1
|
Haffouz A, Elleuch H, Khemakhem B, Ben Amor I, Jerbi A, Gargouri J, Sahli E, Mhadhbi N, Ghalla H, Rezgui F, Gargouri A, HadjKacem B. Antiplatelet activity and toxicity profile of novel phosphonium salts derived from Michael reaction. Eur J Pharm Sci 2024; 194:106692. [PMID: 38181870 DOI: 10.1016/j.ejps.2024.106692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
In this work, five novel phosphonium salts derived from the Michael reaction were screened for their antiplatelet activity. Our findings revealed that compounds 2a, 2b, 2c, and 2d significantly inhibit platelet aggregation triggered by ADP or collagen (P < 0.001). Notably, compound 2c inhibited the arachidonic acid pathway (P < 0.001). Moreover, the selected compounds reduce CD62-P expression and inhibit GPIIb/IIIa activation. The interactions of the active compounds with their targets, ADP and collagen receptors, P2Y12 and GPVI respectively were investigated in silico using molecular docking studies. The results revealed a strong affinity of the active compounds for P2Y12 and GPVI. Additionally, cytotoxicity assays on platelets, erythrocytes, and human embryonic kidney HEK293 cells showed that compounds 2a, 2c and 2d were non-toxic even at high concentrations. In summary, our study shows that phosphonium salts can have strong antiplatelet power and suggests that compounds 2a, 2c and 2d could be promising antiplatelet agents for the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Asma Haffouz
- Laboratory of Molecular Biotechnology of Eucaryotes, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Haitham Elleuch
- Laboratory of Organic Chemistry, Faculty of Sciences, University Campus, 2092, University of Tunis El Manar, Tunis, Tunisia
| | - Bassem Khemakhem
- Laboratory of Plant Biotechnology, Sfax Faculty of Sciences, BP 1171, University of Sfax, 3038 Sfax, Tunisia
| | - Ikram Ben Amor
- Laboratory of Hematology (LR19SP04), Medical Faculty of Sfax. University of Sfax, Magida Boulila Avenue, 3029 Sfax, Tunisia
| | - Amira Jerbi
- Laboratory of Hematology (LR19SP04), Medical Faculty of Sfax. University of Sfax, Magida Boulila Avenue, 3029 Sfax, Tunisia
| | - Jalel Gargouri
- Laboratory of Hematology (LR19SP04), Medical Faculty of Sfax. University of Sfax, Magida Boulila Avenue, 3029 Sfax, Tunisia
| | - Emna Sahli
- Analytical service provider unit, Centre of Biotechnology of Sfax, University of Sfax, 3018, Sfax, Tunisia
| | - Noureddine Mhadhbi
- Laboratory Physico Chemistry of the Solid State, Department of Chemistry, Faculty of Sciences, University of Sfax, BP 1171, 3000 Sfax, Tunisia; University of Monastir, Preparatory Institute for Engineering Studies of Monastir, 5019 Monastir, Tunisia
| | - Houcine Ghalla
- Quantum Physics and Statistic Laboratory, Faculty of Sciences, University of Monastir, Monastir, 5000, Tunisia
| | - Farhat Rezgui
- Laboratory of Organic Chemistry, Faculty of Sciences, University Campus, 2092, University of Tunis El Manar, Tunis, Tunisia
| | - Ali Gargouri
- Laboratory of Molecular Biotechnology of Eucaryotes, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Basma HadjKacem
- Laboratory of Molecular Biotechnology of Eucaryotes, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia; Department of Life Sciences, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia.
| |
Collapse
|
2
|
Lee S, Söhnel T, Sperry J. Support studies toward the hicksoane alkaloids reveal cascade reactions of a (tryptophanamido)methylglycinate. Org Biomol Chem 2023; 21:8708-8715. [PMID: 37869775 DOI: 10.1039/d3ob01596c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Herein we report unanticipated results that emerged from a synthetic study targeting the unique triazocane present in the hicksoane alkaloids. An initial strategy focused on the cyclisation-ring expansion of a 3-(tryptophyl)imidazolidin-4-one failed due to the high reactivity of the imide unit; passing a methanolic solution of this compound through a weakly basic ion exchange resin led to methanolysis to form a (tryptophanamido)methylglycinate. Attempted lactamisation of this (tryptophanamido)methylglycinate led to the formation of a (tryptophyl)imidazolidin-4-one, a rare imidazopyrido[3,4-b]indolone and a β-carboline. Control reactions informed a mechanistic rationale for these cascade processes.
Collapse
Affiliation(s)
- Stephanie Lee
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Tilo Söhnel
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Jonathan Sperry
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| |
Collapse
|
3
|
Mangin PH, Gardiner EE, Ariëns RAS, Jandrot-Perrus M. Glycoprotein VI interplay with fibrin(ogen) in thrombosis. J Thromb Haemost 2023; 21:1703-1713. [PMID: 36990158 DOI: 10.1016/j.jtha.2023.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Platelets play a central role in the arrest of bleeding. The ability of platelets to engage with extracellular matrix proteins of the subendothelium has long been recognized as a pivotal platelet attribute, underpinning adequate hemostasis. The propensity of platelets to rapidly bind and functionally respond to collagen was one of the earliest documented events in platelet biology. The receptor primarily responsible for mediating platelet/collagen responses was identified as glycoprotein (GP) VI and successfully cloned in 1999. Since that time, this receptor has held the attention of many research groups, and through these efforts, we now have an excellent understanding of the roles of GPVI as a platelet- and megakaryocyte-specific adheso-signaling receptor in platelet biology. GPVI is considered a viable antithrombotic target, as data obtained from groups across the world is consistent with GPVI being less involved in physiological hemostatic processes but participating in arterial thrombosis. This review will highlight the key aspects of GPVI contributions to platelet biology and concentrate on the interaction with recently identified ligands, with a focus on fibrin and fibrinogen, discussing the role of these interactions in the growth and stability of thrombi. We will also discuss important therapeutic developments that target GPVI to modulate platelet function while minimizing bleeding outcomes.
Collapse
Affiliation(s)
- Pierre H Mangin
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S1255, Fédération de Médecine Translationnelle de Strasbourg F-67065 Strasbourg, France.
| | - Elizabeth E Gardiner
- The John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Martine Jandrot-Perrus
- Université de Paris Institut National de la Santé et de la Recherche Médicale, UMR-S1148, Hôpital Bichat, Paris, France
| |
Collapse
|
4
|
Ahmed S, Prabahar AE, Saxena AK. Molecular docking-based interaction studies on imidazo[1,2-a] pyridine ethers and squaramides as anti-tubercular agents. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023:1-23. [PMID: 37365919 DOI: 10.1080/1062936x.2023.2225872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Development of new anti-tubercular agents is required in the wake of resistance to the existing and newly approved drugs through novel-validated targets like ATP synthase, etc. The major limitation of poor correlation between docking scores and biological activity by SBDD was overcome by a novel approach of quantitatively correlating the interactions of different amino acid residues present in the target protein structure with the activity. This approach well predicted the ATP synthase inhibitory activity of imidazo[1,2-a] pyridine ethers and squaramides (r = 0.84) in terms of Glu65b interactions. Hence, the models were developed on combined (r = 0.78), and training (r = 0.82) sets of 52, and 27 molecules, respectively. The training set model well predicted the diverse dataset (r = 0.84), test set (r = 0.755), and, external dataset (rext = 0.76). This model predicted three compounds from a focused library generated by incorporating the essential features of the ATP synthase inhibition with the pIC50 values in the range of 0.0508-0.1494 µM. Molecular dynamics simulation studies ascertain the stability of the protein structure and the docked poses of the ligands. The developed model(s) may be useful in the identification and optimization of novel compounds against TB.
Collapse
Affiliation(s)
- S Ahmed
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, India
- Department of Pharmaceutical Chemistry, Teerthanker Mahaveer College of Pharmacy, Moradabad, India
| | - A E Prabahar
- Department of Pharmaceutical Chemistry, Teerthanker Mahaveer College of Pharmacy, Moradabad, India
| | - A K Saxena
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, India
| |
Collapse
|
5
|
Modulation of Glycoprotein VI and Its Downstream Signaling Pathways as an Antiplatelet Target. Int J Mol Sci 2022; 23:ijms23179882. [PMID: 36077280 PMCID: PMC9456422 DOI: 10.3390/ijms23179882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Antiplatelet therapy aims to reduce the risk of thrombotic events while maintaining hemostasis. A promising current approach is the inhibition of platelet glycoprotein GPVI-mediated adhesion pathways; pathways that do not involve coagulation. GPVI is a signaling receptor integral for collagen-induced platelet activation and participates in the thrombus consolidation process, being a suitable target for thrombosis prevention. Considering this, the blocking or antibody-mediated depletion of GPVI is a promising antiplatelet therapy for the effective and safe treatment of thrombotic diseases without a significant risk of bleeding and impaired hemostatic plug formation. This review describes the current knowledge concerning pharmaceutical approaches to platelet GPVI modulation and its downstream signaling pathways in this context.
Collapse
|
6
|
Foster H, Wilson C, Gauer JS, Xu RG, Howard MJ, Manfield IW, Ariëns R, Naseem K, Vidler LR, Philippou H, Foster R. A Comparative Assessment Study of Known Small-molecule GPVI Modulators. ACS Med Chem Lett 2022; 13:171-181. [PMID: 35178172 PMCID: PMC8842102 DOI: 10.1021/acsmedchemlett.1c00414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
The GPVI platelet receptor was recently validated as a safe antiplatelet target for the treatment of thrombosis using several peptidic modulators. In contrast, few weakly potent small-molecule GPVI antagonists have been reported. Those that have been published often lack evidence for target engagement, and their biological efficacy cannot be compared because of the natural donor variability associated with the assays implemented. Herein, we present the first side-by-side assessment of the reported GPVI small-molecule modulators. We have characterized their functional activities on platelet activation and aggregation using flow cytometry as well as light transmission and electrical impedance aggregometry. We also utilized microscale thermophoresis (MST) and saturation transfer difference (STD) NMR to validate GPVI binding and have used this along with molecular modeling to suggest potential binding interactions. We conclude that of the compounds examined, losartan and compound 5 are currently the most viable GPVI modulators.
Collapse
Affiliation(s)
- Holly Foster
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | - Clare Wilson
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | - Julia S. Gauer
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | - Rui-Gang Xu
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | - Mark J. Howard
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Iain W. Manfield
- Faculty
of Biological Sciences and Astbury Centre for Structural Molecular
Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Robert Ariëns
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | - Khalid Naseem
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | | | - Helen Philippou
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | - Richard Foster
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
7
|
Olğaç S, Olğaç A, Yenicesu İ, Özkan Y. Identification of Novel Antiplatelet Agents by Targeting Glycoprotein VI: A Combined Virtual Screening Study. Bioorg Chem 2022; 121:105661. [DOI: 10.1016/j.bioorg.2022.105661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 01/18/2022] [Accepted: 02/05/2022] [Indexed: 11/28/2022]
|
8
|
Reddy GG, Reddy CVR, Reddy BS. Water Mediated One-Pot, Stepwise Green Synthesis, Anti-Inflammatory and Analgesic Activities of (3-Amino-1-Phenyl-1H-Benzo[f]Chromen-2-yl) (1H-Indol-3-yl) Methanone Catalysed by L-Proline. Med Chem 2021; 18:810-819. [PMID: 34951578 DOI: 10.2174/1573406418666211224125310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 11/22/2022]
Abstract
AIM The reactions were carried out by one pot three-component synthesis, 3-cyanoacetylindole (1) on reaction with aromatic aldehydes (2) and β-naphthol (3) in an aqueous medium in presence of L-proline as a catalyst under reflux for 30 min, resulted (3-amino-1-phenyl-1H-benzo[f]chromen-2-yl) (1H-indol-3-yl)methanone (4). The method has many advantages like short reaction times, good yields and simple workup procedure besides being green in nature. Pharmacological evaluation of title compounds was done for anti-inflammatory and analgesic activities. Anti-inflammatory activity was carried carrageenan-induced paw edema model in which indomethacin was used as standard and analgesic activity was evaluated by eddy's hot plate method using diclofenac as standard drug. BACKGROUND Benzopyrans or chromenes are an important class of heterocyclic compounds due to their broad spectrum of biological activity and a wide range of applications in medicinal chemistry. The chromene moiety is found in various natural products with interesting biological properties. Chromenes constitute the basic backbone of various types of polyphenols and are widely found in alkaloids, tocopherols, flavonoids and anthocyanins. Indoles are omnipresent in various bioactive compounds like alkaloids, agrochemicals and pharmaceuticals. OBJECTIVE To synthesize one-pot stepwise Green synthesis, anti-inflammatory and analgesic activities of 3-amino-1-phenyl-1H-benzo[f]chromen-2-yl) (1H-indol-3-yl)methanones Methods: The acute anti-inflammatory effect was evaluated by carrageenan-induced mice paw edema (Ma Rachchh et al., 2011). Edema was induced by injecting carrageenan (1% w/v, 0.1 ml) in the right hind paw of mice. The test compounds 1-12, indomethacin (10 mg/kg) and the vehicle were administered orally one hour before injection of carrageenan. Paw volume was measured with digital plethysmometer at 0, 30, 60, 90, 120 min after injection. Percentage increase =A-B/ A *100 Results: Carrageenan Induced paw edema model was used for Anti-inflammatory activity in which animals treated with standard (indomethacin) and test compounds showed a significant decrease in the paw edema. Analgesic activity was estimated by using Eddy's hot plate method; animals were treated with standard (diclofenac) and test compounds showed a significant increase in the reaction time. CONCLUSION A green, One-pot, step-wise and three-component synthesis of 3-amino-1-phenyl-1H-benzo[f]chromen-2-yl) (1H-indol-3-yl) methanone was achieved by using water as a solvent, L-proline as catalyst under reflux conditions. The reactions were carried out in eco-friendly conditions with shorter reaction times, easier workup and high yields. Anti-inflammatory activity was evaluated by carrageenan-induced paw edema model where significant anti-inflammatory activity is shown by all the test compounds (4a-l) when compared to standard drug. Analgesic activity was studied by Eddy's Hot plate method and Test compounds 4e, 4f, 4h, 4i, 4j, 4k, 4l showed significant activities when compared to the reference drug.
Collapse
Affiliation(s)
- G Ganga Reddy
- Department of Chemistry, Jawaharlal Nehru Technological University Hyderabad, India
| | | | - B Srinivasa Reddy
- Department of Chemistry, Mahatma Gandhi Institute of Technology, Gandipet, India
| |
Collapse
|
9
|
A review of synthetic bioactive tetrahydro-β-carbolines: A medicinal chemistry perspective. Eur J Med Chem 2021; 225:113815. [PMID: 34479038 DOI: 10.1016/j.ejmech.2021.113815] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/22/2021] [Accepted: 08/29/2021] [Indexed: 12/21/2022]
Abstract
1, 2, 3, 4-Tetrahydro-β-carboline (THβC) scaffold is widespread in many natural products (NPs) and synthetic compounds which show a variety of pharmacological activities. In this article, we reviewed the design, structures and biological characteristics of reported synthetic THβC compounds, and structure and activity relationship (SAR) of them were also discussed. This work might provide a reference for subsequent drug development based on THβC.
Collapse
|
10
|
Bhunia SS, Saxena AK. Efficiency of Homology Modeling Assisted Molecular Docking in G-protein Coupled Receptors. Curr Top Med Chem 2021; 21:269-294. [PMID: 32901584 DOI: 10.2174/1568026620666200908165250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Molecular docking is in regular practice to assess ligand affinity on a target protein crystal structure. In the absence of protein crystal structure, the homology modeling or comparative modeling is the best alternative to elucidate the relationship details between a ligand and protein at the molecular level. The development of accurate homology modeling (HM) and its integration with molecular docking (MD) is essential for successful, rational drug discovery. OBJECTIVE The G-protein coupled receptors (GPCRs) are attractive therapeutic targets due to their immense role in human pharmacology. The GPCRs are membrane-bound proteins with the complex constitution, and the understanding of their activation and inactivation mechanisms is quite challenging. Over the past decade, there has been a rapid expansion in the number of solved G-protein-coupled receptor (GPCR) crystal structures; however, the majority of the GPCR structures remain unsolved. In this context, HM guided MD has been widely used for structure-based drug design (SBDD) of GPCRs. METHODS The focus of this review is on the recent (i) developments on HM supported GPCR drug discovery in the absence of GPCR crystal structures and (ii) application of HM in understanding the ligand interactions at the binding site, virtual screening, determining receptor subtype selectivity and receptor behaviour in comparison with GPCR crystal structures. RESULTS The HM in GPCRs has been extremely challenging due to the scarcity in template structures. In such a scenario, it is difficult to get accurate HM that can facilitate understanding of the ligand-receptor interactions. This problem has been alleviated to some extent by developing refined HM based on incorporating active /inactive ligand information and inducing protein flexibility. In some cases, HM proteins were found to outscore crystal structures. CONCLUSION The developments in HM have been highly operative to gain insights about the ligand interaction at the binding site and receptor functioning at the molecular level. Thus, HM guided molecular docking may be useful for rational drug discovery for the GPCRs mediated diseases.
Collapse
Affiliation(s)
- Shome S Bhunia
- Global Institute of Pharmaceutical Education and Research, Kashipur, Uttarakhand, India
| | - Anil K Saxena
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow 226031, India
| |
Collapse
|
11
|
Damaskinaki FN, Moran LA, Garcia A, Kellam B, Watson SP. Overcoming challenges in developing small molecule inhibitors for GPVI and CLEC-2. Platelets 2021; 32:744-752. [PMID: 33406951 DOI: 10.1080/09537104.2020.1863939] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
GPVI and CLEC-2 have emerged as promising targets for long-term prevention of both arterial thrombosis and thrombo-inflammation with a decreased bleeding risk relative to current drugs. However, while there are potent blocking antibodies of both receptors, their protein nature comes with decreased bioavailability, making formulation for oral medication challenging. Small molecules are able to overcome these limitations, but there are many challenges in developing antagonists of nanomolar potency, which is necessary when considering the structural features that underlie the interaction of CLEC-2 and GPVI with their protein ligands. In this review, we describe current small-molecule inhibitors for both receptors and strategies to overcome such limitations, including considerations when it comes to in silico drug design and the importance of complex compound library selection.
Collapse
Affiliation(s)
- Foteini-Nafsika Damaskinaki
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK.,Biodiscovery Institute, University Park, University of Nottingham, Nottingham, UK
| | - Luis A Moran
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, and Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Angel Garcia
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, and Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Barrie Kellam
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK.,Biodiscovery Institute, University Park, University of Nottingham, Nottingham, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK
| |
Collapse
|
12
|
Foster H, Wilson C, Philippou H, Foster R. Progress toward a Glycoprotein VI Modulator for the Treatment of Thrombosis. J Med Chem 2020; 63:12213-12242. [PMID: 32463237 DOI: 10.1021/acs.jmedchem.0c00262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pathogenic thrombus formation accounts for the etiology of many serious conditions including myocardial infarction, stroke, deep vein thrombosis, and pulmonary embolism. Despite the development of numerous anticoagulants and antiplatelet agents, the mortality rate associated with these diseases remains high. In recent years, however, significant epidemiological evidence and clinical models have emerged to suggest that modulation of the glycoprotein VI (GPVI) platelet receptor could be harnessed as a novel antiplatelet strategy. As such, many peptidic agents have been described in the past decade, while more recent efforts have focused on the development of small molecule modulators. Herein the rationale for targeting GPVI is summarized and the published GPVI modulators are reviewed, with particular focus on small molecules. A qualitative pharmacophore hypothesis for small molecule ligands at GPVI is also presented.
Collapse
Affiliation(s)
- Holly Foster
- School of Chemistry and Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| | - Clare Wilson
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| | - Helen Philippou
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| | - Richard Foster
- School of Chemistry and Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
13
|
Wang X, Chen J, Wang W, Jaunarajs A, Wang X. Tryptoline-based benzothiazoles re-sensitize MRSA to β-lactam antibiotics. Bioorg Med Chem 2019; 27:115095. [PMID: 31521461 PMCID: PMC6779328 DOI: 10.1016/j.bmc.2019.115095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 01/03/2023]
Abstract
Resistance-modifying agents (RMAs) offer a promising solution to combat bacterial antibiotic resistance. Here we report the discovery and structure-activity relationships of a new class of RMAs with a novel tryptoline-based benzothiazole scaffold. Our most potent compound in this series (4ad) re-sensitizes multiple MRSA strains to cephalosporins at low concentrations (2 μg/mL) and has low mammalian cytotoxicity with a half growth inhibitory concentration (GI50) > 100 μg/mL in human cervical carcinoma (HeLa) cells. In addition, the same core scaffold with different substitutions also gives good antibacterial activity against MRSA.
Collapse
Affiliation(s)
- Xinfeng Wang
- Department of Chemistry, University of Colorado, Boulder, CO 80309, United States
| | - Jinsen Chen
- Department of Chemistry, University of Colorado, Boulder, CO 80309, United States
| | - Wei Wang
- Department of Chemistry, University of Colorado, Boulder, CO 80309, United States
| | - Anna Jaunarajs
- Department of Chemistry, University of Colorado, Boulder, CO 80309, United States
| | - Xiang Wang
- Department of Chemistry, University of Colorado, Boulder, CO 80309, United States.
| |
Collapse
|
14
|
Developments in inhibiting platelet aggregation based on different design strategies. Future Med Chem 2019; 11:1757-1775. [PMID: 31288579 DOI: 10.4155/fmc-2018-0345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Platelet aggregation is the central event in hemostasis and thrombosis. Up to now, many agents inhibiting platelet aggregation have been approved for the treatment of thrombotic disorders. In this review, we mainly summarized the progress in the research of platelet aggregation inhibitors based on different design strategies. The advantage and challenge of corresponding targets are also discussed in this article. We hope more platelet aggregation inhibitors with efficacy and safety will be discovered in the future.
Collapse
|
15
|
|
16
|
Abstract
Platelets play a vital role in normal hemostasis to stem blood loss at sites of vascular injury by tethering and adhering to sites of injury, recruiting other platelets and blood cells to the developing clot, releasing vasoactive small molecules and proteins, and assembling and activating plasma coagulation proteins in a tightly regulated temporal and spatial manner. In synchrony with specific end products of coagulation, primarily cross-linked fibrin, a stable thrombus quickly forms. Far beyond physiological hemostasis and pathological thrombosis, emerging evidence supports platelets playing a pivotal role in vascular homeostasis, inflammation, cellular repair, regeneration, and wide range of autocrine and paracrine functions. In essence, platelets play both structural and functional roles as reporters, messengers, and active transporters surveying the vasculature for cues of environmental or developmental stimuli and participating as first responders.1 In this review, we will provide a contemporary perspective of platelet physiology, including fundamental, translational, and clinical constructs that apply directly to human health and disease.
Collapse
Affiliation(s)
- Richard C Becker
- From the Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, OH (R.C.B.); and Gill Heart and Vascular Institute (T.S., S.S.S.) and Lexington VA Medical Center (T.S., S.S.S.), University of Kentucky School of Medicine.
| | - Travis Sexton
- From the Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, OH (R.C.B.); and Gill Heart and Vascular Institute (T.S., S.S.S.) and Lexington VA Medical Center (T.S., S.S.S.), University of Kentucky School of Medicine
| | - Susan S Smyth
- From the Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, OH (R.C.B.); and Gill Heart and Vascular Institute (T.S., S.S.S.) and Lexington VA Medical Center (T.S., S.S.S.), University of Kentucky School of Medicine
| |
Collapse
|
17
|
Misra A, Prakash P, Aggarwal H, Dhankani P, Kumar S, Pandey CP, Pugh N, Bihan D, Barthwal MK, Farndale RW, Dikshit DK, Dikshit M. Anti-thrombotic efficacy of S007-867: Pre-clinical evaluation in experimental models of thrombosis in vivo and in vitro. Biochem Pharmacol 2018; 148:288-297. [DOI: 10.1016/j.bcp.2018.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/03/2018] [Indexed: 12/30/2022]
|
18
|
Xu J, Zhou J, Zhong Y, Zhang Y, Liu J, Chen Y, Deng L, Sheng D, Wang Z, Ran H, Guo D. Phase Transition Nanoparticles as Multimodality Contrast Agents for the Detection of Thrombi and for Targeting Thrombolysis: in Vitro and in Vivo Experiments. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42525-42535. [PMID: 29160060 DOI: 10.1021/acsami.7b12689] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Thrombotic disease is extremely harmful to human health, and early detection and treatment can improve the prognosis and reduce mortality. Multimodal molecular imaging can provide abundant information about thrombi, but to date, few studies have used multimodal and multifunctional nanoparticles (NPs) for thrombus detection and for targeting thrombolysis. In this study, phase transition multimodal and multifunctional NPs (EWVDV-Fe-Ink-PFH NPs) were constructed for the first time using a three-step emulsification and carbodiimide method, and the physical and chemical properties of the NPs were investigated. The targeting abilities of the NPs and multimodal imaging, that is, photoacoustic, magnetic resonance, and ultrasound imaging, were successfully achieved in vitro and in vivo. The ability of the EWVDV peptide on the NPs to effectively target the P-selectin of thrombi was confirmed by multimodal imaging and pathology, and the penetration depths of the NPs into the thrombi were far deeper than the previously reported depths. Moreover, a perfluorohexane (PFH) phase transition induced by low-intensity focused ultrasound irradiation enabled the EWVDV-Fe-Ink-PFH NPs to cause thrombolysis in vitro. In summary, EWVDV-Fe-Ink-PFH NPs are a theranostic contrast agent that will provide a simple, effective, and noninvasive approach for the diagnosis and treatment of thrombosis.
Collapse
Affiliation(s)
- Jie Xu
- Department of Radiology and ‡Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010, P. R. China
| | - Jun Zhou
- Department of Radiology and ‡Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010, P. R. China
| | - Yixin Zhong
- Department of Radiology and ‡Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010, P. R. China
| | - Yu Zhang
- Department of Radiology and ‡Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010, P. R. China
| | - Jia Liu
- Department of Radiology and ‡Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010, P. R. China
| | - Yuli Chen
- Department of Radiology and ‡Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010, P. R. China
| | - Liming Deng
- Department of Radiology and ‡Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010, P. R. China
| | - Danli Sheng
- Department of Radiology and ‡Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010, P. R. China
| | - Zhigang Wang
- Department of Radiology and ‡Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010, P. R. China
| | - Haitao Ran
- Department of Radiology and ‡Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010, P. R. China
| | - Dajing Guo
- Department of Radiology and ‡Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Rd, Yuzhong District, Chongqing 400010, P. R. China
| |
Collapse
|
19
|
Bhunia SS, Saxena AK. Molecular modelling studies in explaining the higher GPVI antagonistic activity of the racemic 2-(4-methoxyphenylsulfonyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxamide than its enantiomers. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:783-799. [PMID: 29135287 DOI: 10.1080/1062936x.2017.1396247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
The GPVI receptor on the platelets plays a major role in inhibiting arterial thrombosis with limited risk of bleeding and is considered a potential anti-thrombotic target for arterial thrombosis. In the reported anti-thrombotics, tetrahydropyridoindoles, the title compound was the best inhibitor of the collagen mediated platelet aggregation by antagonizing the platelet receptor GPVI. Interestingly, the racemic title compound showed better antagonism (IC50 racemate = 6.7 μM) than either of its enantiomers (IC50 S enantiomer = 25.3 μM; IC50 R enantiomer = 126.3 μM). In order to explain this, the molecular modelling approaches viz. site map analysis, protein-protein docking and molecular dynamics simulation were carried out, which led to the identification of a second binding site located near the primary antagonist binding site known to bind losartan. The induced fit docking studies for both the enantiomers at the primary and secondary binding sites showed that the S-enantiomer has better interactions at the primary binding site than the R-enantiomer, while the R-enantiomer has better interactions at the secondary site than the S-enantiomer. Hence, the overall interactions of the racemic compound containing equimolar mixture may be higher than any one of the enantiomers and may explain the higher activity than its enantiomers of the racemic compound.
Collapse
Affiliation(s)
- S S Bhunia
- a Division of Medicinal and Process Chemistry , CSIR-Central Drug Research Institute , Lucknow , India
| | - A K Saxena
- a Division of Medicinal and Process Chemistry , CSIR-Central Drug Research Institute , Lucknow , India
| |
Collapse
|
20
|
Lebozec K, Jandrot-Perrus M, Avenard G, Favre-Bulle O, Billiald P. Design, development and characterization of ACT017, a humanized Fab that blocks platelet's glycoprotein VI function without causing bleeding risks. MAbs 2017; 9:945-958. [PMID: 28598281 PMCID: PMC5540112 DOI: 10.1080/19420862.2017.1336592] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Glycoprotein VI is a platelet-specific collagen receptor critical for in vivo formation of arterial thrombosis. It is also considered as an attractive target for the development of anti-thrombotic drugs because blocking glycoprotein (GP)VI inhibits platelet aggregation without inducing detrimental effects on physiologic hemostasis. Here, we present data on the identification, in vitro and ex vivo pharmacology of a humanized Fab fragment designated as ACT017. ACT017 was selected out of 15 humanized variants based upon structural and functional properties. It was produced under GMP-like conditions followed by detailed physico-chemical analysis and functional characterization indicating high antigen-binding specificity and affinity. In addition, we demonstrate, in a dose-escalation study, that ACT017 has a high capacity to specifically inhibit collagen-induced platelet aggregation ex vivo after injection to the macaque without inducing thrombocytopenia, GPVI depletion or bleeding side effects as is the case for conventional anti-platelets. Therefore, ACT017 is a promising therapeutic candidate for the development of a new generation of safe and efficient anti-thrombotic drugs.
Collapse
Affiliation(s)
- Kristell Lebozec
- a Acticor Biotech SAS, Hôpital Bichat - Inserm U1148 , 46 rue Henri Huchard, F75018 Paris , France
| | - Martine Jandrot-Perrus
- a Acticor Biotech SAS, Hôpital Bichat - Inserm U1148 , 46 rue Henri Huchard, F75018 Paris , France.,b Inserm-University Paris Diderot UMR S1148, Hôpital Bichat , 46 rue Henri Huchard, F75018 Paris , France
| | - Gilles Avenard
- a Acticor Biotech SAS, Hôpital Bichat - Inserm U1148 , 46 rue Henri Huchard, F75018 Paris , France
| | - Olivier Favre-Bulle
- a Acticor Biotech SAS, Hôpital Bichat - Inserm U1148 , 46 rue Henri Huchard, F75018 Paris , France.,c 3Biotech , 4 place Louis Armand, F75012 Paris , France
| | - Philippe Billiald
- a Acticor Biotech SAS, Hôpital Bichat - Inserm U1148 , 46 rue Henri Huchard, F75018 Paris , France.,d University Paris-Sud, University Paris-Saclay , School of Pharmacy, IPSIT , 5 rue J.-B. Clément, F92296 Châtenay-Malabry , France
| |
Collapse
|