1
|
Scarano N, Espinoza S, Brullo C, Cichero E. Computational Methods for the Discovery and Optimization of TAAR1 and TAAR5 Ligands. Int J Mol Sci 2024; 25:8226. [PMID: 39125796 PMCID: PMC11312273 DOI: 10.3390/ijms25158226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
G-protein-coupled receptors (GPCRs) represent a family of druggable targets when treating several diseases and continue to be a leading part of the drug discovery process. Trace amine-associated receptors (TAARs) are GPCRs involved in many physiological functions with TAAR1 having important roles within the central nervous system (CNS). By using homology modeling methods, the responsiveness of TAAR1 to endogenous and synthetic ligands has been explored. In addition, the discovery of different chemo-types as selective murine and/or human TAAR1 ligands has helped in the understanding of the species-specificity preferences. The availability of TAAR1-ligand complexes sheds light on how different ligands bind TAAR1. TAAR5 is considered an olfactory receptor but has specific involvement in some brain functions. In this case, the drug discovery effort has been limited. Here, we review the successful computational efforts developed in the search for novel TAAR1 and TAAR5 ligands. A specific focus on applying structure-based and/or ligand-based methods has been done. We also give a perspective of the experimental data available to guide the future drug design of new ligands, probing species-specificity preferences towards more selective ligands. Hints for applying repositioning approaches are also discussed.
Collapse
Affiliation(s)
- Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (C.B.)
| | - Stefano Espinoza
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), 28100 Novara, Italy;
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (C.B.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (C.B.)
| |
Collapse
|
2
|
Marchese M, Bernardi S, Ogi A, Licitra R, Silvi G, Mero S, Galatolo D, Gammaldi N, Doccini S, Ratto GM, Rapposelli S, Neuhauss SCF, Zang J, Rocchiccioli S, Michelucci E, Ceccherini E, Santorelli FM. Targeting autophagy impairment improves the phenotype of a novel CLN8 zebrafish model. Neurobiol Dis 2024; 197:106536. [PMID: 38763444 PMCID: PMC11163972 DOI: 10.1016/j.nbd.2024.106536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024] Open
Abstract
CLN8 is an endoplasmic reticulum cargo receptor and a regulator of lysosome biogenesis whose loss of function leads to neuronal ceroid lipofuscinosis. CLN8 has been linked to autophagy and lipid metabolism, but much remains to be learned, and there are no therapies acting on the molecular signatures in this disorder. The present study aims to characterize the molecular pathways involved in CLN8 disease and, by pinpointing altered ones, to identify potential therapies. To bridge the gap between cell and mammalian models, we generated a new zebrafish model of CLN8 deficiency, which recapitulates the pathological features of the disease. We observed, for the first time, that CLN8 dysfunction impairs autophagy. Using autophagy modulators, we showed that trehalose and SG2 are able to attenuate the pathological phenotype in mutant larvae, confirming autophagy impairment as a secondary event in disease progression. Overall, our successful modeling of CLN8 defects in zebrafish highlights this novel in vivo model's strong potential as an instrument for exploring the role of CLN8 dysfunction in cellular pathways, with a view to identifying small molecules to treat this rare disease.
Collapse
Affiliation(s)
- Maria Marchese
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy.
| | - Sara Bernardi
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy; Department of Biology, University of Pisa, Pisa, Italy
| | - Asahi Ogi
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Rosario Licitra
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Giada Silvi
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Serena Mero
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Daniele Galatolo
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Nicola Gammaldi
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Stefano Doccini
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Gian Michele Ratto
- National Enterprise for NanoScience and NanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore, Pisa, Italy
| | | | - Stephan C F Neuhauss
- University of Zurich, Department of Molecular Life Sciences, Zurich, Switzerland
| | - Jingjing Zang
- University of Zurich, Department of Molecular Life Sciences, Zurich, Switzerland
| | | | - Elena Michelucci
- Institute of Clinical Physiology, National Research Council, Pisa, Italy; Institute of Chemistry of Organometallic Compounds, National Research Council, Pisa, Italy
| | - Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Filippo M Santorelli
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy.
| |
Collapse
|
3
|
Liao S, Pino MJ, Deleon C, Lindner-Jackson M, Wu C. Interaction analyses of hTAAR1 and mTAAR1 with antagonist EPPTB. Life Sci 2022; 300:120553. [PMID: 35452636 DOI: 10.1016/j.lfs.2022.120553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
Abstract
Trace amine-associated receptor 1 (TAAR1) plays a critical role in regulating monoaminergic activity. EPPTB is the only known selective potent antagonist of the mouse (m) TAAR1 presently, while it was shown to be weak at antagonizing human (h) TAAR1. The lack of high-resolution structure of TAAR1 hinders the understanding of the differences in the interaction modes between EPPTB and m/hTARR1. The purpose of this study is to probe these interaction modes using homology modeling, molecular docking, molecular dynamics (MD) simulations, and molecular mechanics-generalized Born surface area (MM-GBSA) binding energy calculations. Eight populated conformers of hTAAR1-EPPTB complex were observed during the MD simulations and could be used in structure-based virtual screening in future. The MM-GBSA binding energy of hTAAR1-EPPTB complex (-96.5 kcal/mol) is larger than that of mTAAR1-EPPTB complex (-106.7 kcal/mol), which is consistent with the experimental finding that EPPTB has weaker binding affinity to hTAAR1. The several residues in binding site of hTAAR1 (F1544.56, T1945.42 and I2907.39) are different from these of mTAAR1 (Y1534.56, A1935.42 and Y2877.39), which might contribute to the binding affinity difference. Our docking analysis on another hTAAR1 antagonist Compound 3 has found that 1). this compound binds in different pockets of our mTAAR1 and hTAAR1 homology models with a slightly stronger binding affinity to hTAAR1; 2). both antagonists bind to a very similar pocket of hTAAR1.
Collapse
Affiliation(s)
- Siyan Liao
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Michael James Pino
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States of America
| | - Catherine Deleon
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States of America
| | - Maurice Lindner-Jackson
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States of America
| | - Chun Wu
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States of America.
| |
Collapse
|
4
|
Yasukawa N, Yamada Y, Furugen C, Miki Y, Sajiki H, Sawama Y. Gold-Catalyzed Tandem Oxidative Coupling Reaction between β-Ketoallenes and Electron-Rich Arenes to 2-Furylmethylarenes. Org Lett 2021; 23:5891-5895. [PMID: 34320804 DOI: 10.1021/acs.orglett.1c02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A tandem oxidative coupling reaction of β-ketoallenes and arenes was developed, which leads to the formation of 2-furylmethylarenes using AuCl3 and phenyliodine diacetate. The AuIII salt catalyzed the cyclization of β-ketoallenes to form a 2-furylmethyl gold intermediate, and the subsequent C-H functionalization of arenes proceeded smoothly. During the oxidative coupling, nucleophilic additions occurred at the center and terminal carbon atoms of the allene moiety to form C-O and C-C bonds.
Collapse
Affiliation(s)
- Naoki Yasukawa
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4-Daigaku-nishi, Gifu 501-1196, Japan
| | - Yutaro Yamada
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4-Daigaku-nishi, Gifu 501-1196, Japan
| | - Chikara Furugen
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4-Daigaku-nishi, Gifu 501-1196, Japan
| | - Yuya Miki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4-Daigaku-nishi, Gifu 501-1196, Japan
| | - Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4-Daigaku-nishi, Gifu 501-1196, Japan
| | - Yoshinari Sawama
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4-Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
5
|
Novel 1-Amidino-4-Phenylpiperazines as Potent Agonists at Human TAAR1 Receptor: Rational Design, Synthesis, Biological Evaluation and Molecular Docking Studies. Pharmaceuticals (Basel) 2020; 13:ph13110391. [PMID: 33202687 PMCID: PMC7697893 DOI: 10.3390/ph13110391] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 11/19/2022] Open
Abstract
Targeting trace amine-associated receptor 1 (TAAR1) receptor continues to offer an intriguing opportunity to develop innovative therapies in different pharmacological settings. Pursuing our endeavors in the search for effective and safe human TAAR1 (hTAAR1) ligands, we synthesized a new series of 1-amidino-4-phenylpiperazine derivatives (1–16) based on the application of a combined pharmacophore model/scaffold simplification strategy for an in-house series of biguanide-based TAAR1 agonists. Most of the novel compounds proved to be more effective than their prototypes, showing nanomolar EC50 values in functional activity at hTAAR1 and low general cytotoxicity (CC50 > 80 µM) when tested on the Vero-76 cell line. In this new series, the main determinant for TAAR1 agonism ability appears to result from the appropriate combination between the steric size and position of the substituents on the phenyl ring rather than from their different electronic nature, since both electron-withdrawing and electron donor groups are permitted. In particular, the ortho-substitution seems to impose a more appropriate spatial geometry to the molecule that entails an enhanced TAAR1 potency profile, as experienced, in the following order, by compounds 15 (2,3-diCl, EC50 = 20 nM), 2 (2-CH3, EC50 = 30 nM), 6 (2-OCH3, EC50 = 93 nM) and 3 (2-Cl, EC50 = 160 nM). Apart from the interest in them as valuable leads for the development of promising hTAAR1 agonists, these simple small molecules have further allowed us to identify the minimal structural requirements for producing an efficient hTAAR1 targeting ability.
Collapse
|
6
|
3-Iodothyronamine and Derivatives: New Allies Against Metabolic Syndrome? Int J Mol Sci 2020; 21:ijms21062005. [PMID: 32183490 PMCID: PMC7139928 DOI: 10.3390/ijms21062005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/02/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
In the two decades since its discovery, a large body of evidence has amassed to highlight the potential of 3-iodothyronamine (T1AM) as an antiobesity drug, whose pleiotropic signaling actions profoundly impact energy metabolism. In the present review, we recapitulate the most relevant properties of T1AM, including its structural and functional relationship to thyroid hormone, its endogenous levels, molecular targets, as well as its genomic and non-genomic effects on metabolism elicited in experimental models after exogenous administration. The physiological and pathophysiological relevance of T1AM in the regulation of energy homeostasis and metabolism is also discussed, along with its potential therapeutic applications in metabolic disturbances. Finally, we examine a number of T1AM analogs that have been recently developed with the aim of designing novel pharmacological agents for the treatment of interlinked diseases, such as metabolic and neurodegenerative disorders, as well as additional synthetic tools that can be exploited to further explore T1AM-dependent mechanisms and the physiological roles of trace amine-associated receptor 1 (TAAR1)-mediated effects.
Collapse
|
7
|
Design, synthesis and biological evaluation of novel TRβ selective agonists sustained by ADME-toxicity analysis. Eur J Med Chem 2019; 188:112006. [PMID: 31931337 DOI: 10.1016/j.ejmech.2019.112006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/11/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022]
Abstract
Although triiodothyronine (T3) induces several beneficial effects on lipid metabolism, its use is hampered by toxic side-effects, such as tachycardia, arrhythmia, heart failure, bone and muscle catabolism and mood disturbances. Since the α isoform of thyroid hormone receptors (TRs) is the main cause of T3-related harmful effects, several efforts have been made to develop selective agonists of the β isoform that could induce some beneficial effects (i.e. lowering triglyceride and cholesterol levels reducing obesity and improving metabolic syndrome), while overcoming most of the adverse T3-dependent side effects. Herein, we describe the drug discovery process sustained by ADME-Toxicity analysis that led us to identify novel agonists with selectivity for the isoform TRβ and an acceptable off-target and absorption, distribution metabolism, excretion and toxicity (ADME-Tox) profile. Within the small series of compounds synthesized, derivatives 1 and 3, emerge from this analysis as "potentially safe" to be engaged in preclinical studies. In in vitro investigation proved that both compounds were able to reduce lipid accumulation in HepG2 and promote lipolysis with comparable effects to those elicited by T3, used as reference drug. Moreover, a preliminary in vivo study confirmed the apparent lack of toxicity, thus suggesting compounds 1 and 3 as new potential TRβ-selective thyromimetics.
Collapse
|
8
|
Köhrle J, Biebermann H. 3-Iodothyronamine-A Thyroid Hormone Metabolite With Distinct Target Profiles and Mode of Action. Endocr Rev 2019; 40:602-630. [PMID: 30649231 DOI: 10.1210/er.2018-00182] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
The rediscovery of the group of thyronamines (TAMs), especially the first detailed description of their most prominent congener 3-iodothyronamine (3T1AM) 14 years ago, boosted research on this thyroid hormone metabolite tremendously. TAMs exert actions partly opposite to and distinct from known functions of thyroid hormones. These fascinating metabolic, anapyrexic, cytoprotective, and brain effects quickly evoked the hope to use hormone-derived TAMs as a therapeutic option. The G protein-coupled receptor (GPCR) TAAR1, a member of the trace amine-associated receptor (TAAR) family, was identified as the first target and effector of TAM action. The initial enthusiasm on pharmacological actions of exogenous TAMs elicited many questions, such as sites of biosynthesis, analytics, modes of action, inactivation, and role of TAMs in (patho)physiology. Meanwhile, it became clear that TAMs not only interact with TAAR1 or other TAAR family members but also with several aminergic receptors and non-GPCR targets such as transient receptor potential channels, mitochondrial proteins, and the serum TAM-binding protein apolipoprotein B100, thus classifying 3T1AM as a multitarget ligand. The physiological mode of action of TAMs is still controversial because regulation of endogenous TAM production and the sites of its biosynthesis are not fully elucidated. Methods for 3T1AM analytics need further validation, as they revealed different blood and tissue concentrations depending on detection principles used such as monoclonal antibody-based immunoassay vs liquid chromatography- matrix-assisted laser desorption/ionization mass spectrometry or time-of-flight mass spectrometry. In this review, we comprehensively summarize and critically evaluate current basic, translational, and clinical knowledge on 3T1AM and its main metabolite 3-iodothyroacetic acid, focusing on endocrine-relevant aspects and open but highly challenging issues.
Collapse
Affiliation(s)
- Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Heike Biebermann
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
9
|
Schwartz MD, Canales JJ, Zucchi R, Espinoza S, Sukhanov I, Gainetdinov RR. Trace amine-associated receptor 1: a multimodal therapeutic target for neuropsychiatric diseases. Expert Opin Ther Targets 2018; 22:513-526. [DOI: 10.1080/14728222.2018.1480723] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Juan J. Canales
- Division of Psychology, School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | | | - Stefano Espinoza
- Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies Dept., Genoa, Italy
| | - Ilya Sukhanov
- Institute of Pharmacology, Pavlov Medical University, St. Petersburg, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Center for Translational Biomedicine, Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
10
|
Cichero E. Opportunities and challenges in the design of selective TAAR1 agonists: an editorial. Expert Opin Ther Pat 2018; 28:437-440. [DOI: 10.1080/13543776.2018.1476493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Elena Cichero
- Department of Pharmacy, University of Genoa, Genoa, Italy
| |
Collapse
|
11
|
Guariento S, Tonelli M, Espinoza S, Gerasimov AS, Gainetdinov RR, Cichero E. Rational design, chemical synthesis and biological evaluation of novel biguanides exploring species-specificity responsiveness of TAAR1 agonists. Eur J Med Chem 2018; 146:171-184. [DOI: 10.1016/j.ejmech.2018.01.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 11/28/2022]
|
12
|
Rutigliano G, Accorroni A, Zucchi R. The Case for TAAR1 as a Modulator of Central Nervous System Function. Front Pharmacol 2018; 8:987. [PMID: 29375386 PMCID: PMC5767590 DOI: 10.3389/fphar.2017.00987] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/22/2017] [Indexed: 01/06/2023] Open
Abstract
TAAR1 is widely expressed across the mammalian brain, particularly in limbic and monoaminergic areas, allegedly involved in mood, attention, memory, fear, and addiction. However, the subcellular distribution of TAAR1 is still unclear, since TAAR1 signal is largely intracellular. In vitro, TAAR1 is activated with nanomolar to micromolar affinity by some endogenous amines, particularly p-tyramine, beta-phenylethylamine, and 3-iodothyronamine (T1AM), the latter representing a novel branch of thyroid hormone signaling. In addition, TAAR1 responds to a number of psychoactive drugs, i.e., amphetamines, ergoline derivatives, bromocriptine and lisuride. Trace amines have been identified as neurotransmitters in invertebrates, and they are considered as potential neuromodulators. In particular, beta-phenylethylamine and p-tyramine have been reported to modify the release and/or the response to dopamine, norepinephrine, acetylcholine and GABA, while evidence of cross-talk between TAAR1 and other aminergic receptors has been provided. Systemic or intracerebroventricular injection of exogenous T1AM produced prolearning and antiamnestic effects, reduced pain threshold, decreased non-REM sleep, and modulated the firing rate of adrenergic neurons in locus coeruleus. However each of these substances may have additional molecular targets, and it is unclear whether their endogenous levels are sufficient to produce significant TAAR1 activation in vivo. TAAR1 knock out mice show a worse performance in anxiety and working memory tests, and they are more prone to develop ethanol addiction. They also show increased locomotor response to amphetamine, and decreased stereotypical responses induced by apomorphine. Notably, human genes for TAARs cluster on chromosome 6 at q23, within a region whose mutations have been reported to confer susceptibility to schizophrenia and bipolar disorder. For human TAAR1, around 200 non-synonymous and 400 synonymous single nucleotide polymorphisms have been identified, but their functional consequences have not been extensively investigated yet. In conclusion, the bulk of evidence points to a significant physiological role of TAAR1 in the modulation of central nervous system function and a potential pharmacological role of TAAR1 agonists in neurology and/or psychiatry. However, the specific effects of TAAR1 stimulation are still controversial, and many crucial issues require further investigation.
Collapse
Affiliation(s)
- Grazia Rutigliano
- Istituto di Scienze della Vita, Scuola Superiore Sant'Anna, Pisa, Italy.,Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Alice Accorroni
- Istituto di Scienze della Vita, Scuola Superiore Sant'Anna, Pisa, Italy.,Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | | |
Collapse
|
13
|
Ohsumi M, Ito A, Nishiwaki N. Substrate switchable Suzuki–Miyaura coupling for benzyl ester vs. benzyl halide. RSC Adv 2018; 8:35056-35061. [PMID: 35547057 PMCID: PMC9087645 DOI: 10.1039/c8ra07841f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/08/2018] [Indexed: 11/21/2022] Open
Abstract
Two reaction conditions were developed to accomplish the substrate switchable (benzyl esters vs. benzyl halides) Suzuki–Miyaura coupling.
Collapse
Affiliation(s)
- Masato Ohsumi
- Kochi National College of Technology
- Nankoku
- Japan
- School of Environmental Science and Engineering
- Kochi University of Technology
| | - Akitaka Ito
- School of Environmental Science and Engineering
- Kochi University of Technology
- Kami
- Japan
- Research Center for Material Science and Engineering
| | - Nagatoshi Nishiwaki
- School of Environmental Science and Engineering
- Kochi University of Technology
- Kami
- Japan
- Research Center for Material Science and Engineering
| |
Collapse
|
14
|
Chiellini G, Bellusci L, Sabatini M, Zucchi R. Thyronamines and Analogues - The Route from Rediscovery to Translational Research on Thyronergic Amines. Mol Cell Endocrinol 2017; 458:149-155. [PMID: 28069535 DOI: 10.1016/j.mce.2017.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/07/2016] [Accepted: 01/02/2017] [Indexed: 11/18/2022]
Abstract
Thyronamines are a novel class of endogenous signaling compounds, structurally related to thyroid hormones (THs). Specific thyronamines, particularly 3-iodothyronamine (T1AM), stimulate with nanomolar affinity trace amine-associated receptor 1 (TAAR1), a G protein-coupled membrane receptor, and may also interact with other TAAR subtypes (particularly TAAR5), adrenergic receptors (particularly α2 receptors), amine transporters, and mitochondrial proteins. In addition to its structural similarities with THs, T1AM also contains the arylethylamine scaffold as in monoamine neurotransmitters, implicating an intriguing role for T1AM as both a neuromodulator and a hormone-like molecule constituting a part of thyroid hormone signaling. A large number of T1AM derivatives have already been synthesized. We discuss the different chemical strategies followed to obtain thyronamine analogues, their potency at TAAR1, and their structure-activity relationship. Preliminary characterization of the functional effects of these synthetic compounds is also provided.
Collapse
|
15
|
Bellusci L, Laurino A, Sabatini M, Sestito S, Lenzi P, Raimondi L, Rapposelli S, Biagioni F, Fornai F, Salvetti A, Rossi L, Zucchi R, Chiellini G. New Insights into the Potential Roles of 3-Iodothyronamine (T1AM) and Newly Developed Thyronamine-Like TAAR1 Agonists in Neuroprotection. Front Pharmacol 2017; 8:905. [PMID: 29311919 PMCID: PMC5732922 DOI: 10.3389/fphar.2017.00905] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/28/2017] [Indexed: 12/30/2022] Open
Abstract
3-Iodothyronamine (T1AM) is an endogenous high-affinity ligand of the trace amine-associated receptor 1 (TAAR1), detected in mammals in many organs, including the brain. Recent evidence indicates that pharmacological TAAR1 activation may offer a novel therapeutic option for the treatment of a wide range of neuropsychiatric and metabolic disorders. To assess potential neuroprotection by TAAR1 agonists, in the present work, we initially investigated whether T1AM and its corresponding 3-methylbiaryl-methane analog SG-2 can improve learning and memory when systemically administered to mice at submicromolar doses, and whether these effects are modified under conditions of MAO inhibition by clorgyline. Our results revealed that when i.p. injected to mice, both T1AM and SG-2 produced memory-enhancing and hyperalgesic effects, while increasing ERK1/2 phosphorylation and expression of transcription factor c-fos. Notably, both compounds appeared to rely on the action of ubiquitous enzymes MAO to produce the corresponding oxidative metabolites that were then able to activate the histaminergic system. Since autophagy is key for neuronal plasticity, in a second line of experiments we explored whether T1AM and synthetic TAAR1 agonists SG1 and SG2 were able to induce autophagy in human glioblastoma cell lines (U-87MG). After treatment of U-87MG cells with 1 μM T1AM, SG-1, SG-2 transmission electron microscopy (TEM) and immunofluorescence (IF) showed a significant time-dependent increase of autophagy vacuoles and microtubule-associated protein 1 light chain 3 (LC3). Consistently, Western blot analysis revealed a significant increase of the LC3II/LC3I ratio, with T1AM and SG-1 being the most effective agents. A decreased level of the p62 protein was also observed after treatment with T1AM and SG-1, which confirms the efficacy of these compounds as autophagy inducers in U-87MG cells. In the process to dissect which pathway induces ATG, the effects of these compounds were evaluated on the PI3K-AKT-mTOR pathway. We found that 1 μM T1AM, SG-1 and SG-2 decreased pAKT/AKT ratio at 0.5 and 4 h after treatment, suggesting that autophagy is induced by inhibiting mTOR phosphorylation by PI3K-AKT-mTOR pathway. In conclusion, our study shows that T1AM and thyronamine-like derivatives SG-1 and SG-2 might represent valuable tools to therapeutically intervene with neurological disorders.
Collapse
Affiliation(s)
- Lorenza Bellusci
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, Pisa, Italy
| | - Annunziatina Laurino
- Section of Pharmacology and Toxicology, Department of Psychology, Neurology, Drug Sciences, Health of the Child, Pharmacology, University of Florence, Florence, Italy
| | - Martina Sabatini
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, Pisa, Italy
| | - Simona Sestito
- Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Paola Lenzi
- Unit of Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Laura Raimondi
- Section of Pharmacology and Toxicology, Department of Psychology, Neurology, Drug Sciences, Health of the Child, Pharmacology, University of Florence, Florence, Italy
| | - Simona Rapposelli
- Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Francesco Fornai
- Unit of Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Alessandra Salvetti
- Unit of Experimental Biology and Genetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Leonardo Rossi
- Unit of Experimental Biology and Genetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Riccardo Zucchi
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, Pisa, Italy
| | - Grazia Chiellini
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
16
|
Berry MD, Gainetdinov RR, Hoener MC, Shahid M. Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges. Pharmacol Ther 2017; 180:161-180. [DOI: 10.1016/j.pharmthera.2017.07.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Ohsumi M, Nishiwaki N. Selective Synthesis of (Benzyl)biphenyls by Successive Suzuki-Miyaura Coupling of Phenylboronic Acids with 4-Bromobenzyl Acetate under Air Atmosphere. ACS OMEGA 2017; 2:7767-7771. [PMID: 31457333 PMCID: PMC6645156 DOI: 10.1021/acsomega.7b01450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/26/2017] [Indexed: 05/24/2023]
Abstract
An efficient Pd-catalyzed cross-coupling reaction of phenylboronic acids and benzyl carbonates was developed, producing diarylmethanes. Benzyl acetates could also be used as coupling partners instead of benzyl carbonates, affording diarylmethanes in comparable yields. This reaction can be conducted under air atmosphere without any care for moisture and oxygen. The ester function showed an intermediate reactivity between chloro and bromo groups. This property facilitated the selective synthesis of diverse (benzyl)biphenyls by successive Suzuki-Miyaura coupling reactions using bromo- and chloro-substituted benzyl esters with two types of boronic acids.
Collapse
Affiliation(s)
- Masato Ohsumi
- Kochi
National College of Technology, Nankoku, Kochi 783-8508, Japan
| | - Nagatoshi Nishiwaki
- School
of Environmental Science and Engineering and Research Center for Material Science
and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| |
Collapse
|
18
|
Targeting species-specific trace amine-associated receptor 1 ligands: to date perspective of the rational drug design process. Future Med Chem 2017; 9:1507-1527. [DOI: 10.4155/fmc-2017-0044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
G-protein-coupled receptors represent main targets of several clinically relevant drugs, playing nowadays a leading part for further drug discovery process. Trace amine-associated receptor's family (TAARs) assumed an intriguing role as druggable target in medicinal chemistry, being TAAR1 the most investigated. Indeed, related ligands proved to be intertwined in several circuits involved in pathological pathways or therapeutic routes. Herein, we highlight relevant efforts in the search of novel agonists, focusing on responsiveness featured by different chemotypes toward rodent and human TAAR1, in order to explore species-specificity preferences. We also discuss the main strategies guiding so far the design of new TAAR1 agonists, giving a perspective of the structure-based methodologies aimed at deriving new insights for more potent and selective derivatives.
Collapse
|
19
|
Tonelli M, Espinoza S, Gainetdinov RR, Cichero E. Novel biguanide-based derivatives scouted as TAAR1 agonists: Synthesis, biological evaluation, ADME prediction and molecular docking studies. Eur J Med Chem 2017; 127:781-792. [DOI: 10.1016/j.ejmech.2016.10.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/14/2022]
|