1
|
Wang Y, Li J, Liu X, Zhang Y, Wang C, Guo Q, Wang Y, Jiang B, Jin X, Liu Y. Elucidation of the anti-gastric cancer mechanism of Guiqi Baizhu Formula by integrative approach of chemical bioinformatics. Int Immunopharmacol 2024; 134:112245. [PMID: 38749334 DOI: 10.1016/j.intimp.2024.112245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024]
Abstract
Gastric cancer (GC) has posed a great threat to the lives of people around the world. To date, safer and more cost-effective therapy for GC is lacking. Traditional Chinese medicine (TCM) may provide some new options for this. Guiqi Baizhu Formula (GQBZF), a classic TCM formula, has been extensively used to treat GC, while its bioactive components and therapeutic mechanisms remain unclear. In this study, we evaluated the underlying mechanisms of GQBZF in treating GC by integrative approach of chemical bioinformatics. GQBZF lyophilized powder (0.0625 mg/mL, 0.125 mg/mL) significantly attenuated the expression of p-IGF1R, PI3K, p-PDK1, p-VEGFR2 to inhibit the proliferation, migration and induce apoptosis of gastric cancer cells, which was consistent with the network pharmacology. Additionally, atractylenolide Ⅰ, quercetin, glycyrol, physcione and aloe-emodin, emodin, kaempferol, licoflavone A were found to be the key compounds of GQBZF regulating IGF1R and VEGFR2, respectively. And among which, glycyrol and emodin were determined as key active compounds against GC by farther vitro experiments and LC/MS. Meanwhile, we also found that glycyrol inhibited MKN-45 cells proliferation and enhanced apoptosis, which might be related to the inhibition of IGF1R/PI3K/PDK1, and emodin could significantly attenuate the MKN-45 cells migration, which might be related to the inhibition of VEGFR2-related signaling pathway. These results were verified again by molecular dynamics simulation and binding interaction pattern. In summary, this study suggested that GQBZF and its key active components (glycyrol and emodin) can suppress IGF1R/PI3K/PDK1 and VEGFR2-related signaling pathway, thereby inhibiting tumor cell proliferation and migration and inducing apoptosis. These findings provided an important strategy for developing new agents and facilitated clinical use of GQBZF against GC.
Collapse
Affiliation(s)
- Yanru Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jiawei Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Xiuzhu Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yixi Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Chao Wang
- College of Medical, Shanxi Datong University, Datong 037000, China
| | - Qingyang Guo
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yan Wang
- Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Bing Jiang
- Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Xiaojie Jin
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medical and Transformation, Ministry of Education of The People's Republic of China, Lanzhou 730000, China.
| | - Yongqi Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medical and Transformation, Ministry of Education of The People's Republic of China, Lanzhou 730000, China.
| |
Collapse
|
2
|
Tian Y, An N, Li W, Tang S, Li J, Wang H, Su R, Cai D. Discovery of Ureido-Substituted 4-Phenylthiazole Derivatives as IGF1R Inhibitors with Potent Antiproliferative Properties. Molecules 2024; 29:2653. [PMID: 38893528 PMCID: PMC11173463 DOI: 10.3390/molecules29112653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The existing kinase inhibitors for hepatocellular carcinoma (HCC) have conferred survival benefits but are hampered by adverse effects and drug resistance, necessitating the development of novel agents targeting distinct pathways. To discover potent new anti-HCC compounds, we leveraged scaffold hopping from Sorafenib and introduced morpholine/piperidine moieties to develop ureido-substituted 4-phenylthiazole analogs with optimized physicochemical properties and binding interactions. Notably, compound 27 exhibited potent cytotoxicity against HepG2 cells (IC50 = 0.62 ± 0.34 μM), significantly exceeding Sorafenib (IC50 = 1.62 ± 0.27 μM). Mechanistic investigations revealed that compound 27 potently inhibited HCC cell migration and colony formation, and it induced G2/M arrest and early-stage apoptosis. Kinase profiling revealed IGF1R as a key target, which compound 27 potently inhibited (76.84% at 10 μM). Molecular modeling substantiated compound 27's strong binding to IGF1R via multiple hydrogen bonds. Computational predictions indicate favorable drug-like properties for compound 27. These findings provide a promising drug candidate for the treatment of HCC patients.
Collapse
Affiliation(s)
- Yuan Tian
- College of Pharmacy, Jinzhou Medical University, Jinzhou 121001, China
| | - Ni An
- The Key Laboratory of Molecular and Cellular Biology and Drug Development in Universities of Liaoning Province, Jinzhou Medical University, Jinzhou 121001, China
| | - Wenru Li
- College of Pharmacy, Jinzhou Medical University, Jinzhou 121001, China
| | - Shixin Tang
- College of Pharmacy, Jinzhou Medical University, Jinzhou 121001, China
| | - Jiqi Li
- College of Pharmacy, Jinzhou Medical University, Jinzhou 121001, China
| | - He Wang
- College of Pharmacy, Jinzhou Medical University, Jinzhou 121001, China
| | - Rongjian Su
- The Key Laboratory of Molecular and Cellular Biology and Drug Development in Universities of Liaoning Province, Jinzhou Medical University, Jinzhou 121001, China
| | - Dong Cai
- College of Pharmacy, Jinzhou Medical University, Jinzhou 121001, China
| |
Collapse
|
3
|
Dutta A, Halder S, Bhaumik I, Debnath U, Dhara D, Misra AK, Jana K. Novel Sulforaphane Analog Disrupts Phosphatidylinositol-3-Kinase-Protein Kinase B Pathway and Inhibits Cancer Cell Progression via Reactive Oxygen Species-Mediated Caspase-Independent Apoptosis. ACS Pharmacol Transl Sci 2024; 7:195-211. [PMID: 38230291 PMCID: PMC10789126 DOI: 10.1021/acsptsci.3c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024]
Abstract
Sulforaphane, a naturally occurring isothiocyanate, has gained attention due to its tremendous anticancer potential. Thus, an array of sulforaphane analogs were synthesized and evaluated for their cytotoxic potentials on a wide range of malignant cell lines. Among these derivatives, compound 4a displayed exceptional potency in inhibiting the proliferation of cancer cell lines and a negligible effect on normal cell lines through G2/M phase arrest. The lead compound induced reactive oxygen species (ROS)-mediated mitochondrial dysfunction, leading to apoptosis. Further mechanistic studies established the interaction of the compound 4a with the insulin-like growth factor-1 receptor (IGF-R1) and blocking of the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (PKB/Akt) pathway. This led to suppression of nuclear factor erythroid 2-related factor 2 (NRF-2) protein expression, thus increasing the free radicals in the tumor cells. Moreover, compound 4a induced ROS-mediated caspase-independent apoptosis. Finally, compound 4a reduced tumor progression in a 4T1 injected BALB/c syngeneic mice tumor model. In conclusion, this study summarizes the mechanism of compound 4a-mediated ROS-mediated caspase-independent apoptosis. According to the study's findings, compound 4a can be used as a powerful new anticancer agent to enhance cancer treatment.
Collapse
Affiliation(s)
- Ananya Dutta
- Division
of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust
Scheme VII M, Kolkata 700054, India
- Bose
Institute, EN 80, Sector
V, Salt Lake City, Bidhannagar, Kolkata 700091, India
| | - Satyajit Halder
- Division
of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust
Scheme VII M, Kolkata 700054, India
- Bose
Institute, EN 80, Sector
V, Salt Lake City, Bidhannagar, Kolkata 700091, India
| | - Ishani Bhaumik
- Division
of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust
Scheme VII M, Kolkata 700054, India
- Bose
Institute, EN 80, Sector
V, Salt Lake City, Bidhannagar, Kolkata 700091, India
| | - Utsab Debnath
- School
of Health Sciences & Technology, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Debashis Dhara
- Division
of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust
Scheme VII M, Kolkata 700054, India
- Bose
Institute, EN 80, Sector
V, Salt Lake City, Bidhannagar, Kolkata 700091, India
| | - Anup Kumar Misra
- Division
of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust
Scheme VII M, Kolkata 700054, India
- Bose
Institute, EN 80, Sector
V, Salt Lake City, Bidhannagar, Kolkata 700091, India
| | - Kuladip Jana
- Division
of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust
Scheme VII M, Kolkata 700054, India
- Bose
Institute, EN 80, Sector
V, Salt Lake City, Bidhannagar, Kolkata 700091, India
| |
Collapse
|
4
|
Peytam F, Emamgholipour Z, Mousavi A, Moradi M, Foroumadi R, Firoozpour L, Divsalar F, Safavi M, Foroumadi A. Imidazopyridine-based kinase inhibitors as potential anticancer agents: A review. Bioorg Chem 2023; 140:106831. [PMID: 37683538 DOI: 10.1016/j.bioorg.2023.106831] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Considering the fundamental role of protein kinases in the mechanism of protein phosphorylation in critical cellular processes, their dysregulation, especially in cancers, has underscored their therapeutic relevance. Imidazopyridines represent versatile scaffolds found in abundant bioactive compounds. Given their structural features, imidazopyridines have possessed pivotal potency to interact with different protein kinases, inspiring researchers to carry out numerous structural variations. In this comprehensive review, we encompass an extensive survey of the design and biological evaluations of imidazopyridine-based small molecules as potential agents targeting diverse kinases for anticancer applications. We describe the structural elements critical to inhibitory potency, elucidating their key structure-activity relationships (SAR) and mode of actions, where available. We classify these compounds into two groups: Serine/threonine and Tyrosine inhibitors. By highlighting the promising role of imidazopyridines in kinase inhibition, we aim to facilitate the design and development of more effective, targeted compounds for cancer treatment.
Collapse
Affiliation(s)
- Fariba Peytam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Emamgholipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mousavi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahfam Moradi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Roham Foroumadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Divsalar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Akhter N, Batool S, Khan SG, Rasool N, Anjum F, Rasul A, Adem Ş, Mahmood S, Rehman AU, Nisa MU, Razzaq Z, Christensen JB, Abourehab MAS, Shah SAA, Imran S. Bio-Oriented Synthesis and Molecular Docking Studies of 1,2,4-Triazole Based Derivatives as Potential Anti-Cancer Agents against HepG2 Cell Line. Pharmaceuticals (Basel) 2023; 16:211. [PMID: 37259360 PMCID: PMC9964635 DOI: 10.3390/ph16020211] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 08/22/2023] Open
Abstract
Triazole-based acetamides serve as important scaffolds for various pharmacologically active drugs. In the present work, structural hybrids of 1,2,4-triazole and acetamides were furnished by chemically modifying 2-(4-isobutylphenyl) propanoic acid (1). Target compounds 7a-f were produced in considerable yields (70-76%) by coupling the triazole of compound 1 with different electrophiles under different reaction conditions. These triazole-coupled acetamide derivatives were verified by physiochemical and spectroscopic (HRMS, FTIR, 13CNMR, and 1HNMR,) methods. The anti-liver carcinoma effects of all of the derivatives against a HepG2 cell line were investigated. Compound 7f, with two methyl moieties at the ortho-position, exhibited the highest anti-proliferative activity among all of the compounds with an IC50 value of 16.782 µg/mL. 7f, the most effective anti-cancer molecule, also had a very low toxicity of 1.190.02%. Molecular docking demonstrates that all of the compounds, especially 7f, have exhibited excellent binding affinities of -176.749 kcal/mol and -170.066 kcal/mol to c-kit tyrosine kinase and protein kinase B, respectively. Compound 7f is recognized as the most suitable drug pharmacophore for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Naheed Akhter
- Department of Biochemistry, Faculty of Life Science, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sidra Batool
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Samreen Gul Khan
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Fozia Anjum
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Şevki Adem
- Department of Chemistry, Faculty of Sciences, Çankırı Karatekin University, 18100 Çankırı, Turkey
| | - Sadaf Mahmood
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Aziz ur Rehman
- Department of Chemistry, Government College University, Lahore 54000, Pakistan
| | - Mehr un Nisa
- Department of Chemistry, University of Lahore, Lahore 40100, Pakistan
| | - Zainib Razzaq
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Jørn B. Christensen
- Department of Chemistry, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA Shah Alam, Shah Alam 40450, Selangor D.E., Malaysia
| |
Collapse
|
6
|
Li MM, Huang H, Pu Y, Tian W, Deng Y, Lu J. A close look into the biological and synthetic aspects of fused pyrazole derivatives. Eur J Med Chem 2022; 243:114739. [PMID: 36126386 DOI: 10.1016/j.ejmech.2022.114739] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Abstract
The fusion of pyrazole scaffold with other skeletons creates a class of attractive molecules, demonstrating significant biological and chemical potentiality in the development of medicinal chemistry. Over the past few decades, numerous biologically active molecules featuring fused pyrazole moieties have been excavated and synthesized, some of which represented by sildenafil have been marketed as drugs, and the biological importance together with chemical synthesis strategies of fused pyrazole compounds, including structural modification based on lead compounds, have been steadily progressing. In this review, we focused our attention on the biological importance of fused pyrazoles and highlighted recent progress in the synthesis of this framework over the past 10 years. What' s more, the limitations, challenges, and future prospects were proposed, wishing to provide references for the development of pyrazole fused frameworks in the field of medicinal chemistry. Contents.
Collapse
Affiliation(s)
- Mei-Mei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Hui Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yiru Pu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wanrong Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
| |
Collapse
|
7
|
Tao M, Li R, Zhang Z, Wu T, Xu T, Zogona D, Huang Y, Pan S, Xu X. Vitexin and Isovitexin Act Through Inhibition of Insulin Receptor to Promote Longevity and Fitness in Caenorhabditis elegans. Mol Nutr Food Res 2022; 66:e2100845. [PMID: 35413150 DOI: 10.1002/mnfr.202100845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/24/2022] [Indexed: 11/06/2022]
Abstract
SCOPE Vitexin and isovitexin are natural plant nutraceuticals for human health and longevity. This research investigated the underlying mechanism of vitexin and isovitexin on aging and health. The vital role of DAF-2/IGFR was illustrated in the insulin/insulin-like growth signaling pathway (IIS) modulated by vitexin and isovitexin. METHODS AND RESULTS In vitro, in vivo models and molecular docking methods were performed to explore the antiaging mechanism of vitexin and isovitexin. Vitexin and isovitexin (50 and 100 μM) extended the lifespan of C. elegans. The declines of pharyngeal pumping and body bending rates, and the increase of intestinal lipofuscin accumulation, three markers of aging, were postponed by vitexin and isovitexin. These compounds inhibited the IIS pathway in a daf-16-dependent manner, subsequently increasing the expression of DAF-16 downstream proteins and genes in nematodes. Molecular docking studies demonstrated that these compounds might inhibit insulin signal transduction by binding to the crucial amino acid residue ARG1003 in the pocket of the insulin-like growth factor-1 receptor (IGFR). Western blot indicated that IGFR, PI3K and AKT kinase expressions in senescent cells is decreased after vitexin and isovitexin treatment. CONCLUSION Vitexin and isovitexin might inhibit IIS pathway by occupying the ATP-binding site pocket of IGFR, subsequently decreasing IGFR expression, thereby promoting longevity and fitness. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mingfang Tao
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, P.R. China
| | - Rong Li
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, P.R. China
| | - Zhuo Zhang
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, P.R. China
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, P.R. China
| | - Tingting Xu
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, P.R. China
| | - Daniel Zogona
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, P.R. China
| | - Yuting Huang
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, P.R. China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, P.R. China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, P.R. China
| |
Collapse
|
8
|
Li R, Tao M, Wu T, Zhuo Z, Xu T, Pan S, Xu X. A promising strategy for investigating the anti-aging effect of natural compounds: a case study of caffeoylquinic acids. Food Funct 2021; 12:8583-8593. [PMID: 34338272 DOI: 10.1039/d1fo01383a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Caffeoylquinic acids, as plant-derived polyphenols, exhibit multiple biological activities such as antioxidant, anti-inflammatory, and neuroprotective activities. However, only limited information about their effect on longevity is available. In the current study, molecular docking was employed to explore the interactions between six representative caffeoylquinic acids and the insulin-like growth factor-1 receptor (IGFR), which is an important target protein for longevity. The results indicated that all six compounds were embedded well in the active pocket of IGFR, and that 3,5-diCQA exhibited the strongest affinity to IGFR. Moreover, ASP1153, GLU1080, ASP1086, and ARG1003 were the key amino acid residues during the interaction of these 6 compounds with IGFR. Furthermore, the lifespan extension effect of caffeoylquinic acids was evaluated in a Caenorhabditis elegans (C. elegans) model. The results revealed that all the caffeoylquinic acids significantly extended the lifespan of wild-type worms, of which 3,5-diCQA was the most potent compound. Meanwhile, 3,5-diCQA enhanced the healthspan by increasing the body bending and pharyngeal pumping rates and reducing the intestinal lipofuscin level. Further studies demonstrated that 3,5-diCQA induced longevity effects by downregulating the insulin/insulin-like growth factor signaling (IIS) pathway. This study suggested that the combination of molecular docking and genetic analysis of specific worm mutants could be a promising strategy to reveal the anti-aging mechanisms of small molecule natural compounds.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Mingfang Tao
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Zhang Zhuo
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Tingting Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
9
|
Mennie KM, Reutershan MH, White C, Adams B, Becker B, Deng J, Katz JD, LaBlue E, Margrey K, Saurí J. Divergent and Regioselective Synthesis of Pyrazolo[1,5- a]pyridines and Imidazo[1,5- a]pyridines. Org Lett 2021; 23:4694-4698. [PMID: 34037404 DOI: 10.1021/acs.orglett.1c01431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitrogenous heterocycles are ubiquitous in pharmaceuticals and drug-like compounds; however, regioselective synthesis has proved challenging. Herein we report our efforts to develop a regioselective method for the synthesis of pyrazolo[1,5-a]pyridines and the serendipitous discovery of a protocol for the regioselective formation of imidazo[1,5-a]pyridines. Together, these transformations allow for the rapid and selective formation of two important heterocyclic motifs from a common intermediate.
Collapse
Affiliation(s)
| | | | - Catherine White
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Bruce Adams
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Bridget Becker
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - James Deng
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Jason D Katz
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | | - Kaila Margrey
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Josep Saurí
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| |
Collapse
|
10
|
Zhu M, Wang DD, Yan H. Genotype-determined EGFR-RTK heterodimerization and its effects on drug resistance in lung Cancer treatment revealed by molecular dynamics simulations. BMC Mol Cell Biol 2021; 22:34. [PMID: 34112110 PMCID: PMC8191231 DOI: 10.1186/s12860-021-00358-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/10/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) and its signaling pathways play a vital role in pathogenesis of lung cancer. By disturbing EGFR signaling, mutations of EGFR may lead to progression of cancer or the emergence of resistance to EGFR-targeted drugs. RESULTS We investigated the correlation between EGFR mutations and EGFR-receptor tyrosine kinase (RTK) crosstalk in the signaling network, in order to uncover the drug resistance mechanism induced by EGFR mutations. For several EGFR wild type (WT) or mutated proteins, we measured the EGFR-RTK interactions using several computational methods based on molecular dynamics (MD) simulations, including geometrical characterization of the interfaces and conventional estimation of free energy of binding. Geometrical properties, namely the matching rate of atomic solid angles in the interfaces and center-of-mass distances between interacting atoms, were extracted relying on Alpha Shape modeling. For a couple of RTK partners (c-Met, ErbB2 and IGF-1R), results have shown a looser EGFR-RTK crosstalk for the drug-sensitive EGFR mutant while a tighter crosstalk for the drug-resistant mutant. It guarantees the genotype-determined EGFR-RTK crosstalk, and further proposes a potential drug resistance mechanism by amplified EGFR-RTK crosstalk induced by EGFR mutations. CONCLUSIONS This study will lead to a deeper understanding of EGFR mutation-induced drug resistance mechanisms and promote the design of innovative drugs.
Collapse
Affiliation(s)
- Mengxu Zhu
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong.
| | - Debby D Wang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Hong Yan
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
11
|
Off-Target-Based Design of Selective HIV-1 PROTEASE Inhibitors. Int J Mol Sci 2021; 22:ijms22116070. [PMID: 34199858 PMCID: PMC8200130 DOI: 10.3390/ijms22116070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
The approval of the first HIV-1 protease inhibitors (HIV-1 PRIs) marked a fundamental step in the control of AIDS, and this class of agents still represents the mainstay therapy for this illness. Despite the undisputed benefits, the necessary lifelong treatment led to numerous severe side-effects (metabolic syndrome, hepatotoxicity, diabetes, etc.). The HIV-1 PRIs are capable of interacting with "secondary" targets (off-targets) characterized by different biological activities from that of HIV-1 protease. In this scenario, the in-silico techniques undoubtedly contributed to the design of new small molecules with well-fitting selectivity against the main target, analyzing possible undesirable interactions that are already in the early stages of the research process. The present work is focused on a new mixed-hierarchical, ligand-structure-based protocol, which is centered on an on/off-target approach, to identify the new selective inhibitors of HIV-1 PR. The use of the well-established, ligand-based tools available in the DRUDIT web platform, in combination with a conventional, structure-based molecular docking process, permitted to fast screen a large database of active molecules and to select a set of structure with optimal on/off-target profiles. Therefore, the method exposed herein, could represent a reliable help in the research of new selective targeted small molecules, permitting to design new agents without undesirable interactions.
Collapse
|
12
|
Liang H, Du J, Elhassan RM, Hou X, Fang H. Recent progress in development of cyclin-dependent kinase 7 inhibitors for cancer therapy. Expert Opin Investig Drugs 2021; 30:61-76. [PMID: 33183110 DOI: 10.1080/13543784.2021.1850693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Cyclin-dependent kinase 7 (CDK7) is a part of the CDK-activating kinase family (CAK) which has a key role in the cell cycle and transcriptional regulation. Several lines of evidence suggest that CDK7 is a promising therapeutic target for cancer. CDK7 selective inhibitors such as SY-5609 and CT7001 are in clinical development. Areas covered: We explore the biology of CDK7 and its role in cancer and follow this with an evaluation of the preclinical and clinical progress of CDK7 inhibitors, and their potential in the clinic. We searched PubMed and ClinicalTrials to identify relevant data from the database inception to 14 October 2020. Expert opinion: CDK7 inhibitors are next generation therapeutics for cancer. However, there are still challenges which include selectively, side effects, and drug resistance. Nevertheless, with ongoing clinical development of these inhibitors and greater analysis of their target, CDK7 inhibitors will become a promising approach for treatment of cancer in the near future.
Collapse
Affiliation(s)
- Hanzhi Liang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, Shandong, China
| | - Jintong Du
- Shandong Cancer Hospital and Institute, Shandong First Medical University , Jinan, Shandong, China
| | - Reham M Elhassan
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, Shandong, China
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, Shandong, China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, Shandong, China
| |
Collapse
|
13
|
Degorce SL, Aagaard A, Anjum R, Cumming IA, Diène CR, Fallan C, Johnson T, Leuchowius KJ, Orton AL, Pearson S, Robb GR, Rosen A, Scarfe GB, Scott JS, Smith JM, Steward OR, Terstiege I, Tucker MJ, Turner P, Wilkinson SD, Wrigley GL, Xue Y. Improving metabolic stability and removing aldehyde oxidase liability in a 5-azaquinazoline series of IRAK4 inhibitors. Bioorg Med Chem 2020; 28:115815. [PMID: 33091850 DOI: 10.1016/j.bmc.2020.115815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
In this article, we report our efforts towards improving in vitro human clearance in a series of 5-azaquinazolines through a series of C4 truncations and C2 expansions. Extensive DMPK studies enabled us to tackle high Aldehyde Oxidase (AO) metabolism and unexpected discrepancies in human hepatocyte and liver microsomal intrinsic clearance. Our efforts culminated with the discovery of 5-azaquinazoline 35, which also displayed exquisite selectivity for IRAK4, and showed synergistic in vitro activity against MyD88/CD79 double mutant ABC-DLBCL in combination with the covalent BTK inhibitor acalabrutinib.
Collapse
Affiliation(s)
- Sébastien L Degorce
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Boston, 35 Gatehouse Drive, Waltham, MA 02451, United States.
| | - Anna Aagaard
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, SE-431 83 Mölndal, Sweden
| | - Rana Anjum
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Boston, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Iain A Cumming
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Coura R Diène
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Charlene Fallan
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Tony Johnson
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | | | - Alexandra L Orton
- DMPK, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Stuart Pearson
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Graeme R Robb
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Alan Rosen
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Boston, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Graeme B Scarfe
- DMPK, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - James S Scott
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - James M Smith
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Oliver R Steward
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Ina Terstiege
- Medicinal Chemistry, R&I, R&D, AstraZeneca, Gothenburg, SE-431 83 Mölndal, Sweden
| | - Michael J Tucker
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Paul Turner
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Stephen D Wilkinson
- DMPK, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Gail L Wrigley
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Yafeng Xue
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, SE-431 83 Mölndal, Sweden
| |
Collapse
|
14
|
Wang C, Chen H, Li H, Zhang Y, Ren L, Chen C, Wang X, Yu J, Li Z, Liu Y. Tris(1,3-dichloro-2-propyl)phosphate Reduces the Lifespan via Activation of an Unconventional Insulin/Insulin-Like Growth Factor-1 Signaling Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10783-10796. [PMID: 32786597 DOI: 10.1021/acs.est.0c03630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tris(1,3-dichloro-2-propyl)phosphate (TDCPP) is an environmental contaminant that has attracted increasing concern due to its presence in environmental media and biological samples. Our previous study demonstrated that exposure to TDCPP reduced the lifespan of Caenorhabditis elegans, but the mechanisms, including the relevant signaling pathways, are unclear. The current study found that TDCPP exposure triggers an unconventional insulin/insulin-like growth factor signaling (IIS) pathway, not by disrupting the insulin-like growth factor-1 receptor DAF-2/IGF1R but by inhibiting the downstream tumor-suppressor factor DAF-18/PTEN. This inhibition reduces PI(3,4,5)P3 (PIP3) dephosphorylation, causing buildup that increases the activation of the Akt/Protein Kinase B (PKB) family of serine/threonine kinases. This activation induces DAF-16/FoxO phosphorylation and promotes the sequestration of DAF-16/FoxO in the cytoplasm, reducing the lifespan of nematodes. Our results have important diagnostic and therapeutic implications for controlling TDCPP-related diseases, especially those originating with IIS pathway components.
Collapse
Affiliation(s)
- Chen Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, P. R. China
| | - Hui Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Yunchao Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Luyao Ren
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaoli Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jun Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, P. R. China
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
15
|
Burgart YV, Agafonova NA, Shchegolkov EV, Krasnykh OP, Kushch SO, Evstigneeva NP, Gerasimova NA, Maslova VV, Triandafilova GA, Solodnikov SY, Ulitko MV, Makhaeva GF, Rudakova EV, Borisevich SS, Zilberberg NV, Kungurov NV, Saloutin VI, Chupakhin ON. Multiple biological active 4-aminopyrazoles containing trifluoromethyl and their 4-nitroso-precursors: Synthesis and evaluation. Eur J Med Chem 2020; 208:112768. [PMID: 32932211 DOI: 10.1016/j.ejmech.2020.112768] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 01/04/2023]
Abstract
4-Nitroso-3-trifluoromethyl-5-alkyl[(het)aryl]pyrazoles were synthesized via one-pot nitrosation of 1,3-diketones or their lithium salts followed by treatment of hydrazines. Reduction of nitroso-derivatives made it possible to obtain 4-amino-3-trifluoromethylpyrazoles chlorides. According to computer-aided calculations, all synthesized compounds are expected to have acceptable ADME profile for drug design. Tuberculostatic, antibacterial, antimycotic, antioxidant and cytotoxic activities of the compounds were evaluated in vitro, while their analgesic and anti-inflammatory action was tested in vivo along with acute toxicity studies. N-Unsubstituted 4-nitrosopyrazoles were the most effective tuberculostatics (MIC to 0.36 μg/ml) and antibacterial agents against Streptococcus pyogenes (MIC to 7.8 μg/ml), Staphylococcus aureus,S. aureus MRSA and Neisseria gonorrhoeae (MIC to 15.6 μg/ml). 4-Nitroso-1-methyl-5-phenylpyrazole had the pronounced antimycotic action against a wide range of fungi (Trichophytonrubrum, T. tonsurans, T. violaceum, T. interdigitale, Epidermophytonfloccosum, Microsporumcanis with MIC 0.38-12.5 μg/ml). N-Unsubstituted 4-aminopyrazoles shown high radical-scavenging activity in ABTS test, ORAC/AAPH and oxidative erythrocyte hemolysis assays. 1-Methyl-5-phenyl-3-trifluoromethylpyrazol-4-aminium chloride revealed potential anticancer activity against HeLa cells (SI > 1351). The pronounced analgesic activity was found for 4-nitroso- and 4-aminopyrazoles having phenyl fragment at the position 5 in "hot plate" test. The most of the obtained pyrazoles had a moderate acute toxicity.
Collapse
Affiliation(s)
- Yanina V Burgart
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskoi St., 22, Ekaterinburg, 620108, Russia; Ural Federal University Named After the First President of Russia B.N. Yeltsin, Mira St. 19, Ekaterinburg, 620002, Russia
| | - Natalia A Agafonova
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskoi St., 22, Ekaterinburg, 620108, Russia
| | - Evgeny V Shchegolkov
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskoi St., 22, Ekaterinburg, 620108, Russia; Ural Federal University Named After the First President of Russia B.N. Yeltsin, Mira St. 19, Ekaterinburg, 620002, Russia
| | - Olga P Krasnykh
- Perm National Research Polytechnic University, Komsomolsky Av., 29, Perm, 614990, Russia
| | - Svetlana O Kushch
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskoi St., 22, Ekaterinburg, 620108, Russia
| | - Natalia P Evstigneeva
- Ural Research Institute for Dermatology, Venereology and Immunopathology, Shcherbakova St., 8, Ekaterinburg, 620076, Russia
| | - Natalia A Gerasimova
- Ural Research Institute for Dermatology, Venereology and Immunopathology, Shcherbakova St., 8, Ekaterinburg, 620076, Russia
| | - Vera V Maslova
- Perm National Research Polytechnic University, Komsomolsky Av., 29, Perm, 614990, Russia
| | - Galina A Triandafilova
- Perm National Research Polytechnic University, Komsomolsky Av., 29, Perm, 614990, Russia
| | - Sergey Yu Solodnikov
- Perm National Research Polytechnic University, Komsomolsky Av., 29, Perm, 614990, Russia
| | - Maria V Ulitko
- Ural Federal University Named After the First President of Russia B.N. Yeltsin, Mira St. 19, Ekaterinburg, 620002, Russia
| | - Galina F Makhaeva
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Severny Proezd 1, Chernogolovka, 142432, Russia
| | - Elena V Rudakova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Severny Proezd 1, Chernogolovka, 142432, Russia
| | - Sophia S Borisevich
- Ufa Institute of Chemistry of Russian Academy of Science, Octyabrya Av., 71, Ufa, 450078, Russia
| | - Natalia V Zilberberg
- Ural Research Institute for Dermatology, Venereology and Immunopathology, Shcherbakova St., 8, Ekaterinburg, 620076, Russia
| | - Nikolai V Kungurov
- Ural Research Institute for Dermatology, Venereology and Immunopathology, Shcherbakova St., 8, Ekaterinburg, 620076, Russia
| | - Victor I Saloutin
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskoi St., 22, Ekaterinburg, 620108, Russia; Ural Federal University Named After the First President of Russia B.N. Yeltsin, Mira St. 19, Ekaterinburg, 620002, Russia.
| | - Oleg N Chupakhin
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskoi St., 22, Ekaterinburg, 620108, Russia; Ural Federal University Named After the First President of Russia B.N. Yeltsin, Mira St. 19, Ekaterinburg, 620002, Russia
| |
Collapse
|
16
|
Manda S, Lee NK, Oh DC, Lee J. Design, Synthesis, and Biological Evaluation of Proteolysis Targeting Chimeras (PROTACs) for the Dual Degradation of IGF-1R and Src. Molecules 2020; 25:molecules25081948. [PMID: 32340152 PMCID: PMC7221895 DOI: 10.3390/molecules25081948] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 01/28/2023] Open
Abstract
A focused PROTAC library was developed to degrade both IGF-1R and Src proteins, which are associated with various cancers. PROTACs with IGF-1R and Src degradation potentials were synthesized by tethering different inhibitor warhead units and the E3 ligase (CRBN) recruiting-pomalidomide with various linkers. The designed PROTACs 12a-b inhibited the proliferation and migration of MCF7 and A549 cancer cells with low micromolar potency (1-5 μM) in various cellular assays.
Collapse
Affiliation(s)
- Sudhakar Manda
- College of Pharmacy, Research Institute of Pharmaceutical sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (S.M.); (N.K.L.)
| | - Na Keum Lee
- College of Pharmacy, Research Institute of Pharmaceutical sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (S.M.); (N.K.L.)
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea;
| | - Jeeyeon Lee
- College of Pharmacy, Research Institute of Pharmaceutical sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (S.M.); (N.K.L.)
- Correspondence: ; Tel.: +82-02-880-2471
| |
Collapse
|
17
|
Huang Q, Dong H, Li B, Hu W, Wang Y. Rhodium catalyzed direct C3-ethoxycarbonylmethylation of imidazo[1,2-a]pyridines with ethyl diazoacetate. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.130998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
18
|
Li JY, Chen HY, Dai WJ, Lv QJ, Chen CYC. Artificial Intelligence Approach To Investigate the Longevity Drug. J Phys Chem Lett 2019; 10:4947-4961. [PMID: 31411476 DOI: 10.1021/acs.jpclett.9b02220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Longevity is a very important and interesting topic, and Klotho has been demonstrated to be related to longevity. We combined network pharmacology, machine learning, deep learning, and molecular dynamics (MD) simulation to investigate potent lead drugs. Related protein insulin-like growth factor 1 receptor (IGF1R) and insulin receptor (IR) were docked with the traditional Chinese medicine (TCM) database to screen out several novel candidates. Besides, nine different machine learning algorithms were performed to build reliable and accurate predicted models. Moreover, we used the novel deep learning algorithm to build predicted models. All of these models obtained significant R2, which are all greater than 0.87 on the training set and higher than 0.88 for the test set, respectively. The long time 500 ns molecular dynamics simulation was also performed to verify protein-ligand properties and stability. Finally, we obtained Antifebrile Dichroa, Holarrhena antidysenterica, and Gelsemium sempervirens, which might be potent TCMs for two targets.
Collapse
Affiliation(s)
- Jun-Yan Li
- School of Intelligent Systems Engineering, Artificial Intelligence Medical Center, Sun Yat-sen University, Shenzhen 510275, China
| | - Hsin-Yi Chen
- School of Intelligent Systems Engineering, Artificial Intelligence Medical Center, Sun Yat-sen University, Shenzhen 510275, China
| | - Wen-Jie Dai
- School of Pharmacy, Sun Yat-sen University, Shenzhen 510275, China
| | - Qiu-Jie Lv
- School of Intelligent Systems Engineering, Artificial Intelligence Medical Center, Sun Yat-sen University, Shenzhen 510275, China
| | - Calvin Yu-Chian Chen
- School of Intelligent Systems Engineering, Artificial Intelligence Medical Center, Sun Yat-sen University, Shenzhen 510275, China
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
19
|
Young RJ, Leeson PD. Mapping the Efficiency and Physicochemical Trajectories of Successful Optimizations. J Med Chem 2018; 61:6421-6467. [DOI: 10.1021/acs.jmedchem.8b00180] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Robert J. Young
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paul D. Leeson
- Paul Leeson Consulting Ltd., The Malt House, Main Street, Congerstone, Nuneaton, Warwickshire CV13 6LZ, U.K
| |
Collapse
|
20
|
Discovery of a novel aminopyrazine series as selective PI3Kα inhibitors. Bioorg Med Chem Lett 2017; 27:3030-3035. [DOI: 10.1016/j.bmcl.2017.05.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 01/01/2023]
|
21
|
Kettle JG, Wilson DM. Standing on the shoulders of giants: a retrospective analysis of kinase drug discovery at AstraZeneca. Drug Discov Today 2016; 21:1596-1608. [DOI: 10.1016/j.drudis.2016.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/05/2016] [Accepted: 06/07/2016] [Indexed: 11/26/2022]
|