1
|
Eymery MC, Nguyen KA, Basu S, Hausmann J, Tran-Nguyen VK, Seidel HP, Gutierrez L, Boumendjel A, McCarthy AA. Discovery of potent chromone-based autotaxin inhibitors inspired by cannabinoids. Eur J Med Chem 2024; 263:115944. [PMID: 37976710 DOI: 10.1016/j.ejmech.2023.115944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Autotaxin (ATX) is an enzyme primarily known for the production of lysophosphatidic acid. Being involved in the development of major human diseases, such as cancer and neurodegenerative diseases, the enzyme has been featured in multiple studies as a pharmacological target. We previously found that the cannabinoid tetrahydrocannabinol (THC) could bind and act as an excellent inhibitor of ATX. This study aims to use the cannabinoid scaffold as a starting point to find cannabinoid-unrelated ATX inhibitors, following a funnel down approach in which large chemical libraries sharing chemical similarities with THC were screened to identify lead scaffold types for optimization. This approach allowed us to identify compounds bearing chromone and indole scaffolds as promising ATX inhibitors. Further optimization led to MEY-003, which is characterized by the direct linkage of an N-pentyl indole to the 5,7-dihydroxychromone moiety. This molecule has potent inhibitory activity towards ATX-β and ATX-ɣ as evidenced by enzymatic studies and its mode of action was rationalized by structural biology studies using macromolecular X-ray crystallography.
Collapse
Affiliation(s)
- Mathias Christophe Eymery
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38000, Grenoble, France; Univ. Grenoble Alpes, INSERM U1039, LRB, 38000, Grenoble, France
| | - Kim-Anh Nguyen
- Univ. Grenoble Alpes, INSERM U1039, LRB, 38000, Grenoble, France
| | - Shibom Basu
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Jens Hausmann
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Viet-Khoa Tran-Nguyen
- Unité de Biologie Fonctionnelle et Adaptative (BFA), Université Paris Cité, 75013, Paris, France
| | - Hans Peter Seidel
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Lola Gutierrez
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38000, Grenoble, France
| | | | - Andrew Aloysius McCarthy
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38000, Grenoble, France
| |
Collapse
|
2
|
Zhang C, Liu Y, Zhou Q, Fan H, Liu X, Hu J. Recent research advances in ATX inhibitors: An overview of primary literature. Bioorg Med Chem 2023; 90:117374. [PMID: 37354726 DOI: 10.1016/j.bmc.2023.117374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023]
Abstract
The autoglobulin gene is the main enzyme for circulating LPA production and has lysophosphatidylcholine D activity, which catalyzes the production of lysophosphatidic acid and choline with lysophosphatidylcholine as substrate. A growing body of experimental evidence suggests that autoglobulin is involved in the pathogenesis of a variety of diseases. This review summarizes the different structural ATX inhibitors classified according to their binding mode to the ATX triple orientation site, and summarizes the conformational relationships and molecular docking of each type with ATX structure, hoping to contribute to the development of novel ATX inhibitors.
Collapse
Affiliation(s)
- Cheng Zhang
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China
| | - Yue Liu
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China
| | - Qinjiang Zhou
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China
| | - Hongze Fan
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China
| | - Xiaoxiao Liu
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China.
| | - Jinxing Hu
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China.
| |
Collapse
|
3
|
Chiodi D, Ishihara Y. "Magic Chloro": Profound Effects of the Chlorine Atom in Drug Discovery. J Med Chem 2023; 66:5305-5331. [PMID: 37014977 DOI: 10.1021/acs.jmedchem.2c02015] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Chlorine is one of the most common atoms present in small-molecule drugs beyond carbon, hydrogen, nitrogen, and oxygen. There are currently more than 250 FDA-approved chlorine-containing drugs, yet the beneficial effect of the chloro substituent has not yet been reviewed. The seemingly simple substitution of a hydrogen atom (R = H) with a chlorine atom (R = Cl) can result in remarkable improvements in potency of up to 100,000-fold and can lead to profound effects on pharmacokinetic parameters including clearance, half-life, and drug exposure in vivo. Following the literature terminology of the "magic methyl effect" in drugs, the term "magic chloro effect" has been coined herein. Although reports of 500-fold or 1000-fold potency improvements are often serendipitous discoveries that can be considered "magical" rather than planned, hypotheses made to explain the magic chloro effect can lead to lessons that accelerate the cycle of drug discovery.
Collapse
Affiliation(s)
- Debora Chiodi
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yoshihiro Ishihara
- Department of Chemistry, Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, California 92121, United States
| |
Collapse
|
4
|
Yamamoto T, Fukuta K, Kariya Y, Matsuura T, Hagiwara H, Uno B, Esaka Y. Synthetic and computational investigation of neighboring group participation by a nucleophilic disulfide bond. Org Biomol Chem 2022; 21:65-68. [PMID: 36445233 DOI: 10.1039/d2ob01574a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Disulfide bonds of 2-isocyanatophenyl methyl disulfide and 2-endo-isocyanato-6-endo-(methyldisulfanyl)bicyclo[2.2.1]heptane showed neighboring group participation in the formation of thiocarbamates. Natural Bond Orbital (NBO) analyses revealed that the unusual nucleophilicity requires a rigid through-space interaction between a lone pair of the disulfide bond and an antibonding orbital of isocyanate.
Collapse
Affiliation(s)
- Takuhei Yamamoto
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.,United Graduate School of Drug Discovery and Medical Information Science, Gifu University, 1-1 Yanaido, Gifu 501-1194, Japan
| | - Koki Fukuta
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Yuki Kariya
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Taiki Matsuura
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hiroaki Hagiwara
- Department of Chemistry, Faculty of Education, Gifu University, 1-1 Yanaido, Gifu 501-1193, Japan
| | - Bunji Uno
- Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu 509-0923, Japan
| | - Yukihiro Esaka
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.,United Graduate School of Drug Discovery and Medical Information Science, Gifu University, 1-1 Yanaido, Gifu 501-1194, Japan
| |
Collapse
|
5
|
Banerjee S, Lee S, Norman DD, Tigyi GJ. Designing Dual Inhibitors of Autotaxin-LPAR GPCR Axis. Molecules 2022; 27:5487. [PMID: 36080255 PMCID: PMC9458164 DOI: 10.3390/molecules27175487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
The ATX-LPA-LPAR1 signaling pathway plays a universal role in stimulating diverse cellular responses, including cell proliferation, migration, survival, and invasion in almost every cell type. The ATX-LPAR1 axis is linked to several metabolic and inflammatory diseases including cancer, fibrosis, and rheumatoid arthritis. Numerous selective ATX or LPAR1 inhibitors have been developed and so far, their clinical efficacy has only been evaluated in idiopathic pulmonary fibrosis. None of the ATX and LPAR1 inhibitors have advanced to clinical trials for cancer and rheumatoid arthritis. Nonetheless, several research groups, including ours, have shown considerable benefit of simultaneous ATX and LPAR1 inhibition through combination therapy. Recent research suggests that dual-targeting therapies are superior to combination therapies that use two selective inhibitors. However, limited reports are available on ATX-LPAR1 dual inhibitors, potentially due to co-expression of multiple different LPARs with close structural similarities at the same target. In this review, we discuss rational design and future directions of dual ATX-LPAR1 inhibitors.
Collapse
Affiliation(s)
- Souvik Banerjee
- Department of Chemistry, Middle Tennessee State University, 1301 E. Main Street, Murfreesboro, TN 37132, USA
- Molecular Biosciences Program, Middle Tennessee State University, 1301 E. Main Street, Murfreesboro, TN 37132, USA
| | - Suechin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Derek D. Norman
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Gabor J. Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3 N. Dunlap Street, Memphis, TN 38163, USA
| |
Collapse
|
6
|
Zhao F, Lauder K, Liu S, Finnigan JD, Charnock SBR, Charnock SJ, Castagnolo D. Chemoenzymatic Cascades for the Enantioselective Synthesis of β-Hydroxysulfides Bearing a Stereocentre at the C-O or C-S Bond by Ketoreductases. Angew Chem Int Ed Engl 2022; 61:e202202363. [PMID: 35576553 DOI: 10.1002/anie.202202363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 12/17/2022]
Abstract
Chiral β-hydroxysulfides are an important class of organic compounds which find broad application in organic and pharmaceutical chemistry. Herein we describe the development of novel biocatalytic and chemoenzymatic methods for the enantioselective synthesis of β-hydroxysulfides by exploiting ketoreductase (KRED) enzymes. Four KREDs were discovered from a pool of 384 enzymes identified and isolated through a metagenomic approach. KRED311 and KRED349 catalysed the synthesis of β-hydroxysulfides bearing a stereocentre at the C-O bond with opposite absolute configurations and excellent ee values by novel chemoenzymatic and biocatalytic-chemical-biocatalytic (bio-chem-bio) cascades starting from commercially available thiophenols/thiols and α-haloketones/alcohols. KRED253 and KRED384 catalysed the enantioselective synthesis of β-hydroxysulfides bearing a stereocentre at the C-S bond with opposite enantioselectivities by dynamic kinetic resolution (DKR) of racemic α-thioaldehydes.
Collapse
Affiliation(s)
- Fei Zhao
- School of Cancer and Pharmaceutical Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.,Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Kate Lauder
- School of Cancer and Pharmaceutical Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Siyu Liu
- School of Cancer and Pharmaceutical Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - James D Finnigan
- Prozomix Limited, West End Ind. Estate, Haltwhistle, Northumberland, NE49 9HA, UK
| | - Simon B R Charnock
- Prozomix Limited, West End Ind. Estate, Haltwhistle, Northumberland, NE49 9HA, UK
| | - Simon J Charnock
- Prozomix Limited, West End Ind. Estate, Haltwhistle, Northumberland, NE49 9HA, UK
| | - Daniele Castagnolo
- School of Cancer and Pharmaceutical Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.,Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| |
Collapse
|
7
|
Zhao F, Lauder K, Liu S, Finnigan JD, Charnock SBR, Charnock SJ, Castagnolo D. Chemoenzymatic Cascades for the Enantioselective Synthesis of β‐Hydroxysulfides Bearing a Stereocentre at C− O or C − S Bonds by Ketoreductases (KREDs). Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fei Zhao
- University College London Chemistry UNITED KINGDOM
| | - Kate Lauder
- King's College London Cancer and Pharmaceutical Sciences UNITED KINGDOM
| | - Siyu Liu
- King's College London Cancer and Pharmaceutical Sciences UNITED KINGDOM
| | | | | | | | - Daniele Castagnolo
- University College London Chemistry 20 Gordon Street WC1H 0AJ London UNITED KINGDOM
| |
Collapse
|
8
|
Clark JM, Salgado-Polo F, Macdonald SJF, Barrett TN, Perrakis A, Jamieson C. Structure-Based Design of a Novel Class of Autotaxin Inhibitors Based on Endogenous Allosteric Modulators. J Med Chem 2022; 65:6338-6351. [PMID: 35440138 PMCID: PMC9059126 DOI: 10.1021/acs.jmedchem.2c00368] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autotaxin (ATX) facilitates the hydrolysis of lysophosphatidylcholine to lysophosphatidic acid (LPA), a bioactive phospholipid, which facilitates a diverse range of cellular effects in multiple tissue types. Abnormal LPA expression can lead to the progression of diseases such as cancer and fibrosis. Previously, we identified a potent ATX steroid-derived hybrid (partially orthosteric and allosteric) inhibitor which did not form interactions with the catalytic site. Herein, we describe the design, synthesis, and biological evaluation of a focused library of novel steroid-derived analogues targeting the bimetallic catalytic site, representing an entirely unique class of ATX inhibitors of type V designation, which demonstrate significant pathway-relevant biochemical and phenotypic biological effects. The current compounds modulated LPA-mediated ATX allostery and achieved indirect blockage of LPA1 internalization, in line with the observed reduction in downstream signaling cascades and chemotaxis induction. These novel type V ATX inhibitors represent a promising tool to inactivate the ATX-LPA signaling axis.
Collapse
Affiliation(s)
- Jennifer M Clark
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Fernando Salgado-Polo
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Simon J F Macdonald
- Medicines Design, GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Tim N Barrett
- Medicines Design, GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Anastassis Perrakis
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Craig Jamieson
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
9
|
Roy A, Sarkar T, Datta S, Maiti A, Chakrabarti M, Mondal T, Mondal C, Banerjee A, Roy S, Mukherjee S, Muley P, Chakraborty S, Banerjee M, Kundu M, Roy KK. Structure-based discovery of (S)-2-amino-6-(4-fluorobenzyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6]pyrido[3,4-b]indole-1,3(2H)-dione as low nanomolar, orally bioavailable autotaxin inhibitor. Chem Biol Drug Des 2021; 99:496-503. [PMID: 34951520 DOI: 10.1111/cbdd.14017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 01/06/2023]
Abstract
Inhibition of extracellular secreted enzyme autotaxin (ATX) represents an attractive strategy for the development of new therapeutics to treat various diseases and a few inhibitors entered in clinical trials. We herein describe structure-based design, synthesis, and biological investigations revealing a potent and orally bioavailable ATX inhibitor 1. During the molecular docking and scoring studies within the ATX enzyme (PDB-ID: 4ZGA), the S-enantiomer (Gscore = -13.168 kcal/mol) of the bound ligand PAT-494 scored better than its R-enantiomer (Gscore = -9.562 kcal/mol) which corroborated with the reported observation and analysis of the results suggested the scope of manipulation of the hydantoin substructure in PAT-494. Accordingly, the docking-based screening of a focused library of 10 compounds resulted in compound 1 as a better candidate for pharmacological studies. Compound 1 was synthesized from L-tryptophan and evaluated against ATX enzymatic activities with an IC50 of 7.6 and 24.6 nM in biochemical and functional assays, respectively. Further, ADME-PK studies divulged compound 1 as non-cytotoxic (19.02% cell growth inhibition at 20 μM in human embryonic kidney cells), metabolically stable against human liver microsomes (CLint = 15.6 μl/min/mg; T1/2 = 113.2 min) with solubility of 4.82 μM and orally bioavailable, demonstrating its potential to be used for in vivo experiments.
Collapse
Affiliation(s)
- Ashis Roy
- TCG Lifesciences Pvt. Ltd., Kolkata, India
| | | | | | - Arup Maiti
- TCG Lifesciences Pvt. Ltd., Kolkata, India
| | | | | | | | | | | | | | | | | | | | | | - Kuldeep K Roy
- Department of Pharmaceutical Sciences, School of Health Sciences, UPES, Dehradun, India
| |
Collapse
|
10
|
Jia Y, Li Y, Xu XD, Tian Y, Shang H. Design and Development of Autotaxin Inhibitors. Pharmaceuticals (Basel) 2021; 14:ph14111203. [PMID: 34832985 PMCID: PMC8622848 DOI: 10.3390/ph14111203] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022] Open
Abstract
Autotaxin (ATX) is the only enzyme of the ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP2) family with lysophospholipase D (lysoPLD) activity, which is mainly responsible for the hydrolysis of extracellular lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA). LPA can induce various responses, such as cell proliferation, migration, and cytokine production, through six G protein-coupled receptors (LPA1-6). This signaling pathway is associated with metabolic and inflammatory disorder, and inhibiting this pathway has a positive effect on the treatment of related diseases, while ATX, as an important role in the production of LPA, has been shown to be associated with the occurrence and metastasis of tumors, fibrosis and cardiovascular diseases. From mimics of ATX natural lipid substrates to the rational design of small molecule inhibitors, ATX inhibitors have made rapid progress in structural diversity and design over the past 20 years, and three drugs, GLPG1690, BBT-877, and BLD-0409, have entered clinical trials. In this paper, we will review the structure of ATX inhibitors from the perspective of the transformation of design ideas, discuss the advantages and disadvantages of each inhibitor type, and put forward prospects for the development of ATX inhibitors in the future.
Collapse
Affiliation(s)
| | | | | | - Yu Tian
- Correspondence: (Y.T.); (H.S.)
| | | |
Collapse
|
11
|
Oeser P, Koudelka J, Petrenko A, Tobrman T. Recent Progress Concerning the N-Arylation of Indoles. Molecules 2021; 26:molecules26165079. [PMID: 34443667 PMCID: PMC8402097 DOI: 10.3390/molecules26165079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
This review summarizes the current state-of-the-art procedures in terms of the preparation of N-arylindoles. After a short introduction, the transition-metal-free procedures available for the N-arylation of indoles are briefly discussed. Then, the nickel-catalyzed and palladium-catalyzed N-arylation of indoles are both discussed. In the next section, copper-catalyzed procedures for the N-arylation of indoles are described. The final section focuses on recent findings in the field of biologically active N-arylindoles.
Collapse
|
12
|
Structure-Based Discovery of Novel Chemical Classes of Autotaxin Inhibitors. Int J Mol Sci 2020; 21:ijms21197002. [PMID: 32977539 PMCID: PMC7582705 DOI: 10.3390/ijms21197002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023] Open
Abstract
Autotaxin (ATX) is a secreted glycoprotein, widely present in biological fluids, largely responsible for extracellular lysophosphatidic acid (LPA) production. LPA is a bioactive growth-factor-like lysophospholipid that exerts pleiotropic effects in almost all cell types, exerted through at least six G-protein-coupled receptors (LPAR1-6). Increased ATX expression has been detected in different chronic inflammatory diseases, while genetic or pharmacological studies have established ATX as a promising therapeutic target, exemplified by the ongoing phase III clinical trial for idiopathic pulmonary fibrosis. In this report, we employed an in silico drug discovery workflow, aiming at the identification of structurally novel series of ATX inhibitors that would be amenable to further optimization. Towards this end, a virtual screening protocol was applied involving the search into molecular databases for new small molecules potentially binding to ATX. The crystal structure of ATX in complex with a known inhibitor (HA-155) was used as a molecular model docking reference, yielding a priority list of 30 small molecule ATX inhibitors, validated by a well-established enzymatic assay of ATX activity. The two most potent, novel and structurally different compounds were further structurally optimized by deploying further in silico tools, resulting to the overall identification of six new ATX inhibitors that belong to distinct chemical classes than existing inhibitors, expanding the arsenal of chemical scaffolds and allowing further rational design.
Collapse
|
13
|
Kawaguchi M, Okabe T, Okudaira S, Hama K, Kano K, Nishimasu H, Nakagawa H, Ishitani R, Kojima H, Nureki O, Aoki J, Nagano T. Identification of Potent In Vivo Autotaxin Inhibitors that Bind to Both Hydrophobic Pockets and Channels in the Catalytic Domain. J Med Chem 2020; 63:3188-3204. [PMID: 32134652 DOI: 10.1021/acs.jmedchem.9b01967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Autotaxin (ATX, also known as ENPP2) is a predominant lysophosphatidic acid (LPA)-producing enzyme in the body, and LPA regulates various physiological functions, such as angiogenesis and wound healing, as well as pathological functions, including proliferation, metastasis, and fibrosis, via specific LPA receptors. Therefore, the ATX-LPA axis is a promising therapeutic target for dozens of diseases, including cancers, pulmonary and liver fibroses, and neuropathic pain. Previous structural studies revealed that the catalytic domain of ATX has a hydrophobic pocket and a hydrophobic channel; these serve to recognize the substrate, lysophosphatidylcholine (LPC), and deliver generated LPA to LPA receptors on the plasma membrane. Most reported ATX inhibitors bind to either the hydrophobic pocket or the hydrophobic channel. Herein, we present a unique ATX inhibitor that binds mainly to the hydrophobic pocket and also partly to the hydrophobic channel, inhibiting ATX activity with high potency and selectivity in vitro and in vivo. Notably, our inhibitor can rescue the cardia bifida (two hearts) phenotype in ATX-overexpressing zebrafish embryos.
Collapse
Affiliation(s)
- Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Takayoshi Okabe
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinichi Okudaira
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kotaro Hama
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kuniyuki Kano
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Hiroshi Nishimasu
- Graduate School of Biological Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Ryuichiro Ishitani
- Graduate School of Biological Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Osamu Nureki
- Graduate School of Biological Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Tetsuo Nagano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Yanagida K, Valentine WJ. Druggable Lysophospholipid Signaling Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:137-176. [DOI: 10.1007/978-3-030-50621-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Tan Y, Li Y, Tang F. Nucleic Acid Aptamer: A Novel Potential Diagnostic and Therapeutic Tool for Leukemia. Onco Targets Ther 2019; 12:10597-10613. [PMID: 31824168 PMCID: PMC6900352 DOI: 10.2147/ott.s223946] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/14/2019] [Indexed: 12/23/2022] Open
Abstract
Leukemia immunotherapy has been dominant via using synthetic antibodies to target cluster of differentiation (CD) molecules, nevertheless inevitable cytotoxicity and immunogenicity would limit its development. Recently, increasing reports have focused on nucleic acid aptamers, a class of high-affinity nucleic acid ligands. Aptamers purportedly serve as “chemical antibodies”, have negligible cytotoxicity and low immunogenicity, and would be widely applied for the therapy and diagnosis of various diseases, especially leukemia. In the preclinical applications, nucleic acid aptamers have displayed the augmented specificity and selectivity via recognizing targets on leukemia cells based on unique three-dimensional conformations. As small molecules with nucleic acid characteristics, aptamers need to be chemically modified to resist nuclease degradation, renal clearance and improve binding affinities. Moreover, aptamers can be linked with neoteric detection techniques to enhance sensitivity and selectivity of diagnosis and therapy. In this review, we summarized aptamers’ preparation, chemical modification and conjugation, and discussed the application of aptamers in diagnosis and treatment of leukemia through highly specifically recognizing target molecules. Significantly, the application prospect of aptamers in fusion genes would be introduced.
Collapse
Affiliation(s)
- Yuan Tan
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, People's Republic of China
| | - Yuejin Li
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, People's Republic of China
| | - Faqing Tang
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, People's Republic of China
| |
Collapse
|
16
|
The Structural Binding Mode of the Four Autotaxin Inhibitor Types that Differentially Affect Catalytic and Non-Catalytic Functions. Cancers (Basel) 2019; 11:cancers11101577. [PMID: 31623219 PMCID: PMC6826961 DOI: 10.3390/cancers11101577] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
Autotaxin (ATX) is a secreted lysophospholipase D, catalysing the conversion of lysophosphatidylcholine (LPC) to bioactive lysophosphatidic acid (LPA). LPA acts through two families of G protein-coupled receptors (GPCRs) controlling key cellular responses, and it is implicated in many physiological processes and pathologies. ATX, therefore, has been established as an important drug target in the pharmaceutical industry. Structural and biochemical studies of ATX have shown that it has a bimetallic nucleophilic catalytic site, a substrate-binding (orthosteric) hydrophobic pocket that accommodates the lipid alkyl chain, and an allosteric tunnel that can accommodate various steroids and LPA. In this review, first, we revisit what is known about ATX-mediated catalysis, crucially in light of allosteric regulation. Then, we present the known ATX catalysis-independent functions, including binding to cell surface integrins and proteoglycans. Next, we analyse all crystal structures of ATX bound to inhibitors and present them based on the four inhibitor types that are established based on the binding to the orthosteric and/or the allosteric site. Finally, in light of these data we discuss how mechanistic differences might differentially modulate the activity of the ATX-LPA signalling axis, and clinical applications including cancer.
Collapse
|
17
|
Abstract
Substituted indole scaffolds are often utilized in medicinal chemistry as they regularly possess significant pharmacological activity. Therefore the development of simple, inexpensive and efficient methods for alkylating the indole heterocycle continues to be an active research area. Reported are reactions of trichloroacetimidate electrophiles and indoles to address the challenges of accessing alkyl decorated indole structures. These alkylations perform best when either the indole or the imidate is functionalized with electron withdrawing groups to avoid polyalkylation.
Collapse
Affiliation(s)
- Tamie Suzuki
- Department of Chemistry, 1-014 Center for Science and Technology, Syracuse University, Syracuse, NY 13244
| | - John D Chisholm
- Department of Chemistry, 1-014 Center for Science and Technology, Syracuse University, Syracuse, NY 13244
| |
Collapse
|
18
|
Matralis AN, Afantitis A, Aidinis V. Development and therapeutic potential of autotaxin small molecule inhibitors: From bench to advanced clinical trials. Med Res Rev 2018; 39:976-1013. [PMID: 30462853 DOI: 10.1002/med.21551] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/21/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
Several years after its isolation from melanoma cells, an increasing body of experimental evidence has established the involvement of Autotaxin (ATX) in the pathogenesis of several diseases. ATX, an extracellular enzyme responsible for the hydrolysis of lysophosphatidylcholine (LPC) into the bioactive lipid lysophosphatidic acid (LPA), is overexpressed in a variety of human metastatic cancers and is strongly implicated in chronic inflammation and liver toxicity, fibrotic diseases, and thrombosis. Accordingly, the ATX-LPA signaling pathway is considered a tractable target for therapeutic intervention substantiated by the multitude of research campaigns that have been successful in identifying ATX inhibitors by both academia and industry. Furthermore, from a therapeutic standpoint, the entry and the so far promising results of the first ATX inhibitor in advanced clinical trials against idiopathic pulmonary fibrosis (IPF) lends support to the viability of this approach, bringing it to the forefront of drug discovery efforts. The present review article aims to provide a comprehensive overview of the most important series of ATX inhibitors developed so far. Special weight is lent to the design, structure activity relationship and mode of binding studies carried out, leading to the identification of advanced leads. The most significant in vitro and in vivo pharmacological results of these advanced leads are also summarized. Lastly, the development of the first ATX inhibitor entered in clinical trials accompanied by its phase 1 and 2a clinical trial data is disclosed.
Collapse
Affiliation(s)
- Alexios N Matralis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Antreas Afantitis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece.,NovaMechanics Ltd Cheminformatics Company, Nicosia, Cyprus
| | - Vassilis Aidinis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| |
Collapse
|
19
|
Döhler C, Zebisch M, Krinke D, Robitzki A, Sträter N. Crystallization of ectonucleotide phosphodiesterase/pyrophosphatase-3 and orientation of the SMB domains in the full-length ectodomain. Acta Crystallogr F Struct Biol Commun 2018; 74:696-703. [PMID: 30387774 PMCID: PMC6213977 DOI: 10.1107/s2053230x18011111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/03/2018] [Indexed: 11/11/2022] Open
Abstract
Ectonucleotide phosphodiesterase/pyrophosphatase-3 (NPP3, ENPP3) is an ATP-hydrolyzing glycoprotein that is located in the extracellular space. The full-length ectodomain of rat NPP3 was expressed in HEK293S GntI- cells, purified using two chromatographic steps and crystallized. Its structure at 2.77 Å resolution reveals that the active-site zinc ions are missing and a large part of the active site and the surrounding residues are flexible. The SMB-like domains have the same orientation in all four molecules in the asymmetric unit. The SMB2 domain is oriented as in NPP2, but the SMB1 domain does not interact with the PDE domain but extends further away from the PDE domain. Deletion of the SMB domains resulted in crystals that diffracted to 2.4 Å resolution and are suitable for substrate-binding studies.
Collapse
Affiliation(s)
- Christoph Döhler
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Matthias Zebisch
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
- Division of Structural Biology, Evotec, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, England
| | - Dana Krinke
- Division of Molecular Biological–Biochemical Processing Technology, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Andrea Robitzki
- Division of Molecular Biological–Biochemical Processing Technology, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| |
Collapse
|
20
|
Luo X, Liu Q, Zhu H, Chen H. Copper-catalysed regioselective sulfenylation of indoles with sodium sulfinates. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180170. [PMID: 29892452 PMCID: PMC5990840 DOI: 10.1098/rsos.180170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
A copper-catalysed sulfenylation of indoles with sodium sulfinates that affords 3-sulfenylindoles in good-to-excellent yields in N,N-dimethyl formamide (DMF) is described. In the process, DMF serves not only as a solvent but also as a reductant. This transformation is easy to carry out and has mild reaction conditions and good functional group tolerance.
Collapse
Affiliation(s)
- Xiaojun Luo
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Shiliugang Road 13th, Guangzhou 510315, People's Republic of China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Shiliugang Road 13th, Guangzhou 510315, People's Republic of China
| | - Huoji Chen
- School of Traditional Chinese Medicine, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| |
Collapse
|
21
|
Nikolaou A, Ninou I, Kokotou MG, Kaffe E, Afantitis A, Aidinis V, Kokotos G. Hydroxamic Acids Constitute a Novel Class of Autotaxin Inhibitors that Exhibit in Vivo Efficacy in a Pulmonary Fibrosis Model. J Med Chem 2018; 61:3697-3711. [PMID: 29620892 DOI: 10.1021/acs.jmedchem.8b00232] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autotaxin (ATX) catalyzes the hydrolysis of lysophosphatidylcholine (LPC) generating the lipid mediator lysophosphatidic acid (LPA). Both ATX and LPA are involved in various pathological inflammatory conditions, including fibrosis and cancer, and have attracted great interest as medicinal targets over the past decade. Thus, the development of novel potent ATX inhibitors is of great importance. We have developed a novel class of ATX inhibitors containing the zinc binding functionality of hydroxamic acid. Such novel hydroxamic acids that incorporate a non-natural δ-amino acid residue exhibit high in vitro inhibitory potency over ATX (IC50 values 50-60 nM). Inhibitor 32, based on δ-norleucine, was tested for its efficacy in a mouse model of pulmonary inflammation and fibrosis induced by bleomycin and exhibited promising efficacy. The novel hydroxamic ATX inhibitors provide excellent tools for the study of the role of the enzyme and could contribute to the development of novel therapeutic agents for the treatment of fibrosis and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Aikaterini Nikolaou
- Laboratory of Organic Chemistry, Department of Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis , Athens 15771 , Greece
| | - Ioanna Ninou
- Division of Immunology , Biomedical Sciences Research Center "Alexander Fleming" , Athens 16672 , Greece
| | - Maroula G Kokotou
- Laboratory of Organic Chemistry, Department of Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis , Athens 15771 , Greece
| | - Eleanna Kaffe
- Division of Immunology , Biomedical Sciences Research Center "Alexander Fleming" , Athens 16672 , Greece
| | | | - Vassilis Aidinis
- Division of Immunology , Biomedical Sciences Research Center "Alexander Fleming" , Athens 16672 , Greece
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis , Athens 15771 , Greece
| |
Collapse
|
22
|
Barrows RD, Blacklock KM, Rablen PR, Khare SD, Knapp S. Computational assessment of thioether isosteres. J Mol Graph Model 2018; 80:282-292. [PMID: 29414047 DOI: 10.1016/j.jmgm.2018.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 11/16/2022]
Abstract
Replacement of the sulfur atom in biologically active diaryl and heteroaryl thioethers (Ar-S-Ar', HAr-S-Ar, and HAr-S-HAr') with any of several one-atom or two-atom linkers can be expected to reduce the susceptibility of the analogue to metabolic oxidation, a well-documented problem for thioethers intended for medicinal chemistry applications. Ab initio calculations indicate how well various proposed thioether isosteric groups, including some new and unusual ones, may perform structurally and electronically in replacing the bridging sulfur atom. Four of these are calculationally evaluated as proposed substructures in Axitinib analogues. The predicted binding behavior of the latter within two different previously crystallographically characterized protein-Axitinib binding sites (VEGFR2 kinase and ABL1 T315I gatekeeper mutant kinase), and an assessment of their suitability and anticipated shortcomings, are presented.
Collapse
Affiliation(s)
- Robert D Barrows
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 610 Taylor Rd., Piscataway, NJ 08854 USA
| | - Kristin M Blacklock
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 610 Taylor Rd., Piscataway, NJ 08854 USA
| | - Paul R Rablen
- Department of Chemistry & Biochemistry, Swarthmore College, 500 College Ave., Swarthmore, PA 19081 USA
| | - Sagar D Khare
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 610 Taylor Rd., Piscataway, NJ 08854 USA
| | - Spencer Knapp
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 610 Taylor Rd., Piscataway, NJ 08854 USA.
| |
Collapse
|
23
|
Šiaučiulis M, Sapmaz S, Pulis AP, Procter DJ. Dual vicinal functionalisation of heterocycles via an interrupted Pummerer coupling/[3,3]-sigmatropic rearrangement cascade. Chem Sci 2017; 9:754-759. [PMID: 29629145 PMCID: PMC5870476 DOI: 10.1039/c7sc04723a] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/17/2017] [Indexed: 12/11/2022] Open
Abstract
A dual vicinal functionalisation cascade involving the union of heterocycles and allyl sulfoxides is described. In particular, the approach provides efficient one-step access to biologically relevant and synthetically important C3 thio, C2 carbo substituted indoles. The reaction operates under mild, metal free conditions and without directing groups, via an interrupted Pummerer coupling of activated allyl sulfoxides, generating allyl heteroaryl sulfonium salts that are predisposed to a charge accelerated [3,3]-sigmatropic rearrangement.
Collapse
Affiliation(s)
- Mindaugas Šiaučiulis
- School of Chemistry , University of Manchester , Oxford Rd , Manchester , M13 9PL , UK .
| | - Selma Sapmaz
- Lilly Research Laboratories , Eli Lilly and Company Limited , Erl Wood Manor, Sunninghill Road , Windlesham , Surrey GU20 6PH , UK
| | - Alexander P Pulis
- School of Chemistry , University of Manchester , Oxford Rd , Manchester , M13 9PL , UK .
| | - David J Procter
- School of Chemistry , University of Manchester , Oxford Rd , Manchester , M13 9PL , UK .
| |
Collapse
|
24
|
Pantsar T, Singha P, Nevalainen TJ, Koshevoy I, Leppänen J, Poso A, Niskanen JM, Pasonen-Seppänen S, Savinainen JR, Laitinen T, Laitinen JT. Design, synthesis, and biological evaluation of 2,4-dihydropyrano[2,3-c]pyrazole derivatives as autotaxin inhibitors. Eur J Pharm Sci 2017; 107:97-111. [DOI: 10.1016/j.ejps.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 01/19/2023]
|
25
|
Design, synthesis, docking and biological evaluation of 4-phenyl-thiazole derivatives as autotaxin (ATX) inhibitors. Bioorg Med Chem Lett 2017; 27:4156-4164. [DOI: 10.1016/j.bmcl.2017.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 01/08/2023]
|
26
|
Joncour A, Desroy N, Housseman C, Bock X, Bienvenu N, Cherel L, Labeguere V, Peixoto C, Annoot D, Lepissier L, Heiermann J, Hengeveld WJ, Pilzak G, Monjardet A, Wakselman E, Roncoroni V, Le Tallec S, Galien R, David C, Vandervoort N, Christophe T, Conrath K, Jans M, Wohlkonig A, Soror S, Steyaert J, Touitou R, Fleury D, Vercheval L, Mollat P, Triballeau N, van der Aar E, Brys R, Heckmann B. Discovery, Structure–Activity Relationship, and Binding Mode of an Imidazo[1,2-a]pyridine Series of Autotaxin Inhibitors. J Med Chem 2017; 60:7371-7392. [DOI: 10.1021/acs.jmedchem.7b00647] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Agnès Joncour
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Nicolas Desroy
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | | | - Xavier Bock
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Natacha Bienvenu
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Laëtitia Cherel
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | | | | | - Denis Annoot
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Luce Lepissier
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Jörg Heiermann
- Mercachem, Kerkenbos 1013, 6546 Nijmegen, The Netherlands
| | | | - Gregor Pilzak
- Mercachem, Kerkenbos 1013, 6546 Nijmegen, The Netherlands
| | - Alain Monjardet
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | | | | | | | - René Galien
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Christelle David
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Nele Vandervoort
- Galapagos NV, Generaal De Wittelaan
L11 A3, 2800 Mechelen, Belgium
| | | | - Katja Conrath
- Galapagos NV, Generaal De Wittelaan
L11 A3, 2800 Mechelen, Belgium
| | - Mia Jans
- Galapagos NV, Generaal De Wittelaan
L11 A3, 2800 Mechelen, Belgium
| | - Alexandre Wohlkonig
- VIB
Structural Biology Research Center, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Sameh Soror
- VIB
Structural Biology Research Center, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Jan Steyaert
- VIB
Structural Biology Research Center, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Robert Touitou
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Damien Fleury
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Lionel Vercheval
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Patrick Mollat
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | | | | | - Reginald Brys
- Galapagos NV, Generaal De Wittelaan
L11 A3, 2800 Mechelen, Belgium
| | - Bertrand Heckmann
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| |
Collapse
|