0.61 μM for IL-6 inhibition, and 4.34 μM for TNF-α inhibition restored IκB α and inhibited the translocation of phosphorylated p65 into the nucleus. In vivo evaluation indicated that 11d improved LPS-induced ALI and alleviated DSS-induced ulcerative colitis in mice. In conclusion, these results suggested compound 11d can be a new lead structure for the development of anti-inflammatory drugs against ALI and ulcerative colitis.
Collapse
Affiliation(s)
- Pan Chen
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Jun Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ying Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yu Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhiwei Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Mi Guo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhichao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wenqi Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| |
Collapse
|
11
|
Song L, Li G, Guan W, Zeng Z, Ou Y, Zhao T, Li J, He D, Fang X, Zhang Y, Wu JQ, Tong R, Yao H. Design, synthesis and anti-inflammatory activity study of lansiumamide analogues for treatment of acute lung injury. Biomed Pharmacother 2023; 166:115412. [PMID: 37660652 DOI: 10.1016/j.biopha.2023.115412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023] Open
Abstract
Acute lung injury (ALI) is an inflammation-mediated respiratory disease with a high mortality rate. Medications with anti-inflammatory small molecules have been demonstrated in phase I and II clinical trials to considerably reduce the ALI mortality. In this study, two series of lansiumamide analogues were designed, synthesized, and evaluated for anti-inflammatory activity for ALI treatment. We found that compound 8n exhibited the best anti-inflammatory activity through inhibiting LPS-induced expression of the proinflammatory cytokines interleukin-6 (IL-6) and interleukin-1β (IL-1β) in Raw264.7 cells and activating the Nrf2/HO-1 pathway. Furthermore, we discovered in a LPS-induced ALI mice model that compound 8n significantly reduced the infiltration of inflammatory cells into lung tissue to achieve the effect of protecting lung tissues and improving ALI. Additionally, our mice model study revealed that compound 8n had a good expectorant effect. These results consistently support that lansiumamide analogue 8n represents a new class of anti-inflammatory agents with potential as a lead compound for further development into a therapeutic drug for ALI treatment.
Collapse
Affiliation(s)
- Liyan Song
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Wen Guan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Zhijun Zeng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Yanghui Ou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Tongchao Zhao
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jiayu Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Dengqin He
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Xiangxiang Fang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Jia-Qiang Wu
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China
| | - Rongbiao Tong
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China; Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China.
| |
Collapse
|
12
|
Nouni C, Theodosis-Nobelos P, Rekka EA. Antioxidant and Hypolipidemic Activities of Cinnamic Acid Derivatives. Molecules 2023; 28:6732. [PMID: 37764507 PMCID: PMC10535275 DOI: 10.3390/molecules28186732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress and hyperlipidemia are important factors for the initiation and progression of various cell degenerative pathological conditions, including cardiovascular and neurological diseases. A series of cinnamic acid-derived acids, such as ferulic acid, sinapic acid, 3,4-dimethoxycinnamic acid, p-coumaric acid, and (E)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)acrylic acid, were esterified or amidated with various moieties, bearing different biological activities, and evaluated. The antioxidant and radical scavenging abilities of the compounds via inhibition of rat hepatic microsomal membrane lipid peroxidation, as well as their interaction with the stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH), were assessed. Further, their hypolipidemic activity in vivo was tested. The majority of the obtained compounds demonstrated considerable radical scavenging and antioxidant action, with a parallel decrease in Triton-induced hyperlipidemia in rats. The (E)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)acrylic acid derivative with morpholine and 4-methylpiperidine (compounds 4 and 13, respectively) significantly decreased triglycerides and total cholesterol in the plasma of hyperlipidemic rats, with an antioxidant capacity similar to that of the antioxidant Trolox. The compounds were designed to exhibit antioxidant and hypolipidemic pharmacological actions, and this succeeded for the majority of them. Thus, such agents may be of interest in conditions and diseases implicating oxidative stress and dyslipidemia.
Collapse
Affiliation(s)
- Christina Nouni
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Eleni A. Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
13
|
Liao J, Yang J, Li X, Hu C, Zhu W, Zhou Y, Zou Y, Guo M, Chen Z, Li X, Dai J, Xu Y, Zheng Z, Chen P, Cho WJ, Liang G, Tang Q. Discovery of the Diphenyl 6-Oxo-1,6-dihydropyridazine-3-carboxylate/carboxamide Analogue J27 for the Treatment of Acute Lung Injury and Sepsis by Targeting JNK2 and Inhibiting the JNK2-NF-κB/MAPK Pathway. J Med Chem 2023; 66:12304-12323. [PMID: 37643372 DOI: 10.1021/acs.jmedchem.3c00832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Acute lung injury (ALI) and sepsis are both serious and complex conditions associated with high mortality, yet there are no effective treatments. Herein, we designed and synthesized a series of diphenyl 6-oxo-1,6-dihydropyridazine-3-carboxylate/carboxamide analogues exhibiting anti-inflammatory activity. The optimal compound J27 decreased the release of TNF-α and IL-6 in mouse and human cells J774A.1 and THP-1 (IL-6 IC50 = 0.22 μM) through the NF-κB/MAPK pathway. J27 demonstrated remarkable protection against ALI and sepsis in vivo and exhibited good safety in subacute toxicity experiments. Pharmacokinetic study indicated that J27 had good bioavailability (30.74%). To our surprise, J27 could target JNK2 with a totally new molecular skeleton compared with the only few JNK2 inhibitors reported. Moreover, there is no report that JNK2 inhibitors could apply for ALI and sepsis. Therefore, this work provides a new lead structure for the study of JNK2 inhibitors and a new target of JNK2 to treat ALI and sepsis.
Collapse
Affiliation(s)
- Jing Liao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- School of Pharmacy, Hangzhou Medical College, Hangzhou 311399, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Jun Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Chenghong Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Weiwei Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ying Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yu Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Mi Guo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhichao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiang Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jintian Dai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Yuye Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Zhiwei Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- School of Pharmacy, Hangzhou Medical College, Hangzhou 311399, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| |
Collapse
|
14
|
Tang Y, Zheng F, Bao X, Zheng Y, Hu X, Lou S, Zhao H, Cui S. Discovery of Highly Selective and Orally Bioavailable PI3Kδ Inhibitors with Anti-Inflammatory Activity for Treatment of Acute Lung Injury. J Med Chem 2023; 66:11905-11926. [PMID: 37606563 DOI: 10.1021/acs.jmedchem.3c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
PI3Kδ is a promising target for the treatment of inflammatory disease; however, the application of PI3Kδ inhibitors in acute respiratory inflammatory diseases is rarely investigated. In this study, through scaffold hopping design, we report a new series of 1H-pyrazolo[3,4-d]pyrimidin-4-amine-tethered 3-methyl-1-aryl-1H-indazoles as highly selective and potent PI3Kδ inhibitors with significant anti-inflammatory activities for treatment of acute lung injury (ALI). There were 29 compounds designed, prepared, and subjected to PI3Kδ inhibitory activity evaluation and anti-inflammatory activity evaluation in macrophages. (S)-29 was identified as a candidate with high PI3Kδ inhibitory activity, isoform selectivity, and high oral bioavailability. The in vivo administration of (S)-29 at 10 mg/kg dosage could significantly ameliorate histopathological changes and attenuate lung inflammation in lung tissues of LPS-challenged mice. Molecular docking demonstrated the success of scaffold hopping design. Overall, (S)-29 is a potent PI3Kδ inhibitor which might be a promising candidate for the treatment of ALI.
Collapse
Affiliation(s)
- Yongmei Tang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fanli Zheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xiaodong Bao
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanan Zheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xueping Hu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Siyue Lou
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Zheng Z, Chen Z, Zhou Y, Zou Y, Shi X, Li X, Liao J, Yang J, Li X, Dai J, Xu Y, Chattipakorn N, Cho WJ, Tang Q, Liang G, Wu W. Synthesis and SAR study of novel diimide skeleton compounds with the anti-inflammatory activities in vitro and in vivo. Bioorg Med Chem 2023; 90:117353. [PMID: 37257256 DOI: 10.1016/j.bmc.2023.117353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/13/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Amide bonds widely exist in the structure of natural products and drugs, and play an important role in biological activities. However, due to the limitation of synthesis conditions, there are few studies on biscarbonyl diimides. In this paper, a series of new compounds with diimide skeleton were synthesized by using CDI and NaH as condensation agents. The anti-inflammatory activity and cytotoxicity of the compound in RAW264.7 macrophages were evaluated by ELISA and MTT experiments. The results showed that these compounds had good anti-inflammatory activity in vitro, and the IC50 of compound 4d on inflammatory factors IL-6 and TNF-α reached 1.59 μM and 15.30 μM, respectively. Further structure-activity relationship showed that biscarbonyl diimide and unsaturated double bond played a major role in the anti-inflammatory activity. In addition, compound 4d can alleviate acute lung injury (ALI) induced by LPS in vivo, reduce alveolar cell infiltration, and decrease the expression of ALI inflammatory factors. At the same time, compound 4d can significantly improve the survival rate of LPS-induced sepsis in mice. In short, the design and synthesis of the diimide skeleton provides a potential lead compound for the treatment of inflammatory diseases, and also provides a new idea for the design of amide compounds.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Zhichao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ying Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yu Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaojian Shi
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jing Liao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jun Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiang Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jintian Dai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yuye Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 311399, China.
| | - Wenqi Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.
| |
Collapse
|
16
|
Vongsfak J, Apaijai N, Chunchai T, Pintana H, Arunsak B, Maneechote C, Singhanat K, Wu D, Liang G, Chattipakorn N, Chattipakorn SC. Acute administration of myeloid differentiation factor 2 inhibitor and N-acetyl cysteine attenuate brain damage in rats with cardiac ischemia/reperfusion injury. Arch Biochem Biophys 2023; 740:109598. [PMID: 37054769 DOI: 10.1016/j.abb.2023.109598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
Inflammation and oxidative stress are mechanisms which potentially underlie the brain damage that can occur after cardiac ischemic and reperfusion (I/R) injury. 2i-10 is a new anti-inflammatory agent, acting via direct inhibition of myeloid differentiation factor 2 (MD2). However, the effects of 2i-10 and the antioxidant N-acetylcysteine (NAC) on pathologic brain in cardiac I/R injury are unknown. We hypothesized that 2i-10 and NAC offer similar neuroprotection levels against dendritic spine reduction through attenuation of brain inflammation, loss of tight junction integrity, mitochondrial dysfunction, reactive gliosis, and suppression of AD protein expression in rats with cardiac I/R injury. Male rats were allocated to either sham or acute cardiac I/R group (30 min of cardiac ischemia and 120 min of reperfusion). Rats in cardiac I/R group were given one of following treatments intravenously at the onset of reperfusion: vehicle, 2i-10 (20 or 40 mg/kg), and NAC (75 or 150 mg/kg). The brain was then used to determine biochemical parameters. Cardiac I/R led to cardiac dysfunction with dendritic spine loss, loss of tight junction integrity, brain inflammation, and mitochondrial dysfunction. Treatment with 2i-10 (both doses) effectively reduced cardiac dysfunction, tau hyperphosphorylation, brain inflammation, mitochondrial dysfunction, dendritic spine loss, and improved tight junction integrity. Although both doses of NAC effectively reduced brain mitochondrial dysfunction, treatment using a high dose of NAC reduced cardiac dysfunction, brain inflammation, and dendritic spine loss. In conclusion, treatment with 2i-10 and a high dose of NAC at the onset of reperfusion alleviated brain inflammation and mitochondrial dysfunction, consequently reducing dendritic spine loss in rats with cardiac I/R injury.
Collapse
Affiliation(s)
- Jirapong Vongsfak
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Titikorn Chunchai
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hiranya Pintana
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Busarin Arunsak
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chayodom Maneechote
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kodchanan Singhanat
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Di Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Nipon Chattipakorn
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
17
|
Li X, Yin L, Liao J, Yang J, Cai B, Yu Y, Su S, Du Z, Li X, Zhou Y, Chen P, Cho WJ, Chattipakorn N, Samorodov AV, Pavlov VN, Zhang F, Liang G, Tang Q. Novel O-benzylcinnamic acid derivative L26 treats acute lung injury in mice by MD-2. Eur J Med Chem 2023; 252:115289. [PMID: 36963290 DOI: 10.1016/j.ejmech.2023.115289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Acute lung injury (ALI) is an inflammation-mediated respiratory disease that is associated with a high mortality rate. In this study, a series of novel O-benzylcinnamic acid derivatives were designed and synthesized using cinnamic acid as the lead compound. We tested the preliminary anti-inflammatory activity of the compounds by evaluating their effect on inhibiting the activity of alkaline phosphatase (ALP) in Hek-Blue-TLR4 cells, in which compound L26 showed the best activity and 7-fold more active than CIN. ELISA, immunoprecipitation, and molecular docking indicated that L26 targeted MD-2 protein and competed with LPS to bind to MD-2, which resulted in the inhibition of inflammation. In the LPS-induced mouse model of ALI, L26 was found to decrease ALP activity and inflammatory cytokine TNF-α release to reduce lung injury by inhibiting the NF-κB signaling pathway. Acute toxicity experiments showed that high doses of L26 did not cause adverse reactions in mice, and it was safe in vivo. Also, the preliminary pharmacokinetic parameters of L26 were investigated in SD rats (T1/2 = 4.246 h). In summary, L26 exhibited optimal pharmacodynamic and pharmacokinetic characteristics, which suggested that L26 could serve as a potential agent for the development of ALI treatment.
Collapse
Affiliation(s)
- Xiang Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325024, Zhejiang, China
| | - Lina Yin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China
| | - Jing Liao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jun Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Binhao Cai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yiming Yu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Sijia Su
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zhiteng Du
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ying Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China; College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Aleksandr V Samorodov
- Department of Pharmacology, Bashkir State Medical University, Ufa City, 450005, Russia
| | - Valentin N Pavlov
- Department of Pharmacology, Bashkir State Medical University, Ufa City, 450005, Russia
| | - Fengzhi Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325024, Zhejiang, China; School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China.
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325024, Zhejiang, China.
| |
Collapse
|
18
|
Highly Efficient Synthesis of Cinnamamides from Methyl Cinnamates and Phenylethylamines Catalyzed by Lipozyme® TL IM under Continuous-Flow Microreactors. Catalysts 2022. [DOI: 10.3390/catal12101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
While a few derivatives of cinnamamides exhibited anti-inflammatory and/ or analgesic activity, in this study, we developed a highly efficient method for the synthesis of cinnamamides from methyl cinnamates and phenylethylamines catalyzed by Lipozyme® TL IM in continuous-flow microreactors. The reaction parameters and broad substrate range of the new method was studied. Maximum conversion (91.3%) was obtained under the optimal condition of substrate molar ratio of 1:2 (methyl 4-chlorocinnamate: phenylethylamine) at 45 °C for about 40 min. The remarkable features of this work include short residence time, mild reaction conditions, easy control of the reaction process, and that the catalyst can be recycled or reused, which provide a rapid and economical strategy for the synthesis and design of cinnamamide derivatives for further research on drug activity.
Collapse
|
19
|
Kong Q, Li G, Zhang F, Yu T, Chen X, Jiang Q, Wang Y. N-Arylimidazoliums as Highly Selective Biomimetic Antimicrobial Agents. J Med Chem 2022; 65:11309-11321. [PMID: 35930690 DOI: 10.1021/acs.jmedchem.2c00818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Antibiotic resistance has become one of the greatest health threats in the world. In this study, a charge-dispersed dimerization strategy is described for the antimicrobial peptide (AMP) mimics via a tunable cationic charge to improve the selectivity between prokaryotic microbes and eukaryotic cells. This strategy is demonstrated with a series of charge-dispersed AMP mimics based on N-arylimidazolium skeletons. These N-arylimidazolium AMP mimics show potent antibacterial activity against strains along with a low rate of drug resistance, good hemocompatibility, and low cytotoxicity. In addition to the elimination of planktonic bacteria, N-arylimidazolium AMP mimics can also inhibit biofilm formation and destroy the established biofilm. More importantly, methicillin-resistant Staphylococcus aureus (MRSA)-induced lung-infected mice can be effectively treated by the intravenous administration of N-arylimidazolium AMP mimic, which enable the design of N-arylimidazolium AMP mimics to offer an alternative avenue to eradicate drug-resistant bacterial infection.
Collapse
Affiliation(s)
- Qunshou Kong
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Fanjun Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Tao Yu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Xiaotong Chen
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
20
|
Zhang TY, Li CS, Li P, Bai XQ, Guo SY, Jin Y, Piao SJ. Synthesis and evaluation of ursolic acid-based 1,2,4-triazolo[1,5-a]pyrimidines derivatives as anti-inflammatory agents. Mol Divers 2022; 26:27-38. [PMID: 33200293 DOI: 10.1007/s11030-020-10154-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022]
Abstract
Here, two series of novel ursolic acid-based 1,2,4-triazolo[1,5-a]pyrimidines derivatives were synthesized and screened for their anti-inflammatory activity by evaluating their inhibition effect of using LPS-induced inflammatory response in RAW 264.7 macrophages in vitro; the effects of different concentrations of the compounds on the secretion of nitric oxide (NO) and inflammatory cytokines including TNF-α and IL-6 were evaluated. Their toxicity was also assessed in vitro. Results showed that the most prominent compound 3 could significantly decrease production of the above inflammatory factors. Docking study was performed for the representative compounds 3, UA, and Celecoxib to explain their interaction with cyclooxygenase-2 (COX-2) receptor active site. In vitro enzyme study implied that compound 3 exerted its anti-inflammatory activity through COX-2 inhibition.
Collapse
Affiliation(s)
- Tian-Yi Zhang
- Jilin Medical University, Jilin, 132013, Jilin Province, People's Republic of China.
| | - Chun-Shi Li
- The Third People's Hospital of Dalian, Dalian, 116000, Liaoning Province, People's Republic of China
| | - Ping Li
- Jilin Medical University, Jilin, 132013, Jilin Province, People's Republic of China
| | - Xue-Qian Bai
- Jilin Medical University, Jilin, 132013, Jilin Province, People's Republic of China
| | - Shu-Ying Guo
- Jilin Medical University, Jilin, 132013, Jilin Province, People's Republic of China
| | - Ying Jin
- Jilin Medical University, Jilin, 132013, Jilin Province, People's Republic of China.
| | - Sheng-Jun Piao
- Department of General Surgery, Affiliated Hospital of Yanbian University, Yanji, 133000, Jilin Province, People's Republic of China.
| |
Collapse
|
21
|
Discovery of Novel Pterostilbene Derivatives That Might Treat Sepsis by Attenuating Oxidative Stress and Inflammation through Modulation of MAPKs/NF-κB Signaling Pathways. Antioxidants (Basel) 2021; 10:antiox10091333. [PMID: 34572964 PMCID: PMC8470242 DOI: 10.3390/antiox10091333] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis remains one of the most common life-threatening illnesses that is characterized by a systemic inflammatory response syndrome (SIRS) and usually arises following severe trauma and various septic infections. It is still in urgent need of new effective therapeutic agents, and chances are great that some candidates can be identified that can attenuate oxidative stress and inflammatory responses. Pterostilbene, which exerts attractive anti-oxidative and anti-inflammatory activities, is a homologue of natural polyphenolic derivative of resveratrol. Starting from it, we have made several rounds of rational optimizations. Firstly, based on the strategy of pharmacophore combination, indanone moiety was introduced onto the pterostilbene skeleton to generate a novel series of pterostilbene derivatives (PIF_1–PIF_16) which could possess both anti-oxidative and anti-inflammatory activities for sepsis treatment. Then, all target compounds were subjected to their structure–activity relationships (SAR) screening of anti-inflammatory activity in mouse mononuclear macrophage RAW264.7 cell line, and their cytotoxicities were determined after. Finally, an optimal compound, PIF_9, was identified. It decreased the mRNA levels of lipopolysaccharide (LPS)-induced interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX2). We also found that the anti-inflammatory effects might be contributed by its suppression on the nuclear factor-κB (NF-κB) and MAPKs signaling pathway. Moreover, PIF_9 also demonstrated potent anti-oxidative activity in RAW264.7 macrophages and the sepsis mouse model. Not surprisingly, with the benefits mentioned above, it ameliorated LPS-induced sepsis in C57BL/6J mice and reduced multi-organ toxicity. Taken together, PIF_9 was identified as a potential sepsis solution, targeting inflammation and oxidative stress through modulating MAPKs/NF-κB.
Collapse
|
22
|
Nudelman A. Dimeric Drugs. Curr Med Chem 2021; 29:2751-2845. [PMID: 34375175 DOI: 10.2174/0929867328666210810124159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
This review intends to summarize the structures of an extensive number of symmetrical-dimeric drugs, having two monomers linked via a bridging entity while emphasizing the large versatility of biologically active substances reported to possess dimeric structures. The largest number of classes of these compounds consist of anticancer agents, antibiotics/antimicrobials, and anti-AIDS drugs. Other symmetrical-dimeric drugs include antidiabetics, antidepressants, analgesics, anti-inflammatories, drugs for the treatment of Alzheimer's disease, anticholesterolemics, estrogenics, antioxidants, enzyme inhibitors, anti-Parkisonians, laxatives, antiallergy compounds, cannabinoids, etc. Most of the articles reviewed do not compare the activity/potency of the dimers to that of their corresponding monomers. Only in limited cases, various suggestions have been made to justify unexpected higher activity of the dimers vs. the corresponding monomers. These suggestions include statistical effects, the presence of dimeric receptors, binding of a dimer to two receptors simultaneously, and others. It is virtually impossible to predict which dimers will be preferable to their respective monomers, or which linking bridges will lead to the most active compounds. It is expected that the extensive number of articles summarized, and the large variety of substances mentioned, which display various biological activities, should be of interest to many academic and industrial medicinal chemists.
Collapse
Affiliation(s)
- Abraham Nudelman
- Chemistry Department, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
23
|
Moni L, Banfi L, Basso A, Mori A, Risso F, Riva R, Lambruschini C. A Thorough Study on the Photoisomerization of Ferulic Acid Derivatives. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lisa Moni
- Department of Chemistry and Industrial Chemistry University of Genova Via Dodecaneso, 31 16146 Genova Italy
| | - Luca Banfi
- Department of Chemistry and Industrial Chemistry University of Genova Via Dodecaneso, 31 16146 Genova Italy
| | - Andrea Basso
- Department of Chemistry and Industrial Chemistry University of Genova Via Dodecaneso, 31 16146 Genova Italy
| | - Alessia Mori
- Department of Chemistry and Industrial Chemistry University of Genova Via Dodecaneso, 31 16146 Genova Italy
| | - Federica Risso
- Department of Chemistry and Industrial Chemistry University of Genova Via Dodecaneso, 31 16146 Genova Italy
| | - Renata Riva
- Department of Chemistry and Industrial Chemistry University of Genova Via Dodecaneso, 31 16146 Genova Italy
| | - Chiara Lambruschini
- Department of Chemistry and Industrial Chemistry University of Genova Via Dodecaneso, 31 16146 Genova Italy
| |
Collapse
|
24
|
Li S, Wang Z, Xiao H, Bian Z, Wang JJ. Enantioselective synthesis of indole derivatives by Rh/Pd relay catalysis and their anti-inflammatory evaluation. Chem Commun (Camb) 2021; 56:7573-7576. [PMID: 32510073 DOI: 10.1039/d0cc03158e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An efficient Rh/Pd relay catalyzed intermolecular and cascade intramolecular hydroamination for the synthesis of exclusive trans 1-indolyl dihydronaphthalenols (up to 88% yield, 99% ee) is described under mild conditions. Moreover, the in silico and in vitro screening showed that the novel 1-indolyl dihydronaphthalenol products are potent lead compounds for treating inflammation disease.
Collapse
Affiliation(s)
- Sifeng Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China. and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Zihao Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China. and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518066, China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Jun Joelle Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
25
|
Chen T, Zhu G, Meng X, Zhang X. Recent developments of small molecules with anti-inflammatory activities for the treatment of acute lung injury. Eur J Med Chem 2020; 207:112660. [DOI: 10.1016/j.ejmech.2020.112660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
|
26
|
Rajamanickam V, Yan T, Xu S, Hui J, Xu X, Ren L, Liu Z, Liang G, Wang O, Wang Y. Selective targeting of the TLR4 co-receptor, MD2, prevents colon cancer growth and lung metastasis. Int J Biol Sci 2020; 16:1288-1302. [PMID: 32210720 PMCID: PMC7085228 DOI: 10.7150/ijbs.39098] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptor (TLR) signaling is an emerging pathway in tumor cell invasion and metastasis. Myeloid differentiation protein-2 (MD2) contributes to ligand recognition and activation of TLRs in response to exogenous microbial insults or endogenous agents. We hypothesized that blocking MD2 using a specific inhibitor would prevent TLR4-mediated inflammatory responses and metastatic cancer growth. Here, we report that a MD2 inhibitor, L6H21, inhibited migration and invasion of LPS-activated colon cancer CT26.WT cells. These activities were accompanied by inhibition of nuclear factor-κB (NF-κB) activation, and thereby inhibition of the production of pro-inflammatory cytokines and adhesive molecules in colon cancer cells. Furthermore, L6H21 inhibited CT26.WT metastasis to the lung in BALB/c mice as well as suppressed colitis-induced colon cancer induced by azoxymethane/dextran sulfate sodium (AOM/DSS). Taken together, our results demonstrated that L6H21 suppressed tumor invasion and metastasis through blocking TLR4-MD2/NF-κB signaling axis. These findings reveal that inhibition of MD2 may be an important target for the development of colon cancer therapies.
Collapse
Affiliation(s)
- Vinothkumar Rajamanickam
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Tao Yan
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Shanmei Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Junguo Hui
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Xiaohong Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Luqing Ren
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Zhoudi Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Ouchen Wang
- Department of Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
27
|
Hošek J, Kos J, Strhársky T, Černá L, Štarha P, Vančo J, Trávníček Z, Devínsky F, Jampílek J. Investigation of Anti-Inflammatory Potential of N-Arylcinnamamide Derivatives. Molecules 2019; 24:E4531. [PMID: 31835703 PMCID: PMC6943612 DOI: 10.3390/molecules24244531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 01/22/2023] Open
Abstract
A series of sixteen ring-substituted N-arylcinnamanilides, previously described as highly antimicrobially effective against a wide spectrum of bacteria and fungi, together with two new derivatives from this group were prepared and characterized. Moreover, the molecular structure of (2E)-N-(2-bromo-5-fluorophenyl)-3-phenylprop-2-enamide as a model compound was determined using single-crystal X-ray analysis. All the compounds were tested for their anti-inflammatory potential, and most tested compounds significantly attenuated the lipopolysaccharide-induced NF-κB activation and were more potent than the parental cinnamic acid. (2E)-N-[2-Chloro-5-(trifluoromethyl)phenyl]-3-phenylprop-2-enamide, (2E)-N-(2,6-dibromophenyl)- 3-phenylprop-2-enamide, and (2E)-N-(2,5-dichlorophenyl)-3-phenylprop-2-enamide demonstrated the highest inhibition effect on transcription factor NF-κB at the concentration of 2 µM and showed a similar effectiveness as the reference drug prednisone. Several compounds also decreased the level of TNF-α. Nevertheless, subsequent tests showed that the investigated compounds affect neither IκBα level nor MAPKs activity, which suggests that the N-arylcinnamanilides may have a different mode of action to prednisone. The modification of the C(2,5)' or C(2,6)' positions of the anilide core by rather lipophilic and bulky moieties seems to be preferable for the anti-inflammatory potential of these compounds.
Collapse
Affiliation(s)
- Jan Hošek
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.H.); (J.K.); (T.S.); (L.Č.); (P.Š.); (J.V.); (Z.T.)
| | - Jiří Kos
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.H.); (J.K.); (T.S.); (L.Č.); (P.Š.); (J.V.); (Z.T.)
| | - Tomáš Strhársky
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.H.); (J.K.); (T.S.); (L.Č.); (P.Š.); (J.V.); (Z.T.)
| | - Lucie Černá
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.H.); (J.K.); (T.S.); (L.Č.); (P.Š.); (J.V.); (Z.T.)
| | - Pavel Štarha
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.H.); (J.K.); (T.S.); (L.Č.); (P.Š.); (J.V.); (Z.T.)
| | - Ján Vančo
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.H.); (J.K.); (T.S.); (L.Č.); (P.Š.); (J.V.); (Z.T.)
| | - Zdeněk Trávníček
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.H.); (J.K.); (T.S.); (L.Č.); (P.Š.); (J.V.); (Z.T.)
| | - Ferdinand Devínsky
- Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Josef Jampílek
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.H.); (J.K.); (T.S.); (L.Č.); (P.Š.); (J.V.); (Z.T.)
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|
28
|
Insights into the Discovery of Novel Neuroprotective Agents: A Comparative Study between Sulfanylcinnamic Acid Derivatives and Related Phenolic Analogues. Molecules 2019; 24:molecules24234405. [PMID: 31810314 PMCID: PMC6930627 DOI: 10.3390/molecules24234405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 11/16/2022] Open
Abstract
Exogenous antioxidants may be beneficial therapeutic tools to tackle the oxidative damage in neurodegenerative diseases by regulation of the redox state that is critical for cell viability and organ function. Inspired by natural plant polyphenols, a series of cinnamic acid-based thiophenolic and phenolic compounds were synthesized and their antioxidant and neuroprotective properties were studied. In general, our results showed that the replacement of the hydroxyl group (OH) by a sulfhydryl group (SH) increased the radical scavenging activity and enhanced the reaction rate with 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•) and galvinoxyl radical (GO•). These results correlated well with the lower oxidation potential (Ep) values of thiophenols. However, a lower peroxyl radical (ROO•) scavenging activity was observed for thiophenols in oxygen radical absorbance capacity (ORAC-FL) assay. Furthermore, the introduction of 5-methoxy and 5-phenyl groups in the aromatic ring of 4-thioferulic acid (TFA) 2 and ferulic acid (FA) 1 did not significantly improve their antioxidant activity, despite the slight decrease of Ep observed for compounds 5, 6, and 9. Concerning cinnamic acid amides, the antioxidant profile was similar to the parent compounds. None of the compounds under study presented significant cytotoxic effects in human differentiated neuroblastoma cells. Thiophenolic amide 3 stands out as the most promising thiophenol-based antioxidant, showing cellular neuroprotective effects against oxidative stress inducers (hydrogen peroxide and iron).
Collapse
|
29
|
Chauhan AK, Kim J, Lee Y, Balasubramanian PK, Kim Y. Isorhamnetin Has Potential for the Treatment of Escherichia coli-Induced Sepsis. Molecules 2019; 24:molecules24213984. [PMID: 31689976 PMCID: PMC6864442 DOI: 10.3390/molecules24213984] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Isorhamnetin is a flavonoid that is abundant in the fruit of Hippophae rhamnoides L. It is widely studied for its ability to modulate inflammatory responses. In this study, we evaluated the potential of isorhamnetin to prevent gram-negative sepsis. We investigated its efficacy using an Escherichia coli-induced sepsis model. Our study reveals that isorhamnetin treatment significantly enhances survival and reduces proinflammatory cytokine levels in the serum and lung tissue of E. coli-infected mice. Further, isorhamnetin treatment also significantly reduces the levels of aspartate aminotransferase, alanine amino transferase and blood urea nitrogen, suggesting that it can improve liver and kidney function in infected mice. Docking studies reveal that isorhamnetin binds deep in the hydrophobic binding pocket of MD-2 via extensive hydrophobic interactions and hydrogen bonding with Tyr102, preventing TLR4/MD-2 dimerization. Notably, binding and secreted alkaline phosphatase reporter gene assays show that isorhamnetin can interact directly with the TLR4/MD-2 complex, thus inhibiting the TLR4 cascade, which eventually causes systemic inflammation, resulting in death due to cytokine storms. We therefore presume that isorhamnetin could be a suitable therapeutic candidate to treat bacterial sepsis.
Collapse
Affiliation(s)
- Anil Kumar Chauhan
- Department of Bioscience and Biotechnology, Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea.
| | - Jieun Kim
- Department of Bioscience and Biotechnology, Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea.
| | - Yeongjoon Lee
- Department of Bioscience and Biotechnology, Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea.
| | - Pavithra K Balasubramanian
- Department of Bioscience and Biotechnology, Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea.
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
30
|
Zeng LY, Xi B, Huang K, Bi J, Wei L, Cai C, Liu S. Diastereoselective Synthesis of 3,4-Dihydropyran-3-carboxamides with in Vitro Anti-inflammatory Activity. ACS COMBINATORIAL SCIENCE 2019; 21:656-665. [PMID: 31433616 DOI: 10.1021/acscombsci.9b00050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A versatile and economical reaction of diketene (1), aryl amines 2, cyclic 1,3-diketones 3, primary amines 4, and aryl aldehydes 5 was explored to synthesize 3,4-dihydropyran-3-carboxamide derivatives under mild conditions. Three stereogenic centers are generated in the products, and the structure of the major diastereomer of 6{1,1,3,1} was identified by X-ray diffraction and 2D NMR spectroscopy. The scope and limitation investigation provided two series of (2S,3R,4S)-chromene-3-carboxamides in good to excellent yields with high diastereoselectivity. Two products, 6{5,3,1,1} and 6{7,3,1,1}, exhibited in vitro anti-inflammatory activity with significant inhibition of pro-inflammatory cytokine IL-6 and TNF-α expression in lipopolysaccharide (LPS)-treated Raw 264.7 cells.
Collapse
Affiliation(s)
- Li-Yan Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Baomin Xi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kaiqi Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jingjie Bi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lan Wei
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chun Cai
- Chemical Engineering College, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
31
|
Novel resveratrol-based flavonol derivatives: Synthesis and anti-inflammatory activity in vitro and in vivo. Eur J Med Chem 2019; 175:114-128. [DOI: 10.1016/j.ejmech.2019.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022]
|
32
|
Base promoted synthesis of novel indole-dithiocarbamate compounds as potential anti-inflammatory therapeutic agents for treatment of acute lung injury. Eur J Med Chem 2019; 171:54-65. [DOI: 10.1016/j.ejmech.2019.03.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 12/15/2022]
|
33
|
Liu Z, Chen L, Yu P, Zhang Y, Fang B, Wu C, Luo W, Chen X, Li C, Liang G. Discovery of 3-(Indol-5-yl)-indazole Derivatives as Novel Myeloid Differentiation Protein 2/Toll-like Receptor 4 Antagonists for Treatment of Acute Lung Injury. J Med Chem 2019; 62:5453-5469. [DOI: 10.1021/acs.jmedchem.9b00316] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhiguo Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lingfeng Chen
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Pengtian Yu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bo Fang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chao Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xianxin Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chenglong Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
34
|
Design and synthesis novel di-carbonyl analogs of curcumin (DACs) act as potent anti-inflammatory agents against LPS-induced acute lung injury (ALI). Eur J Med Chem 2019; 167:414-425. [DOI: 10.1016/j.ejmech.2019.02.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 01/30/2023]
|
35
|
Choi EJ, Ryu YB, Tang Y, Kim BR, Lee WS, Debnath T, Fan M, Kim EK, Lee HS. Effect of cinnamamides on atopic dermatitis through regulation of IL-4 in CD4 + cells. J Enzyme Inhib Med Chem 2019. [PMID: 30727775 PMCID: PMC6366421 DOI: 10.1080/14756366.2019.1569647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study aimed to evaluate the effects of cinnamamides on atopic dermatitis (AD) and the mechanisms underlying these effects. To this end, the actions of two cinnamamides, (E)-3-(4-hydroxyphenyl)-N-phenylethyl acrylamide (NCT) and N-trans-coumaroyltyramine (NCPA), were determined on AD by orally administering them to mice. Oral administration of the cinnamamides ameliorated the increase in epidermal and dermal thickness as well as mast cell infiltration. Cinnamamides suppressed serum immunoglobulin (Ig) levels and expression of T-helper (Th)1/Th2 cytokines. Moreover, cinnamamides suppressed interleukin (IL)-4, which plays a crucial role in preparing naïve clusters of differentiation (CD)4+ T cells, and decreased the cervical lymph node size and weight. Interestingly, in almost all cases, NCPA exhibited higher anti-AD activity compared to NCT. These results strongly indicate that NCPA may have potential as an anti-AD agent, and further mechanistic comparative studies of NCT and NCPA are required to determine the cause of differences in biological activity.
Collapse
Affiliation(s)
- Eun-Ju Choi
- a Department of Physical Education, College of Education , Daegu Catholic University , Gyeongsan , Republic of Korea
| | - Young Bae Ryu
- b Natural Product Material Research Center, Korea Research Institute of Bioscience and Biotechnology , Jeongeup , Republic of Korea
| | - Yujiao Tang
- c Division of Food Bioscience, College of Biomedical and Health Sciences , Konkuk University , Chungju , Republic of Korea.,d Changchun University of Science and Technology , Changchun , China
| | - Bo Ram Kim
- b Natural Product Material Research Center, Korea Research Institute of Bioscience and Biotechnology , Jeongeup , Republic of Korea
| | - Woo Song Lee
- b Natural Product Material Research Center, Korea Research Institute of Bioscience and Biotechnology , Jeongeup , Republic of Korea
| | - Trishna Debnath
- e Department of Food Science and Biotechnology , Dongguk University , Goyang , Republic of Korea
| | - Meiqi Fan
- c Division of Food Bioscience, College of Biomedical and Health Sciences , Konkuk University , Chungju , Republic of Korea
| | - Eun-Kyung Kim
- c Division of Food Bioscience, College of Biomedical and Health Sciences , Konkuk University , Chungju , Republic of Korea
| | - Hyun-Su Lee
- f College of Pharmacy , Keimyung University , Daegu , Republic of Korea
| |
Collapse
|
36
|
Chen L, Chen H, Chen P, Zhang W, Wu C, Sun C, Luo W, Zheng L, Liu Z, Liang G. Development of 2-amino-4-phenylthiazole analogues to disrupt myeloid differentiation factor 88 and prevent inflammatory responses in acute lung injury. Eur J Med Chem 2019; 161:22-38. [DOI: 10.1016/j.ejmech.2018.09.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/11/2018] [Accepted: 09/26/2018] [Indexed: 11/16/2022]
|
37
|
Li Q, Zhang J, Chen LZ, Wang JQ, Zhou HP, Tang WJ, Xue W, Liu XH. New pentadienone oxime ester derivatives: synthesis and anti-inflammatory activity. J Enzyme Inhib Med Chem 2018; 33:130-138. [PMID: 29199491 PMCID: PMC6010105 DOI: 10.1080/14756366.2017.1396455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/12/2017] [Accepted: 10/18/2017] [Indexed: 12/17/2022] Open
Abstract
To develop novel anti-inflammatory agents, a series of new pentadienone oxime ester compounds were designed and synthesized. The structures were determined by IR, 1H NMR, 13 C NMR, and HRMS. All compounds have been screened for their anti-inflammatory activity by evaluating their inhibition against LPS-induced nitric oxide (NO) release in RAW 264.7 cell. Among them, compound 5j was found to be one of the most potent compounds in inhibiting NO and IL-6 (IC50 values were 6.66 µM and 5.07 µM, respectively). Preliminary mechanism studies show that title compound 5j could significantly suppress expressions of nitric oxide synthase, COX-2, and NO, IL-6 through Toll-like receptor 4/mitogen-activated protein kinases/NF-κB signalling pathway. These data support further studies to assess rational design of more efficient pentadienone oxime ester derivatives with anti-inflammatory activity in the future.
Collapse
Affiliation(s)
- Qin Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang, P. R. China
| | - Juping Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang, P. R. China
| | - Liu Zeng Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, P. R. China
| | - Jie Quan Wang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, P. R. China
| | - Hai Ping Zhou
- School of Material Science Chemical Engineering, ChuZhou University, ChuZhou, P. R. China
| | - Wen Jian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, P. R. China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang, P. R. China
| | - Xin Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, P. R. China
- School of Material Science Chemical Engineering, ChuZhou University, ChuZhou, P. R. China
| |
Collapse
|
38
|
Wang Z, Zhang Y, Pinkas DM, Fox AE, Luo J, Huang H, Cui S, Xiang Q, Xu T, Xun Q, Zhu D, Tu Z, Ren X, Brekken RA, Bullock AN, Liang G, Ding K, Lu X. Design, Synthesis, and Biological Evaluation of 3-(Imidazo[1,2- a]pyrazin-3-ylethynyl)-4-isopropyl- N-(3-((4-methylpiperazin-1-yl)methyl)-5-(trifluoromethyl)phenyl)benzamide as a Dual Inhibitor of Discoidin Domain Receptors 1 and 2. J Med Chem 2018; 61:7977-7990. [PMID: 30075624 PMCID: PMC6287892 DOI: 10.1021/acs.jmedchem.8b01045] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Discoidin-domain receptors 1 and 2 (DDR1 and DDR2) are new potential targets for anti-inflammatory-drug discovery. A series of heterocycloalkynylbenzimides were designed and optimized to coinhibit DDR1 and DDR2. One of the most promising compounds, 5n, tightly bound to DDR1 and DDR2 proteins with Kd values of 7.9 and 8.0 nM; potently inhibited the kinases with IC50 values of 9.4 and 20.4 nM, respectively; and was significantly less potent for a panel of 403 wild-type kinases at 1.0 μM. DDR1- and DDR2-kinase inhibition by 5n was validated by Western-blotting analysis in primary human lung fibroblasts. The compound also dose-dependently inhibited lipopolysaccharide (LPS)-induced interleukin 6 (IL-6) release in vitro and exhibited promising in vivo anti-inflammatory effects in an LPS-induced-acute-lung-injury (ALI) mouse model. Compound 5n may serve as a lead compound for new anti-inflammatory drug discovery.
Collapse
Affiliation(s)
- Zhen Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy , Jinan University , 601 Huangpu Avenue West , Guangzhou 510632 , China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China
| | | | - Daniel M Pinkas
- Structural Genomics Consortium , University of Oxford , Old Road Campus Research Building, Roosevelt Drive , Oxford OX3 7DQ , U.K
| | - Alice E Fox
- Structural Genomics Consortium , University of Oxford , Old Road Campus Research Building, Roosevelt Drive , Oxford OX3 7DQ , U.K
| | - Jinfeng Luo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China
| | - Huocong Huang
- Nancy B. and Jake L. Hamon Centre for Therapeutic Oncology Research, Departments of Surgery and Pharmacology , University of Texas Southwestern Medical Center at Dallas , 5323 Harry Hines Boulevard , Dallas , Texas 75390 , United States
| | - Shengyang Cui
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China
| | - Qiuping Xiang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China
| | | | - Qiuju Xun
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China
| | - Dongsheng Zhu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China
| | - Zhengchao Tu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China
| | - Xiaomei Ren
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy , Jinan University , 601 Huangpu Avenue West , Guangzhou 510632 , China
| | - Rolf A Brekken
- Nancy B. and Jake L. Hamon Centre for Therapeutic Oncology Research, Departments of Surgery and Pharmacology , University of Texas Southwestern Medical Center at Dallas , 5323 Harry Hines Boulevard , Dallas , Texas 75390 , United States
| | - Alex N Bullock
- Structural Genomics Consortium , University of Oxford , Old Road Campus Research Building, Roosevelt Drive , Oxford OX3 7DQ , U.K
| | | | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy , Jinan University , 601 Huangpu Avenue West , Guangzhou 510632 , China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy , Jinan University , 601 Huangpu Avenue West , Guangzhou 510632 , China
| |
Collapse
|
39
|
Zhang Y, Riemer D, Schilling W, Kollmann J, Das S. Visible-Light-Mediated Efficient Metal-Free Catalyst for α-Oxygenation of Tertiary Amines to Amides. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01897] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yu Zhang
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Daniel Riemer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Waldemar Schilling
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Jiri Kollmann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Shoubhik Das
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
40
|
Ahmed A, Dolasia K, Mukhopadhyay S. Mycobacterium tuberculosisPPE18 Protein Reduces Inflammation and Increases Survival in Animal Model of Sepsis. THE JOURNAL OF IMMUNOLOGY 2018; 200:3587-3598. [DOI: 10.4049/jimmunol.1602065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/14/2018] [Indexed: 12/16/2022]
|
41
|
Ruan BF, Ge WW, Cheng HJ, Xu HJ, Li QS, Liu XH. Resveratrol-based cinnamic ester hybrids: synthesis, characterization, and anti-inflammatory activity. J Enzyme Inhib Med Chem 2018; 32:1282-1290. [PMID: 29072109 PMCID: PMC6009859 DOI: 10.1080/14756366.2017.1381090] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Twenty-three novel resveratrol-based cinnamic ester hybrids were designed and synthesized. All the compounds were evaluated for their anti-inflammatory activity using RAW264.7 cells. Among them, compound D15 was found to be the most potent one in inhibiting NO production in LPS-stimulated RAW264.7 cells. The further study indicated that compound D15 could suppress expression of proteins iNOS, COX-2, p-p65, and p-IκB LPS-induced. Immunofluorescence further revealed compound D15 could reduce activation p65 in nuclei. All the results indicated that the anti-inflammatory activity of title compound may partly due to its inhibitory effect on the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ban-Feng Ruan
- a School of Medical Engineering , Hefei University of Technology , Hefei , P. R. China
| | - Wei-Wei Ge
- a School of Medical Engineering , Hefei University of Technology , Hefei , P. R. China
| | - Hui-Jie Cheng
- a School of Medical Engineering , Hefei University of Technology , Hefei , P. R. China
| | - Hua-Jian Xu
- a School of Medical Engineering , Hefei University of Technology , Hefei , P. R. China
| | - Qing-Shan Li
- a School of Medical Engineering , Hefei University of Technology , Hefei , P. R. China
| | - Xin-Hua Liu
- b Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs , School of Pharmacy, Anhui Medical University , Hefei , P. R. China
| |
Collapse
|
42
|
Chen L, Fu W, Zheng L, Wang Y, Liang G. Recent progress in the discovery of myeloid differentiation 2 (MD2) modulators for inflammatory diseases. Drug Discov Today 2018; 23:1187-1202. [PMID: 29330126 DOI: 10.1016/j.drudis.2018.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/09/2017] [Accepted: 01/04/2018] [Indexed: 02/07/2023]
Abstract
Myeloid differentiation protein 2 (MD2), together with Toll-like receptor 4 (TLR4), binds lipopolysaccharide (LPS) with high affinity, inducing the formation of the activated homodimer LPS-MD2-TLR4. MD2 directly recognizes the Lipid A domain of LPS, leading to the activation of downstream signaling of cytokine and chemokine production, and initiation of inflammatory and immune responses. However, excessive activation and potent host responses generate severe inflammatory syndromes such as acute sepsis and septic shock. MD2 is increasingly being considered as an attractive pharmacological target for the development of potent anti-inflammatory agents. In this Keynote review, we provide a comprehensive overview of the recent advances in the structure and biology of MD2, and present MD2 modulators as promising agents for anti-inflammatory intervention.
Collapse
Affiliation(s)
- Lingfeng Chen
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Weitao Fu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lulu Zheng
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
43
|
Discovery of caffeic acid phenethyl ester derivatives as novel myeloid differentiation protein 2 inhibitors for treatment of acute lung injury. Eur J Med Chem 2017; 143:361-375. [PMID: 29202400 DOI: 10.1016/j.ejmech.2017.11.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/26/2022]
Abstract
Myeloid differentiation protein 2 (MD2) is an essential molecule which recognizes lipopolysaccharide (LPS), leading to initiation of inflammation through the activation of Toll-like receptor 4 (TLR4) signaling. Caffeic acid phenethyl ester (CAPE) from propolis of honeybee hives could interfere interactions between LPS and the TLR4/MD2 complex, and thereby has promising anti-inflammatory properties. In this study, we designed and synthesized 48 CAPE derivatives and evaluated their anti-inflammatory activities in mouse primary peritoneal macrophages (MPMs) activated by LPS. The most active compound, 10s, was found to bind with MD2 with high affinity, which prevented formation of the LPS/MD2/TLR4 complex. The binding mode of 10s revealed that the major interactions with MD2 were established via two key hydrogen bonds and hydrophobic interactions. Furthermore, 10s showed remarkable protective effects against LPS-caused ALI (acute lung injury) in vivo. Taken together, this work provides new lead structures and candidates as MD2 inhibitors for the development of anti-inflammatory drugs.
Collapse
|
44
|
Zhang Y, Wu B, Zhang H, Ge X, Ying S, Hu M, Li W, Huang Y, Wang L, Chen C, Shan X, Liang G. Inhibition of MD2-dependent inflammation attenuates the progression of non-alcoholic fatty liver disease. J Cell Mol Med 2017; 22:936-947. [PMID: 29077272 PMCID: PMC5783870 DOI: 10.1111/jcmm.13395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/11/2017] [Indexed: 12/17/2022] Open
Abstract
Non‐alcoholic fatty liver disease (NAFLD) can progress to the more serious non‐alcoholic steatohepatitis (NASH), characterized by inflammatory injury and fibrosis. The pathogenic basis of NAFLD progressing to NASH is currently unknown, but growing evidence suggests MD2 (myeloid differentiation factor 2), an accessory protein of TLR4, is an important signalling component contributing to this disease. We evaluated the effectiveness of the specific MD2 inhibitor, L6H21, in reducing inflammatory liver injury in a relevant high‐fat diet (HFD) mouse model of NASH and in the palmitic acid (PA)‐stimulated human liver cell line (HepG2). For study, genetic knockout (MD2−/−) mice were fed a HFD or control diet for 24 weeks, or wild‐type mice placed on a similar diet regimen and treated with L6H21 for the last 8 or 16 weeks. Results indicated that MD2 inhibition with L6H21 was as effective as MD2 knockout in preventing the HFD‐induced hepatic lipid accumulation, pro‐fibrotic changes and expression of pro‐inflammatory molecules. Direct challenge of HepG2 with PA (200 μM) increased MD2‐TLR4 complex formation and expression of pro‐inflammatory and pro‐fibrotic genes and L6H21 pre‐treatment prevented these PA‐induced responses. Interestingly, MD2 knockout or L6H21 increased expression of the anti‐inflammatory molecule, PPARγ, in liver tissue and the liver cell line. Our results provide further evidence for the critical role of MD2 in the development of NASH and conclude that MD2 could be a potential therapeutic target for NAFLD/NASH treatment. Moreover, the small molecule MD2 inhibitor, L6H21, was an effective and selective investigative agent for future mechanistic studies of MD2.
Collapse
Affiliation(s)
- Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Beibei Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hailing Zhang
- Department of Endocrinology, The Affiliated First Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangting Ge
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shilong Ying
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengwei Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weixin Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Huang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,College of Life Sciences, Huzhou University, Huzhou, Zhejiang, China
| | - Xiaoou Shan
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
45
|
TLR4 Signaling Pathway Modulators as Potential Therapeutics in Inflammation and Sepsis. Vaccines (Basel) 2017; 5:vaccines5040034. [PMID: 28976923 PMCID: PMC5748601 DOI: 10.3390/vaccines5040034] [Citation(s) in RCA: 386] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/29/2017] [Accepted: 10/01/2017] [Indexed: 02/06/2023] Open
Abstract
Toll-Like Receptor 4 (TLR4) signal pathway plays an important role in initiating the innate immune response and its activation by bacterial endotoxin is responsible for chronic and acute inflammatory disorders that are becoming more and more frequent in developed countries. Modulation of the TLR4 pathway is a potential strategy to specifically target these pathologies. Among the diseases caused by TLR4 abnormal activation by bacterial endotoxin, sepsis is the most dangerous one because it is a life-threatening acute system inflammatory condition that still lacks specific pharmacological treatment. Here, we review molecules at a preclinical or clinical phase of development, that are active in inhibiting the TLR4-MyD88 and TLR4-TRIF pathways in animal models. These are low-molecular weight compounds of natural and synthetic origin that can be considered leads for drug development. The results of in vivo studies in the sepsis model and the mechanisms of action of drug leads are presented and critically discussed, evidencing the differences in treatment results from rodents to humans.
Collapse
|
46
|
Luo M, Hu L, Li D, Wang Y, He Y, Zhu L, Ren W. MD-2 regulates LPS-induced NLRP3 inflammasome activation and IL-1beta secretion by a MyD88/NF-κB-dependent pathway in alveolar macrophages cell line. Mol Immunol 2017; 90:1-10. [DOI: 10.1016/j.molimm.2017.06.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/18/2017] [Accepted: 06/19/2017] [Indexed: 11/30/2022]
|
47
|
Chen G, Xiao B, Chen L, Bai B, Zhang Y, Xu Z, Fu L, Liu Z, Li X, Zhao Y, Liang G. Discovery of new MD2-targeted anti-inflammatory compounds for the treatment of sepsis and acute lung injury. Eur J Med Chem 2017; 139:726-740. [DOI: 10.1016/j.ejmech.2017.08.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 01/07/2023]
|
48
|
Chen L, Jin Y, Fu W, Xiao S, Feng C, Fang B, Gu Y, Li C, Zhao Y, Liu Z, Liang G. Design, Synthesis, and Structure-Activity Relationship Analysis of Thiazolo[3,2-a
]pyrimidine Derivatives with Anti-inflammatory Activity in Acute Lung Injury. ChemMedChem 2017; 12:1022-1032. [DOI: 10.1002/cmdc.201700175] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/15/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Lingfeng Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences; Wenzhou Medical University; Wenzhou Zhejiang 325035 China
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing Jiangsu 210094 China
| | - Yiyi Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences; Wenzhou Medical University; Wenzhou Zhejiang 325035 China
| | - Weitao Fu
- Chemical Biology Research Center, School of Pharmaceutical Sciences; Wenzhou Medical University; Wenzhou Zhejiang 325035 China
| | - Siyang Xiao
- Chemical Biology Research Center, School of Pharmaceutical Sciences; Wenzhou Medical University; Wenzhou Zhejiang 325035 China
| | - Chen Feng
- Chemical Biology Research Center, School of Pharmaceutical Sciences; Wenzhou Medical University; Wenzhou Zhejiang 325035 China
| | - Bo Fang
- Chemical Biology Research Center, School of Pharmaceutical Sciences; Wenzhou Medical University; Wenzhou Zhejiang 325035 China
| | - Yugui Gu
- School of Chemical Engineering and Materials; Wenzhou University; Wenzhou Zhejiang 325035 China
| | - Chenglong Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences; Wenzhou Medical University; Wenzhou Zhejiang 325035 China
| | - Yunjie Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences; Wenzhou Medical University; Wenzhou Zhejiang 325035 China
| | - Zhiguo Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences; Wenzhou Medical University; Wenzhou Zhejiang 325035 China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences; Wenzhou Medical University; Wenzhou Zhejiang 325035 China
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing Jiangsu 210094 China
| |
Collapse
|
49
|
Wang Z, Zhang Y, Bartual SG, Luo J, Xu T, Du W, Xun Q, Tu Z, Brekken RA, Ren X, Bullock AN, Liang G, Lu X, Ding K. Tetrahydroisoquinoline-7-carboxamide Derivatives as New Selective Discoidin Domain Receptor 1 (DDR1) Inhibitors. ACS Med Chem Lett 2017; 8:327-332. [PMID: 28337325 DOI: 10.1021/acsmedchemlett.6b00497] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/09/2017] [Indexed: 11/28/2022] Open
Abstract
Acute lung injury (ALI) is a deadly symptom for serious lung inflammation. Discoidin Domain Receptor 1 (DDR1) is a new potential target for anti-inflammatory drug discovery. A new selective tetrahydroisoquinoline-7-carboxamide based DDR1 inhibitor 7ae was discovered to tightly bind the DDR1 protein and potently inhibit its kinase function with a Kd value of 2.2 nM and an IC50 value of 6.6 nM, respectively. The compound dose-dependently inhibited lipopolysaccharide (LPS)-induced interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) release in mouse primary peritoneal macrophages (MPMs). In addition, 7ae also exhibited promising in vivo anti-inflammatory effects in a LPS-induced mouse ALI model. To the best of our knowledge, this is the first "proof of concept" investigation on the potential application of a small molecule DDR1 inhibitor to treat ALI.
Collapse
Affiliation(s)
- Zhen Wang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yali Zhang
- Chemical Biology Research
Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Sergio G. Bartual
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Jinfeng Luo
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Tingting Xu
- Department of Pulmonary Medicine, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Wenting Du
- Division
of Surgical Oncology, Department of Surgery and the Hamon Center for
Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas 75390-8593, United States
| | - Qiuju Xun
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zhengchao Tu
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Rolf A. Brekken
- Division
of Surgical Oncology, Department of Surgery and the Hamon Center for
Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas 75390-8593, United States
| | - Xiaomei Ren
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Alex N. Bullock
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Guang Liang
- Chemical Biology Research
Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiaoyun Lu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ke Ding
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|