1
|
Johnson RL, Graboski AL, Li F, Norris-Drouin JL, Walton WG, Arrowsmith CH, Redinbo MR, Frye SV, James LI. Discovery of CHD1 Antagonists for PTEN-Deficient Prostate Cancer. J Med Chem 2024; 67:20056-20075. [PMID: 39508435 DOI: 10.1021/acs.jmedchem.4c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
CHD1 is a chromodomain-helicase DNA-binding protein that preferentially recognizes di- and trimethylated lysine 4 on histone H3 (H3K4me2/3). Genetic studies have established CHD1 as a synthetic lethal target in phosphatase and tensin homologue (PTEN)-deficient cancers. Despite this attractive therapeutic link, no inhibitors or antagonists of CHD1 have been reported to date. Herein, we report the discovery of UNC10142, a first-in-class small molecule antagonist of the tandem chromodomains of CHD1 that binds with an IC50 of 1.7 ± 0.2 μM. A cocrystal structure revealed a unique binding mode and competition pull-down experiments in cell lysates confirmed endogenous target engagement. Treatment of PTEN-deficient prostate cancer cells with UNC10142 led to a dose-dependent reduction in viability while PTEN-intact prostate cancer cells were unaffected, phenocopying genetic loss of CHD1. Overall, this study demonstrates the ligandability of the CHD1 chromodomains and suggests more potent and selective antagonists could translate to compounds of therapeutic value in PTEN-deficient cancers.
Collapse
Affiliation(s)
- Rebecca L Johnson
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Amanda L Graboski
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Jacqueline L Norris-Drouin
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - William G Walton
- Departments of Chemistry, Biochemistry & Biophysics, and Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Matthew R Redinbo
- Departments of Chemistry, Biochemistry & Biophysics, and Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Huang X, Chen Y, Xiao Q, Shang X, Liu Y. Chemical inhibitors targeting histone methylation readers. Pharmacol Ther 2024; 256:108614. [PMID: 38401773 DOI: 10.1016/j.pharmthera.2024.108614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Histone methylation reader domains are protein modules that recognize specific histone methylation marks, such as methylated or unmethylated lysine or arginine residues on histones. These reader proteins play crucial roles in the epigenetic regulation of gene expression, chromatin structure, and DNA damage repair. Dysregulation of these proteins has been linked to various diseases, including cancer, neurodegenerative diseases, and developmental disorders. Therefore, targeting these proteins with chemical inhibitors has emerged as an attractive approach for therapeutic intervention, and significant progress has been made in this area. In this review, we will summarize the development of inhibitors targeting histone methylation readers, including MBT domains, chromodomains, Tudor domains, PWWP domains, PHD fingers, and WD40 repeat domains. For each domain, we will briefly discuss its identification and biological/biochemical functions, and then focus on the discovery of inhibitors tailored to target this domain, summarizing the property and potential application of most inhibitors. We will also discuss the structural basis for the potency and selectivity of these inhibitors, which will aid in further lead generation and optimization. Finally, we will also address the challenges and strategies involved in the development of these inhibitors. It should facilitate the rational design and development of novel chemical scaffolds and new targeting strategies for histone methylation reader domains with the help of this body of data.
Collapse
Affiliation(s)
- Xiaolei Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yichang Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Qin Xiao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xinci Shang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yanli Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
3
|
Ortiz G, Kutateladze TG, Fujimori DG. Chemical tools targeting readers of lysine methylation. Curr Opin Chem Biol 2023; 74:102286. [PMID: 36948085 PMCID: PMC10264141 DOI: 10.1016/j.cbpa.2023.102286] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 03/22/2023]
Abstract
Reader domains that recognize methylated lysine and arginine residues on histones play a role in the recruitment, stabilization, and regulation of chromatin regulatory proteins. Targeting reader proteins with small molecule and peptidomimetic inhibitors has enabled the elucidation of the structure and function of specific domains and uncovered their role in diseases. Recent progress towards chemical probes that target readers of lysine methylation, including the Royal family and plant homeodomains (PHD), is discussed here. We highlight recently developed covalent cyclic peptide inhibitors of a plant homeodomain. Additionally, inhibitors targeting previously untargeted Tudor domains and chromodomains are discussed.
Collapse
Affiliation(s)
- Gloria Ortiz
- Department of Cellular and Molecular Pharmacology, University of California San Francisco San Francisco, CA 94158, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Danica Galonic Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San Francisco San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco San Francisco, CA 94158, USA.
| |
Collapse
|
4
|
Recent progress on small molecules targeting epigenetic complexes. Curr Opin Chem Biol 2022; 67:102130. [DOI: 10.1016/j.cbpa.2022.102130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 12/16/2022]
|
5
|
Kean KM, Baril SA, Lamb KN, Dishman SN, Treacy JW, Houk KN, Brustad EM, James LI, Waters ML. Systematic Variation of Both the Aromatic Cage and Dialkyllysine via GCE-SAR Reveal Mechanistic Insights in CBX5 Reader Protein Binding. J Med Chem 2022; 65:2646-2655. [PMID: 35014255 PMCID: PMC9048841 DOI: 10.1021/acs.jmedchem.1c02049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Development of inhibitors for histone methyllysine reader proteins is an active area of research due to the importance of reader protein-methyllysine interactions in transcriptional regulation and disease. Optimized peptide-based chemical probes targeting methyllysine readers favor larger alkyllysine residues in place of methyllysine. However, the mechanism by which these larger substituents drive tighter binding is not well understood. This study describes the development of a two-pronged approach combining genetic code expansion (GCE) and structure-activity relationships (SAR) through systematic variation of both the aromatic binding pocket in the protein and the alkyllysine residues in the peptide to probe inhibitor recognition in the CBX5 chromodomain. We demonstrate a novel change in driving force for larger alkyllysines, which weaken cation-π interactions but increases dispersion forces, resulting in tighter binding. This GCE-SAR approach establishes discrete energetic contributions to binding from both ligand and protein, providing a powerful tool to gain mechanistic understanding of SAR trends.
Collapse
Affiliation(s)
- Kelsey M. Kean
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Stefanie A. Baril
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Kelsey N. Lamb
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Sarah N. Dishman
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Joseph W. Treacy
- Department of Chemistry and Biochemistry, Box 951569, University of California, Los Angeles, CA 90095 USA
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry, Box 951569, University of California, Los Angeles, CA 90095 USA
| | - Eric M. Brustad
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Lindsey I. James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Marcey L. Waters
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA,Corresponding Author: Marcey L. Waters – Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States;
| |
Collapse
|
6
|
Lamb KN, Dishman SN, Waybright JM, Engelberg IA, Rectenwald JM, Norris-Drouin JL, Cholensky SH, Pearce KH, James LI, Frye SV. Discovery of Potent Peptidomimetic Antagonists for Heterochromatin Protein 1 Family Proteins. ACS OMEGA 2022; 7:716-732. [PMID: 35036738 PMCID: PMC8757366 DOI: 10.1021/acsomega.1c05381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The heterochromatin protein 1 (HP1) sub-family of CBX chromodomains are responsible for the recognition of histone H3 lysine 9 tri-methyl (H3K9me3)-marked nucleosomal substrates through binding of the N-terminal chromodomain. These HP1 proteins, namely, CBX1 (HP1β), CBX3 (HP1γ), and CBX5 (HP1α), are commonly associated with regions of pericentric heterochromatin, but recent literature studies suggest that regulation by these proteins is likely more dynamic and includes other loci. Importantly, there are no chemical tools toward HP1 chromodomains to spatiotemporally explore the effects of HP1-mediated processes, underscoring the need for novel HP1 chemical probes. Here, we report the discovery of HP1 targeting peptidomimetic compounds, UNC7047 and UNC7560, and a biotinylated derivative tool compound, UNC7565. These compounds represent an important milestone, as they possess nanomolar affinity for the CBX5 chromodomain by isothermal titration calorimetry (ITC) and bind HP1-containing complexes in cell lysates. These chemical tools provide a starting point for further optimization and the study of CBX5-mediated processes.
Collapse
Affiliation(s)
- Kelsey N. Lamb
- Center
for Integrative Chemical Biology and Drug Discovery, Division of Chemical
Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sarah N. Dishman
- Center
for Integrative Chemical Biology and Drug Discovery, Division of Chemical
Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jarod M. Waybright
- Center
for Integrative Chemical Biology and Drug Discovery, Division of Chemical
Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Isabelle A. Engelberg
- Center
for Integrative Chemical Biology and Drug Discovery, Division of Chemical
Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Justin M. Rectenwald
- Center
for Integrative Chemical Biology and Drug Discovery, Division of Chemical
Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jacqueline L. Norris-Drouin
- Center
for Integrative Chemical Biology and Drug Discovery, Division of Chemical
Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephanie H. Cholensky
- Center
for Integrative Chemical Biology and Drug Discovery, Division of Chemical
Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kenneth H. Pearce
- Center
for Integrative Chemical Biology and Drug Discovery, Division of Chemical
Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lindsey I. James
- Center
for Integrative Chemical Biology and Drug Discovery, Division of Chemical
Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephen V. Frye
- Center
for Integrative Chemical Biology and Drug Discovery, Division of Chemical
Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
7
|
Suh JL, Bsteh D, Hart B, Si Y, Weaver TM, Pribitzer C, Lau R, Soni S, Ogana H, Rectenwald JM, Norris JL, Cholensky SH, Sagum C, Umana JD, Li D, Hardy B, Bedford MT, Mumenthaler SM, Lenz HJ, Kim YM, Wang GG, Pearce KH, James LI, Kireev DB, Musselman CA, Frye SV, Bell O. Reprogramming CBX8-PRC1 function with a positive allosteric modulator. Cell Chem Biol 2021; 29:555-571.e11. [PMID: 34715055 PMCID: PMC9035045 DOI: 10.1016/j.chembiol.2021.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/19/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022]
Abstract
Canonical targeting of Polycomb repressive complex 1 (PRC1) to repress developmental genes is mediated by cell-type-specific, paralogous chromobox (CBX) proteins (CBX2, 4, 6, 7, and 8). Based on their central role in silencing and their dysregulation associated with human disease including cancer, CBX proteins are attractive targets for small-molecule chemical probe development. Here, we have used a quantitative and target-specific cellular assay to discover a potent positive allosteric modulator (PAM) of CBX8. The PAM activity of UNC7040 antagonizes H3K27me3 binding by CBX8 while increasing interactions with nucleic acids. We show that treatment with UNC7040 leads to efficient and selective eviction of CBX8-containing PRC1 from chromatin, loss of silencing, and reduced proliferation across different cancer cell lines. Our discovery and characterization of UNC7040 not only reveals the most cellularly potent CBX8-specific chemical probe to date, but also corroborates a mechanism of Polycomb regulation by non-specific CBX nucleotide binding activity.
Collapse
Affiliation(s)
- Junghyun L Suh
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel Bsteh
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Bryce Hart
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yibo Si
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Tyler M Weaver
- University of Iowa, Department of Biochemistry, Iowa City, IA 52242, USA
| | - Carina Pribitzer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Roy Lau
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Heather Ogana
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90027, USA
| | - Justin M Rectenwald
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jacqueline L Norris
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie H Cholensky
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Jessica D Umana
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dongxu Li
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian Hardy
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA 90033, USA; Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yong-Mi Kim
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90027, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ken H Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dmitri B Kireev
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Catherine A Musselman
- University of Iowa, Department of Biochemistry, Iowa City, IA 52242, USA; University of Colorado Anschutz Medical Campus, Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Oliver Bell
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
8
|
Milosevich N, Wilson CR, Brown TM, Alpsoy A, Wang S, Connelly KE, Sinclair KAD, Ponio FR, Hof R, Dykhuizen EC, Hof F. Polycomb Paralog Chromodomain Inhibitors Active against Both CBX6 and CBX8*. ChemMedChem 2021; 16:3027-3034. [PMID: 34174168 PMCID: PMC8497432 DOI: 10.1002/cmdc.202100262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/20/2021] [Indexed: 02/06/2023]
Abstract
Methyllysine reader proteins bind to methylated lysine residues and alter gene transcription by changing either the compaction state of chromatin or by the recruitment of other multiprotein complexes. The polycomb paralog family of methyllysine readers bind to trimethylated lysine on the tail of histone 3 (H3) via a highly conserved aromatic cage located in their chromodomains. Each of the polycomb paralogs are implicated in several disease states. CBX6 and CBX8 are members of the polycomb paralog family with two structurally similar chromodomains. By exploring the structure-activity relationships of a previously reported CBX6 inhibitor we have discovered more potent and cell permeable analogs. Our current report includes potent, dual-selective inhibitors of CBX6 and CBX8. We have shown that the -2 position in our scaffold is an important residue for selectivity amongst the polycomb paralogs. Preliminary cell-based studies show that the new inhibitors impact cell proliferation in a rhabdoid tumor cell line.
Collapse
Affiliation(s)
- Natalia Milosevich
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada
| | - Chelsea R. Wilson
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada
| | - Tyler M. Brown
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada
| | - Aktan Alpsoy
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Sijie Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Katelyn E. Connelly
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | | | - Felino R. Ponio
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada
| | - Rebecca Hof
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada
| | - Emily C. Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Fraser Hof
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada
| |
Collapse
|
9
|
Engelberg IA, Liu J, Norris-Drouin JL, Cholensky SH, Ottavi SA, Frye SV, Kutateladze TG, James LI. Discovery of an H3K36me3-Derived Peptidomimetic Ligand with Enhanced Affinity for Plant Homeodomain Finger Protein 1 (PHF1). J Med Chem 2021; 64:8510-8522. [PMID: 33999620 DOI: 10.1021/acs.jmedchem.1c00430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Plant homeodomain finger protein 1 (PHF1) is an accessory component of the gene silencing complex polycomb repressive complex 2 and recognizes the active chromatin mark, trimethylated lysine 36 of histone H3 (H3K36me3). In addition to its role in transcriptional regulation, PHF1 has been implicated as a driver of endometrial stromal sarcoma and fibromyxoid tumors. We report the discovery and characterization of UNC6641, a peptidomimetic antagonist of the PHF1 Tudor domain which was optimized through in silico modeling and incorporation of non-natural amino acids. UNC6641 binds the PHF1 Tudor domain with a Kd value of 0.96 ± 0.03 μM while also binding the related protein PHF19 with similar potency. A crystal structure of PHF1 in complex with UNC6641, along with NMR and site-directed mutagenesis data, provided insight into the binding mechanism and requirements for binding. Additionally, UNC6641 enabled the development of a high-throughput assay to identify small molecule binders of PHF1.
Collapse
Affiliation(s)
- Isabelle A Engelberg
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jiuyang Liu
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Jacqueline L Norris-Drouin
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephanie H Cholensky
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Samantha A Ottavi
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
10
|
Engelberg IA, Foley CA, James LI, Frye SV. Improved methods for targeting epigenetic reader domains of acetylated and methylated lysine. Curr Opin Chem Biol 2021; 63:132-144. [PMID: 33852996 DOI: 10.1016/j.cbpa.2021.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/20/2023]
Abstract
Responsible for interpreting histone post-translational modifications, epigenetic reader proteins have emerged as novel therapeutic targets for a wide range of diseases. Chemical probes have been critical in enabling target validation studies and have led to translational advances in cancer and inflammation-related pathologies. Here, we present the most recently reported probes of reader proteins that recognize acylated and methylated lysine. We will discuss challenges associated with achieving potent antagonism of reader domains and review ongoing efforts to overcome these hurdles, focusing on targeting strategies including the use of peptidomimetic ligands, allosteric modulators, and protein degraders.
Collapse
Affiliation(s)
- Isabelle A Engelberg
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Caroline A Foley
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
11
|
Vincenzi M, Mercurio FA, Leone M. Protein Interaction Domains and Post-Translational Modifications: Structural Features and Drug Discovery Applications. Curr Med Chem 2020; 27:6306-6355. [DOI: 10.2174/0929867326666190620101637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
Abstract
Background:
Many pathways regarding healthy cells and/or linked to diseases onset and progression depend on large assemblies including multi-protein complexes. Protein-protein interactions may occur through a vast array of modules known as protein interaction domains (PIDs).
Objective:
This review concerns with PIDs recognizing post-translationally modified peptide sequences and intends to provide the scientific community with state of art knowledge on their 3D structures, binding topologies and potential applications in the drug discovery field.
Method:
Several databases, such as the Pfam (Protein family), the SMART (Simple Modular Architecture Research Tool) and the PDB (Protein Data Bank), were searched to look for different domain families and gain structural information on protein complexes in which particular PIDs are involved. Recent literature on PIDs and related drug discovery campaigns was retrieved through Pubmed and analyzed.
Results and Conclusion:
PIDs are rather versatile as concerning their binding preferences. Many of them recognize specifically only determined amino acid stretches with post-translational modifications, a few others are able to interact with several post-translationally modified sequences or with unmodified ones. Many PIDs can be linked to different diseases including cancer. The tremendous amount of available structural data led to the structure-based design of several molecules targeting protein-protein interactions mediated by PIDs, including peptides, peptidomimetics and small compounds. More studies are needed to fully role out, among different families, PIDs that can be considered reliable therapeutic targets, however, attacking PIDs rather than catalytic domains of a particular protein may represent a route to obtain selective inhibitors.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
12
|
Beyer JN, Raniszewski NR, Burslem GM. Advances and Opportunities in Epigenetic Chemical Biology. Chembiochem 2020; 22:17-42. [PMID: 32786101 DOI: 10.1002/cbic.202000459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Indexed: 12/13/2022]
Abstract
The study of epigenetics has greatly benefited from the development and application of various chemical biology approaches. In this review, we highlight the key targets for modulation and recent methods developed to enact such modulation. We discuss various chemical biology techniques to study DNA methylation and the post-translational modification of histones as well as their effect on gene expression. Additionally, we address the wealth of protein synthesis approaches to yield histones and nucleosomes bearing epigenetic modifications. Throughout, we highlight targets that present opportunities for the chemical biology community, as well as exciting new approaches that will provide additional insight into the roles of epigenetic marks.
Collapse
Affiliation(s)
- Jenna N Beyer
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - Nicole R Raniszewski
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA.,Department of Cancer Biology and Epigenetics Institute Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Milosevich N, McFarlane J, Gignac MC, Li J, Brown TM, Wilson CR, Devorkin L, Croft CS, Hof R, Paci I, Lum JJ, Hof F. Pan-specific and partially selective dye-labeled peptidic inhibitors of the polycomb paralog proteins. Bioorg Med Chem 2020; 28:115176. [DOI: 10.1016/j.bmc.2019.115176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
|
14
|
Yang L, Liu Y, Fan M, Zhu G, Jin H, Liang J, Liu Z, Huang Z, Zhang L. Identification and characterization of benzo[d]oxazol-2(3H)-one derivatives as the first potent and selective small-molecule inhibitors of chromodomain protein CDYL. Eur J Med Chem 2019; 182:111656. [DOI: 10.1016/j.ejmech.2019.111656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022]
|
15
|
Lamb KN, Bsteh D, Dishman SN, Moussa HF, Fan H, Stuckey JI, Norris JL, Cholensky SH, Li D, Wang J, Sagum C, Stanton BZ, Bedford MT, Pearce KH, Kenakin TP, Kireev DB, Wang GG, James LI, Bell O, Frye SV. Discovery and Characterization of a Cellular Potent Positive Allosteric Modulator of the Polycomb Repressive Complex 1 Chromodomain, CBX7. Cell Chem Biol 2019; 26:1365-1379.e22. [PMID: 31422906 DOI: 10.1016/j.chembiol.2019.07.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/08/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022]
Abstract
Polycomb-directed repression of gene expression is frequently misregulated in human diseases. A quantitative and target-specific cellular assay was utilized to discover the first potent positive allosteric modulator (PAM) peptidomimetic, UNC4976, of nucleic acid binding by CBX7, a chromodomain methyl-lysine reader of Polycomb repressive complex 1. The PAM activity of UNC4976 resulted in enhanced efficacy across three orthogonal cellular assays by simultaneously antagonizing H3K27me3-specific recruitment of CBX7 to target genes while increasing non-specific binding to DNA and RNA. PAM activity thereby reequilibrates PRC1 away from H3K27me3 target regions. Together, our discovery and characterization of UNC4976 not only revealed the most cellularly potent PRC1-specific chemical probe to date, but also uncovers a potential mechanism of Polycomb regulation with implications for non-histone lysine methylated interaction partners.
Collapse
Affiliation(s)
- Kelsey N Lamb
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel Bsteh
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Department of Biochemistry and Molecular Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Sarah N Dishman
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hagar F Moussa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Huitao Fan
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jacob I Stuckey
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jacqueline L Norris
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie H Cholensky
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dongxu Li
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jingkui Wang
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Benjamin Z Stanton
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences NIH, Rockville, MD 20850, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Kenneth H Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Terry P Kenakin
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dmitri B Kireev
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Oliver Bell
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Department of Biochemistry and Molecular Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA.
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
16
|
Simhadri C, Daze KD, Douglas SF, Milosevich N, Monjas L, Dev A, Brown TM, Hirsch AKH, Wulff JE, Hof F. Rational Adaptation of L3MBTL1 Inhibitors to Create Small‐Molecule Cbx7 Antagonists. ChemMedChem 2019; 14:1444-1456. [DOI: 10.1002/cmdc.201900021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/30/2019] [Indexed: 12/14/2022]
Affiliation(s)
| | - Kevin D. Daze
- Department of ChemistryUniversity of Victoria Victoria BC V8P 5C2 Canada
| | - Sarah F. Douglas
- Department of ChemistryUniversity of Victoria Victoria BC V8P 5C2 Canada
| | - Natalia Milosevich
- Department of ChemistryUniversity of Victoria Victoria BC V8P 5C2 Canada
| | - Leticia Monjas
- Stratingh Institute for ChemistryUniversity of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Amarjot Dev
- Department of ChemistryUniversity of Victoria Victoria BC V8P 5C2 Canada
| | - Tyler M. Brown
- Department of ChemistryUniversity of Victoria Victoria BC V8P 5C2 Canada
| | - Anna K. H. Hirsch
- Stratingh Institute for ChemistryUniversity of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
- Present affiliation: Department for Drug Design and Optimization and Department of Pharmacy, Helmholtz Institute for Pharmaceutical Research (HIPS)—Helmholtz Centre for Infection Research (HZI)Saarland University Campus Building E 8.1 66123 Saarbrücken Germany
| | - Jeremy E. Wulff
- Department of ChemistryUniversity of Victoria Victoria BC V8P 5C2 Canada
| | - Fraser Hof
- Department of ChemistryUniversity of Victoria Victoria BC V8P 5C2 Canada
| |
Collapse
|
17
|
Suh JL, Barnash KD, Abramyan TM, Li F, The J, Engelberg IA, Vedadi M, Brown PJ, Kireev DB, Arrowsmith CH, James LI, Frye SV. Discovery of selective activators of PRC2 mutant EED-I363M. Sci Rep 2019; 9:6524. [PMID: 31024026 PMCID: PMC6484020 DOI: 10.1038/s41598-019-43005-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/12/2019] [Indexed: 01/08/2023] Open
Abstract
Many common disease-causing mutations result in loss-of-function (LOF) of the proteins in which they occur. LOF mutations have proven recalcitrant to pharmacologic intervention, presenting a challenge for the development of targeted therapeutics. Polycomb repressive complex 2 (PRC2), which contains core subunits (EZH2, EED, and SUZ12), regulates gene activity by trimethylation of histone 3 lysine 27. The dysregulation of PRC2 catalytic activity by mutations has been implicated in cancer and other diseases. Among the mutations that cause PRC2 malfunction, an I363M LOF mutation of EED has been identified in myeloid disorders, where it prevents allosteric activation of EZH2 catalysis. We describe structure-based design and computational simulations of ligands created to ameliorate this LOF. Notably, these compounds selectively stimulate the catalytic activity of PRC2-EED-I363M over wildtype-PRC2. Overall, this work demonstrates the feasibility of developing targeted therapeutics for PRC2-EED-I363M that act as allosteric agonists, potentially correcting this LOF mutant phenotype.
Collapse
Affiliation(s)
- Junghyun L Suh
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Kimberly D Barnash
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.,Foghorn Therapeutics, Cambridge, MA, 02142, USA
| | - Tigran M Abramyan
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Juliana The
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Isabelle A Engelberg
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Dmitri B Kireev
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada. .,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada.
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| |
Collapse
|
18
|
The molecular selectivity of UNC3866 inhibitor for Polycomb CBX7 protein from molecular dynamics simulation. Comput Biol Chem 2018; 74:339-346. [DOI: 10.1016/j.compbiolchem.2018.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/08/2018] [Accepted: 04/08/2018] [Indexed: 01/15/2023]
|
19
|
Denton KE, Wang S, Gignac MC, Milosevich N, Hof F, Dykhuizen EC, Krusemark CJ. Robustness of In Vitro Selection Assays of DNA-Encoded Peptidomimetic Ligands to CBX7 and CBX8. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2018; 23:417-428. [PMID: 29309209 PMCID: PMC5962403 DOI: 10.1177/2472555217750871] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The identification of protein ligands from a DNA-encoded library is commonly conducted by an affinity selection assay. These assays are often not validated for robustness, raising questions about selections that fail to identify ligands and the utility of enrichment values for ranking ligand potencies. Here, we report a method for optimizing and utilizing affinity selection assays to identify potent and selective peptidic ligands to the highly related chromodomains of CBX proteins. To optimize affinity selection parameters, statistical analyses (Z' factors) were used to define the ability of selection assay conditions to identify and differentiate ligands of varying affinity. A DNA-encoded positional scanning library of peptidomimetics was constructed around a trimethyllysine-containing parent peptide, and parallel selections against the chromodomains from CBX8 and CBX7 were conducted over three protein concentrations. Relative potencies of off-DNA hit molecules were determined through a fluorescence polarization assay and were consistent with enrichments observed by DNA sequencing of the affinity selection assays. In addition, novel peptide-based ligands were discovered with increased potency and selectivity to the chromodomain of CBX8. The results indicate low DNA tag bias and show that affinity-based in vitro selection assays are sufficiently robust for both ligand discovery and determination of quantitative structure-activity relationships.
Collapse
Affiliation(s)
- Kyle E. Denton
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Sijie Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Michael C. Gignac
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | | | - Fraser Hof
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - Emily C. Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Casey J. Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, West Lafayette, IN, USA
| |
Collapse
|
20
|
Hauser AT, Robaa D, Jung M. Epigenetic small molecule modulators of histone and DNA methylation. Curr Opin Chem Biol 2018; 45:73-85. [PMID: 29579619 DOI: 10.1016/j.cbpa.2018.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 12/14/2022]
Abstract
DNA and histone methylation belong to the key regulatory components in the epigenetic machinery, and dysregulations of these processes have been associated with various human diseases. Small molecule modulators of these epigenetic targets are highly valuable both as chemical probes to study the biological roles of the target proteins, and as potential therapeutics. Indeed, recent years have seen the discovery of chemical modulators of several epigenetic targets, some of which are already marketed drugs or undergoing clinical trials. In this review, we will focus on small molecule modulators of DNA and histone methylation.
Collapse
Affiliation(s)
- Alexander-Thomas Hauser
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg im Breisgau, Germany
| | - Dina Robaa
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg im Breisgau, Germany.
| |
Collapse
|
21
|
Wang Y, Edalji RP, Panchal SC, Sun C, Djuric SW, Vasudevan A. Are We There Yet? Applying Thermodynamic and Kinetic Profiling on Embryonic Ectoderm Development (EED) Hit-to-Lead Program. J Med Chem 2017; 60:8321-8335. [DOI: 10.1021/acs.jmedchem.7b00576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ying Wang
- AbbVie Inc., 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Rohinton P. Edalji
- AbbVie Inc., 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Sanjay C. Panchal
- AbbVie Inc., 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Chaohong Sun
- AbbVie Inc., 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Stevan W. Djuric
- AbbVie Inc., 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Anil Vasudevan
- AbbVie Inc., 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| |
Collapse
|
22
|
Teske KA, Hadden MK. Methyllysine binding domains: Structural insight and small molecule probe development. Eur J Med Chem 2017; 136:14-35. [DOI: 10.1016/j.ejmech.2017.04.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/19/2022]
|
23
|
Barnash KD, Lamb KN, James LI, Frye SV. Peptide Technologies in the Development of Chemical Tools for Chromatin-Associated Machinery. Drug Dev Res 2017. [DOI: 10.1002/ddr.21398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kimberly D. Barnash
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy; University of North Carolina at Chapel Hill; Chapel Hill North Carolina 27599
| | - Kelsey N. Lamb
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy; University of North Carolina at Chapel Hill; Chapel Hill North Carolina 27599
| | - Lindsey I. James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy; University of North Carolina at Chapel Hill; Chapel Hill North Carolina 27599
| | - Stephen V. Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy; University of North Carolina at Chapel Hill; Chapel Hill North Carolina 27599
| |
Collapse
|
24
|
Traoré M, Gignac M, Doan ND, Hof F, Lubell WD. Aza-amino acid scanning of chromobox homolog 7 (CBX7) ligands. J Pept Sci 2017; 23:266-271. [DOI: 10.1002/psc.2982] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Mariam Traoré
- Département de Chimie; Université de Montréal; C.P. 6128, Succursale Centre-Ville Montréal Québec H3C 3J7 Canada
- NuChem Therapeutics Inc.; 6100 Royalmount Ave Montreal H4P 2R2 Canada
| | - Michael Gignac
- Department of Chemistry; University of Victoria; Victoria British Columbia V8W 3V6 Canada
| | - Ngoc-Duc Doan
- Département de Chimie; Université de Montréal; C.P. 6128, Succursale Centre-Ville Montréal Québec H3C 3J7 Canada
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Ave Cambridge 02139 USA
| | - Fraser Hof
- Department of Chemistry; University of Victoria; Victoria British Columbia V8W 3V6 Canada
| | - William D. Lubell
- Département de Chimie; Université de Montréal; C.P. 6128, Succursale Centre-Ville Montréal Québec H3C 3J7 Canada
| |
Collapse
|