1
|
Smolobochkin A, Niyazova D, Gazizov A, Syzdykbayev M, Voloshina A, Amerhanova S, Lyubina A, Neganova M, Aleksandrova Y, Babaeva O, Voronina J, Appazov N, Sinyashin O, Alabugin I, Burilov A, Pudovik M. Discovery of Di(het)arylmethane and Dibenzoxanthene Derivatives as Potential Anticancer Agents. Int J Mol Sci 2024; 25:6724. [PMID: 38928428 PMCID: PMC11203978 DOI: 10.3390/ijms25126724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
A family of bifunctional dihetarylmethanes and dibenzoxanthenes is assembled via a reaction of acetals containing a 2-chloroacetamide moiety with phenols and related oxygen-containing heterocycles. These compounds demonstrated selective antitumor activity associated with the induction of cell apoptosis and inhibition of the process of glycolysis. In particular, bis(heteroaryl)methane containing two 4-hydroxy-6-methyl-2H-pyran-2-one moieties combine excellent in vitro antitumor efficacy with an IC50 of 1.7 µM in HuTu-80 human duodenal adenocarcinoma models with a high selectivity index of 73. Overall, this work highlights the therapeutic potential of dimeric compounds assembled from functionalized acetals and builds a starting point for the development of a new family of anticancer agents.
Collapse
Affiliation(s)
- Andrey Smolobochkin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (A.V.); (O.B.)
| | - Dinara Niyazova
- Laboratory of Engineering Profile, Department of Engineering Technology, Korkyt Ata Kyzylorda University, Ayteke bi Str., 29A, Kyzylorda 120014, Kazakhstan; (D.N.); (M.S.)
| | - Almir Gazizov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (A.V.); (O.B.)
| | - Marat Syzdykbayev
- Laboratory of Engineering Profile, Department of Engineering Technology, Korkyt Ata Kyzylorda University, Ayteke bi Str., 29A, Kyzylorda 120014, Kazakhstan; (D.N.); (M.S.)
- Nazarbayev Intellectual School Chemical-Biological Direction in Kyzylorda, Sultan Beybars Str., 6, Kyzylorda 120014, Kazakhstan
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (A.V.); (O.B.)
| | - Syumbelya Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (A.V.); (O.B.)
| | - Anna Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (A.V.); (O.B.)
| | - Margarita Neganova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (A.V.); (O.B.)
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij pr., 1, Chernogolovka 142432, Russia
| | - Yulia Aleksandrova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (A.V.); (O.B.)
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij pr., 1, Chernogolovka 142432, Russia
| | - Olga Babaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (A.V.); (O.B.)
| | - Julia Voronina
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr., 31, Moscow 119071, Russia
| | - Nurbol Appazov
- Laboratory of Engineering Profile, Department of Engineering Technology, Korkyt Ata Kyzylorda University, Ayteke bi Str., 29A, Kyzylorda 120014, Kazakhstan; (D.N.); (M.S.)
- Limited Liability Partnership «DPS-Kyzylorda», Amangeldi Str., 112A, Kyzylorda 120014, Kazakhstan
| | - Oleg Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (A.V.); (O.B.)
| | - Igor Alabugin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (A.V.); (O.B.)
- Department of Chemistry and Biochemistry, Florida State University, Chieftan Way Str., 95, Tallahassee, FL 32306-3290, USA
| | - Alexander Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (A.V.); (O.B.)
| | - Michail Pudovik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (A.V.); (O.B.)
| |
Collapse
|
2
|
Ichino R, Momotake A, Arai T. Photochemical properties of enediyne-cored dendrimers bearing naphthalenes at the periphery. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel series of trans and cis enediyne-cored dendrimers bearing naphthalenes at the periphery were synthesized and their photochemical properties were examined. The trans/cis isomer ratio in the photostationary state was dependent on the excitation site in the dendrimers. When the enediyne core was selectively excited, the trans/cis isomer ratio in the photostationary state was either around 50/50 or a cis-rich mixture in all dendrimers due to the larger molar extinction coefficient of the trans-enediynes. On the other hand, when naphthalene was excited, a trans-rich mixture was unexpectedly obtained in higher generation dendrimers even though the energy transfer efficiency was almost quantitative in the trans dendrimers. These results could be explained by the energy transfer process, which was different depending on the geometric isomerism of the enediyne core.
Collapse
Affiliation(s)
- Rina Ichino
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Atsuya Momotake
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Tatsuo Arai
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
3
|
Alabugin IV, Gonzalez-Rodriguez E. Alkyne Origami: Folding Oligoalkynes into Polyaromatics. Acc Chem Res 2018; 51:1206-1219. [PMID: 29676896 DOI: 10.1021/acs.accounts.8b00026] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Do not bend the triple bonds! This familiar undergraduate mantra must be disobeyed if the alkyne group is used as a building block in molecular construction. This Account will describe our exploits in "alkyne origami", that is, folding oligoalkynes into new shapes via cyclization cascades. This research stems from a set of guidelines for the cyclizations of alkynes that we suggested in 2011 ( Gilmore Chem. Rev. 2011 , 111 , 6513 ; Alabugin J. Am. Chem. Soc. 2011 , 133 , 12608 ). The guidelines blended critical analysis of ∼40 years of experimental research with computations into the comprehensive predictions of the relative favorability of dig-cyclizations of anions and radicals. In this Account, we will show how this new understanding has been instrumental in building polyaromatics. In particular, we illustrate the utility of these stereoelectronic models by developing a toolbox of practical, selective, and efficient synthetic transformations. The high energy and high carbon content render alkynes the perfect precursors for the preparation of polyaromatic ribbons and other carbon-rich materials with precisely controlled structure and reactivity. Still, the paradox of alkyne reactivity (alkynes store a lot of energy but are protected kinetically by their relatively strong π-bonds) requires precise use of stereoelectronic factors for lowering the activation barriers for alkyne cyclizations. These factors are drastically different in the "all-exo" and the "all-endo" cyclization cascades of oligoynes. This Account will highlight the interplay between the stereoelectronics of bond formation and topology of acyclic precursor "folding" into a polycyclic ribbon. The topology of folding is simpler for the endo cascades, which are compatible with initiation either at the edge or at the center. In contrast, the exo cascades require precise folding of an oligoalkyne ribbon by starting the cascade exactly at the center of the chain. These differences define the key challenges in the design of these two types of alkyne cyclization cascades. For the endo processes, the folding is simple, but these processes require a strategy ("LUMO Umpolung") for inverting the usual stereoelectronic requirements of alkyne cyclizations. We also show how alkenes can be used as alkyne equivalents in cyclizations coupled with fragmentations and how one can make endo cyclization products without ever going through an endo cyclization. In contrast, each elementary step of the exo cascades benefits from the inherent exo preference for the radical attack, but these cascades require precise initiation by starting exactly at the central alkyne unit of the oligoyne. This strict selectivity requirement led to the development of traceless directing groups capable of supramolecular assistance to the initiation step and self-terminating departure at the end of the cascade. With attention to electronic effects that can stop radical cascades, oligoalkynes can be selectively converted into precisely shaped and functionalized polyaromatic products. The generality of these concepts is further illustrated by the development of radical "peri annulations" at the zigzag edge of acenes.
Collapse
Affiliation(s)
- Igor V. Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Edgar Gonzalez-Rodriguez
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
4
|
Borie C, Mondal S, Arif T, Briand M, Lingua H, Dumur F, Gigmes D, Stocker P, Barbarat B, Robert V, Nicoletti C, Olive D, Maresca M, Nechab M. Enediynes bearing polyfluoroaryl sulfoxide as new antiproliferative agents with dual targeting of microtubules and DNA. Eur J Med Chem 2018; 148:306-313. [PMID: 29471119 DOI: 10.1016/j.ejmech.2018.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 12/15/2022]
Abstract
A novel series of enediynes possessing pentafluorophenylsulfoxide have been developed. The innovative compounds possess antiproliferative activity against a broad panel of human cancer cells originating from breast, blood, lung, kidney, colon, prostate, pancreas or skin with IC50 ranging from 0.6 to 3.4 μM. The antiproliferative activity of enediynes in darkness is associated to their ability to compromise microtubule network. In addition, exposure to UV leads to double-stranded DNA cleavage caused by the newly synthesized molecules reducing further their IC50 in nanomolar range against human tumor cells, including chemo-resistant pancreatic cancer cells. Taken together, the examined data demonstrate that enediynes possessing pentafluorosulfoxide are promising molecules in the cancer therapy.
Collapse
Affiliation(s)
- Cyril Borie
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390 Marseille, France
| | - Shovan Mondal
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390 Marseille, France; Department of Chemistry, Syamsundar College, Shyamsundar 713424, West Bengal, India
| | - Tanzeel Arif
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390 Marseille, France
| | - Manon Briand
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390 Marseille, France
| | - Hugo Lingua
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390 Marseille, France
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390 Marseille, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390 Marseille, France
| | - Pierre Stocker
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390 Marseille, France
| | - Bernadette Barbarat
- Centre de Recherche en Cancérologie de Marseille (CRCM) UMR-INSERM1068-IBiSA Cancer Immunomonitoring Platform, Inserm, U1068, France; Institut Paoli Calmettes, 27, Boulevard Lei Roure, BP30059, 13273, Marseille Cedex 09, France
| | - Viviane Robert
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR 7313, F-13397, Marseille, France
| | - Cendrine Nicoletti
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR 7313, F-13397, Marseille, France
| | - Daniel Olive
- Centre de Recherche en Cancérologie de Marseille (CRCM) UMR-INSERM1068-IBiSA Cancer Immunomonitoring Platform, Inserm, U1068, France; Institut Paoli Calmettes, 27, Boulevard Lei Roure, BP30059, 13273, Marseille Cedex 09, France
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR 7313, F-13397, Marseille, France.
| | - Malek Nechab
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390 Marseille, France.
| |
Collapse
|
5
|
Bhattacharya P, Basak A, Campbell A, Alabugin IV. Photochemical Activation of Enediyne Warheads: A Potential Tool for Targeted Antitumor Therapy. Mol Pharm 2018; 15:768-797. [DOI: 10.1021/acs.molpharmaceut.7b00911] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Amit Basak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Adam Campbell
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Igor V. Alabugin
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
6
|
Chen H, Liang W, Zhu Y, Guo Z, Jian J, Jiang BP, Liang H, Shen XC. Supercharged fluorescent protein functionalized water-soluble poly(N-phenylglycine) nanoparticles for highly effective imaging-guided photothermal therapy. Chem Commun (Camb) 2018; 54:10292-10295. [DOI: 10.1039/c8cc05278f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Supercharged fluorescent protein modified poly(N-phenylglycine) nanoparticles as novel nanotheranostic agents for image-guided photothermal cancer therapy.
Collapse
Affiliation(s)
- Hua Chen
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Chemical Engineering
- Guangxi Normal University
- Guilin
- P. R. China
| | - Wenqian Liang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Chemical Engineering
- Guangxi Normal University
- Guilin
- P. R. China
| | - Yang Zhu
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Chemical Engineering
- Guangxi Normal University
- Guilin
- P. R. China
| | - Zhengxi Guo
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Chemical Engineering
- Guangxi Normal University
- Guilin
- P. R. China
| | - Jing Jian
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Chemical Engineering
- Guangxi Normal University
- Guilin
- P. R. China
| | - Bang-Ping Jiang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Chemical Engineering
- Guangxi Normal University
- Guilin
- P. R. China
| | - Hong Liang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Chemical Engineering
- Guangxi Normal University
- Guilin
- P. R. China
| | - Xing-Can Shen
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Chemical Engineering
- Guangxi Normal University
- Guilin
- P. R. China
| |
Collapse
|
7
|
Syroeshkin MA, Krylov IB, Hughes AM, Alabugin IV, Nasybullina DV, Sharipov MY, Gultyai VP, Terent'ev AO. Electrochemical behavior of N
-oxyphthalimides: Cascades initiating self-sustaining catalytic reductive N
―O
bond cleavage. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3744] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mikhail A. Syroeshkin
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Moscow Russian Federation
| | - Igor B. Krylov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Moscow Russian Federation
| | - Audrey M. Hughes
- Department of Chemistry and Biochemistry; Florida State University; Tallahassee FL USA
| | - Igor V. Alabugin
- Department of Chemistry and Biochemistry; Florida State University; Tallahassee FL USA
| | - Darya V. Nasybullina
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Moscow Russian Federation
| | - Mikhail Yu. Sharipov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Moscow Russian Federation
| | - Vadim P. Gultyai
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Moscow Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Moscow Russian Federation
| |
Collapse
|
8
|
Peterson PW, Shevchenko N, Breiner B, Manoharan M, Lufti F, Delaune J, Kingsley M, Kovnir K, Alabugin IV. Orbital Crossings Activated through Electron Injection: Opening Communication between Orthogonal Orbitals in Anionic C1–C5 Cyclizations of Enediynes. J Am Chem Soc 2016; 138:15617-15628. [DOI: 10.1021/jacs.6b08540] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Paul W. Peterson
- Department of Chemistry and
Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32301, United States
| | - Nikolay Shevchenko
- Department of Chemistry and
Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32301, United States
| | - Boris Breiner
- Department of Chemistry and
Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32301, United States
| | - Mariappan Manoharan
- Department of Chemistry and
Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32301, United States
| | - Forat Lufti
- Department of Chemistry and
Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32301, United States
| | - Jess Delaune
- Department of Chemistry and
Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32301, United States
| | - Margaret Kingsley
- Department of Chemistry and
Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32301, United States
| | - Kirill Kovnir
- Department of Chemistry and
Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32301, United States
| | - Igor V. Alabugin
- Department of Chemistry and
Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32301, United States
| |
Collapse
|