1
|
Kos J, Langiu M, Hellyer SD, Gregory KJ. Pharmacology, Signaling and Therapeutic Potential of Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators. ACS Pharmacol Transl Sci 2024; 7:3671-3690. [PMID: 39698283 PMCID: PMC11651194 DOI: 10.1021/acsptsci.4c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 12/20/2024]
Abstract
Metabotropic glutamate receptors are a family of eight class C G protein-coupled receptors regulating higher order brain functions including cognition and motion. Metabotropic glutamate receptors have thus been heavily investigated as potential drug targets for treating neurological disorders. Drug discovery efforts directed toward metabotropic glutamate receptor subtype 5 (mGlu5) have been particularly fruitful, with a wealth of drug candidates and pharmacological tools identified. mGlu5 negative allosteric modulators (NAMs) are promising novel therapeutics for developmental, neuropsychiatric and neurodegenerative disorders (e.g., Alzheimer's Disease, Huntington's Disease, Parkinson's Disease, amyotrophic lateral sclerosis, autism spectrum disorders, substance use disorders, stroke, anxiety and depression) and show promise in ameliorating adverse effects induced by other medications (e.g., L-dopa induced dyskinesia in Parkinson's Disease). However, despite preclinical success, mGlu5 NAMs are yet to reach the market due to poor safety and efficacy profiles in clinical trials. Herein, we review the physiology and signal transduction of mGlu5. We provide a comprehensive critique of therapeutic options with respect to mGlu5 inhibitors, spanning from orthosteric antagonists to NAMs. Finally, we address the challenges associated with drug development and highlight future directions to guide rational drug discovery of safe and effective novel therapeutics.
Collapse
Affiliation(s)
- Jackson
A. Kos
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Monica Langiu
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Shane D. Hellyer
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Karen J. Gregory
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
2
|
Du Y, Gao F, Sun H, Wu C, Zhu G, Zhu M. Novel substituted 4-(Arylethynyl)-Pyrrolo[2,3-d]pyrimidines negative allosteric modulators (NAMs) of the metabotropic glutamate receptor subtype 5 (mGlu5) Treat depressive disorder in mice. Eur J Med Chem 2023; 261:115855. [PMID: 37847955 DOI: 10.1016/j.ejmech.2023.115855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/13/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
In view of the fact that the G-protein-coupled receptors (GPCRs) sit at the top of the signaling pathways triggering a diverse range of signaling cascades towards a cellular event, GPCRs are regarded as central drug targets. mGlu5, a type of classical GPCRs, is highly expressed in the central nervous system (CNS) and responds to the neurotransmitter glutamate. Researches show that mGlu5 is a potential drug target for the treatment of depression. Up to now, multiple mGlu5 negative allosteric modulators (NAMs) have entered clinical trials, but no small molecule mGlu5 NAM has yet to reach market. Herein, we report the structural optimization and structure-activity relationship studies of a series of novel mGlu5 NAMs. Among them, the novel compound 10b is a high-affinity mGluR5 antagonist, with an IC50 value of 11.5 nM. Besides, we evaluated the anti-depressant effect of compound 10b using the chronic unpredictable mild stress (CUMS)-induced depression model. The data showed that the mice in CUMS group were featured by decreased level of serum 5-HT and increased level of serum CORT, and the expression of synaptic proteins were reduced, including GluA1, GluA2, p-PKA, BDNF and TrkB. However, those factors for identifying sensitivity to depression-like behaviors could be improved by compound 10b treatment. The preliminary toxicology evaluations indicated that compound 10b had a good safety profile in vivo. Collectively, the compound 10b represents a promising lead compound for the treatment of depressive disorder.
Collapse
Affiliation(s)
- Yonglei Du
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Feng Gao
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Hongwei Sun
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Chenglin Wu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China.
| |
Collapse
|
3
|
Chikunova EI, Kukushkin VY, Dubovtsev AY. Non-Friedländer Route to Diversely 3-Substituted Quinolines through Au(III)-Catalyzed Annulation Involving Electron-Deficient Alkynes. Org Lett 2023. [PMID: 38016092 DOI: 10.1021/acs.orglett.3c03775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Gold(III)-catalyzed annulation of electron-deficient alkynes and 2-amino-arylcarbonyls provides general modular one-step access to a broad scope of quinoline products. This highly selective reaction is a useful alternative to the classic Friedländer synthesis, which requires harsh reaction conditions. In contrast, the developed method works under relatively mild PicAuCl2-catalyzed conditions and exhibits a high functional group tolerance (40 examples; yields of ≤96%). Another feature of the developed approach is a versatility toward other electron-deficient alkynes. Alkynylsulfones, alkynylcarbonyls, alkynylphosphonates, propiolonitriles, and trifluoromethylated alkynes can be used as the starting materials for the preparation of quinolines diversely substituted at position 3. On the basis of experimental data, we proposed a reaction mechanism in which gold(III) functions as a strong electrophilic activator of the C≡C bond and the carbonyl group. The synthetic potential of the presented method is additionally illustrated by practical postmodifications of the obtained compounds, including a two-step synthesis of interpirdine, a potent drug candidate.
Collapse
Affiliation(s)
- Elena I Chikunova
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Vadim Yu Kukushkin
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
- Institute of Chemistry and Pharmaceutical Technologies, Altai State University, 656049 Barnaul, Russian Federation
| | - Alexey Yu Dubovtsev
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| |
Collapse
|
4
|
Deng L, Deichert JA, Nguyen S, Young IS, Han C. Synthesis of 3-Functionalized 4-Quinolones from Readily Available Anthranilic Acids. Org Lett 2023; 25:6710-6714. [PMID: 37668573 DOI: 10.1021/acs.orglett.3c02558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
We report herein an efficient synthesis of 3-functionalized 4-quinolones, a class of privileged pharmacophores found in numerous biologically and pharmaceutically active compounds. Our synthetic strategy features a telescoped two-step sequence starting from readily available anthranilic acids and functionalized methane derivatives bearing an electron-withdrawing group, such as methyl sulfones, methyl ketones, and acetonitrile. The method delivers good to excellent yields for a variety of structurally diverse substrates, showing good functional group tolerability. We believe that the disclosed method offers a highly efficient and practical entry to functionalized 4-quinolones under mild conditions that is amenable to preparative-scale synthesis.
Collapse
Affiliation(s)
- Lin Deng
- Department of Small Molecule Process Chemistry, Genentech, Inc., South San Francisco, California 94080, United States
| | - Julie A Deichert
- Department of Small Molecule Process Chemistry, Genentech, Inc., South San Francisco, California 94080, United States
| | - Sierra Nguyen
- Department of Small Molecule Process Chemistry, Genentech, Inc., South San Francisco, California 94080, United States
| | - Ian S Young
- Department of Small Molecule Process Chemistry, Genentech, Inc., South San Francisco, California 94080, United States
| | - Chong Han
- Department of Small Molecule Process Chemistry, Genentech, Inc., South San Francisco, California 94080, United States
| |
Collapse
|
5
|
Memedovski R, Preza M, Müller J, Kämpfer T, Rufener R, de Souza MVN, da Silva ET, de Andrade GF, Braga S, Uldry AC, Buchs N, Heller M, Lundström-Stadelmann B. Investigation of the mechanism of action of mefloquine and derivatives against the parasite Echinococcus multilocularis. Int J Parasitol Drugs Drug Resist 2023; 21:114-124. [PMID: 36921443 PMCID: PMC10025029 DOI: 10.1016/j.ijpddr.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
Alveolar echinococcosis (AE) is caused by infection with the fox tapeworm E. multilocularis. The disease affects humans, dogs, captive monkeys, and other mammals, and it is caused by the metacestode stage of the parasite growing invasively in the liver. The current drug treatment is based on non-parasiticidal benzimidazoles. Thus, they are only limitedly curative and can cause severe side effects. Therefore, novel and improved treatment options for AE are needed. Mefloquine (MEF), an antimalarial agent, was previously shown to be effective against E. multilocularis in vitro and in experimentally infected mice. However, MEF is not parasiticidal and needs improvement for successful treatment of patients, and it can induce strong neuropsychiatric side-effects. In this study, the structure-activity relationship and mode of action of MEF was investigated by comparative analysis of 14 MEF derivatives. None of them showed higher activity against E. multilocularis metacestodes compared to MEF, but four compounds caused limited damage. In order to identify molecular targets of MEF and effective derivatives, differential affinity chromatography combined with mass spectrometry was performed with two effective compounds (MEF, MEF-3) and two ineffective compounds (MEF-13, MEF-22). 1'681 proteins were identified that bound specifically to MEF or derivatives. 216 proteins were identified as binding only to MEF and MEF-3. GO term enrichment analysis of these proteins and functional grouping of the 25 most abundant MEF and MEF-3 specific binding proteins revealed the key processes energy metabolism and cellular transport and structure, as well as stress responses and nucleic acid binding to be involved. The previously described ferritin was confirmed as an exclusively MEF-binding protein that could be relevant for its efficacy against E. multilocularis. The here identified potential targets of MEF will be further investigated in the future for a clear understanding of the pleiotropic effects of MEF, and improved therapeutic options against AE.
Collapse
Affiliation(s)
- Roman Memedovski
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Matías Preza
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tobias Kämpfer
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Reto Rufener
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Emerson Teixeira da Silva
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos - Far Manguinhos, 21041-250, Rio de Janeiro, Brazil
| | | | - Sophie Braga
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Natasha Buchs
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Britta Lundström-Stadelmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland.
| |
Collapse
|
6
|
Ye H, Zhou L, Chen Y, Tong H. Visible light driven multicomponent synthesis of difluoroamidosulfonyl quinoline derivatives. Org Biomol Chem 2023; 21:846-850. [PMID: 36602158 DOI: 10.1039/d2ob02069f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A visible-light-induced photocatalyst-free three-component radical tandem cyclization of N-propargylamine and N-allylbromodifluoroacetamides with the insertion of sulfur dioxide has been developed. Diverse difluoroamidosulfonylated quinolines are obtained in moderate to good yields. This protocol features broad functional group tolerance and high regioselectivity. Moreover, mechanistic studies reveal the involvement of the radical pathway and the formation of an electron donor-acceptor (EDA) complex in this reaction.
Collapse
Affiliation(s)
- Haiwei Ye
- Chemical Pharmaceutical Research Institute, Taizhou Vocational & Technical College, Taizhou, 318000, P.R. China.
| | - Liping Zhou
- Chemical Pharmaceutical Research Institute, Taizhou Vocational & Technical College, Taizhou, 318000, P.R. China.
| | - Yunhua Chen
- Chemical Pharmaceutical Research Institute, Taizhou Vocational & Technical College, Taizhou, 318000, P.R. China.
| | - Huaguang Tong
- Taizhou Daozhi Tech Co., Ltd, Taizhou, 318000, P.R. China
| |
Collapse
|
7
|
Kampen S, Rodríguez D, Jørgensen M, Kruszyk-Kujawa M, Huang X, Collins M, Boyle N, Maurel D, Rudling A, Lebon G, Carlsson J. Structure-Based Discovery of Negative Allosteric Modulators of the Metabotropic Glutamate Receptor 5. ACS Chem Biol 2022; 17:2744-2752. [PMID: 36149353 PMCID: PMC9594040 DOI: 10.1021/acschembio.2c00234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recently determined structures of class C G protein-coupled receptors (GPCRs) revealed the location of allosteric binding sites and opened new opportunities for the discovery of novel modulators. In this work, molecular docking screens for allosteric modulators targeting the metabotropic glutamate receptor 5 (mGlu5) were performed. The mGlu5 receptor is activated by the main excitatory neurotransmitter of the nervous central system, L-glutamate, and mGlu5 receptor activity can be allosterically modulated by negative or positive allosteric modulators. The mGlu5 receptor is a promising target for the treatment of psychiatric and neurodegenerative diseases, and several allosteric modulators of this GPCR have been evaluated in clinical trials. Chemical libraries containing fragment- (1.6 million molecules) and lead-like (4.6 million molecules) compounds were docked to an allosteric binding site of mGlu5 identified in X-ray crystal structures. Among the top-ranked compounds, 59 fragments and 59 lead-like compounds were selected for experimental evaluation. Of these, four fragment- and seven lead-like compounds were confirmed to bind to the allosteric site with affinities ranging from 0.43 to 8.6 μM, corresponding to a hit rate of 9%. The four compounds with the highest affinities were demonstrated to be negative allosteric modulators of mGlu5 signaling in functional assays. The results demonstrate that virtual screens of fragment- and lead-like chemical libraries have complementary advantages and illustrate how access to high-resolution structures of GPCRs in complex with allosteric modulators can accelerate lead discovery.
Collapse
Affiliation(s)
- Stefanie Kampen
- Science
for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
| | - David Rodríguez
- Science
for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE-171 21 Solna, Sweden,H.
Lundbeck A/S, Ottiliavej
9, DK-2500 Valby, Denmark
| | | | | | - Xinyan Huang
- Lundbeck
Research USA, 215 College Road, Paramus, New Jersey 07652 - 1431, United States
| | - Michael Collins
- Lundbeck
Research USA, 215 College Road, Paramus, New Jersey 07652 - 1431, United States
| | - Noel Boyle
- Lundbeck
Research USA, 215 College Road, Paramus, New Jersey 07652 - 1431, United States
| | - Damien Maurel
- IGF,
Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Axel Rudling
- Science
for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE-171 21 Solna, Sweden
| | - Guillaume Lebon
- IGF,
Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Jens Carlsson
- Science
for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden,
| |
Collapse
|
8
|
Paul A, Banerjee S, Yadav S. Visible‐light‐mediated Synthesis of 3‐Sulfonylquinolines: Mechanistic Insights into the Photoredox Catalysis. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Aditya Paul
- Department of Chemistry Indian Institute of Technology, (ISM) Dhanbad 826004 Jharkhand India
| | - Srirupa Banerjee
- Department of Chemistry Bethune Collage 181, Bidhan Sarani, Kolkata 700006 West Bengal India
| | - Somnath Yadav
- Department of Chemistry Indian Institute of Technology, (ISM) Dhanbad 826004 Jharkhand India
| |
Collapse
|
9
|
Chevillard F, Kelemen Á, Baker JG, Aranyodi VA, Balzer F, Kolb P, Keserű GM. Fragment evolution for GPCRs: the role of secondary binding sites in optimization. Chem Commun (Camb) 2021; 57:10516-10519. [PMID: 34550124 DOI: 10.1039/d1cc04636e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a docking-based fragment evolution approach that extends orthosteric fragments towards a less conserved secondary binding pocket of GPCRs. Evaluating 13 000 extensions for the β1- and β2-adrenergic receptors we synthesized and tested 112 bitopic molecules. Our results confirmed the positive contribution of the secondary binding pocket to both potency and selectivity optimizations.
Collapse
Affiliation(s)
- Florent Chevillard
- Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 8, Marburg 35037, Germany.
| | - Ádám Kelemen
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest 1117, Hungary.
| | - Jillian G Baker
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Vivien A Aranyodi
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest 1117, Hungary.
| | - Frank Balzer
- Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 8, Marburg 35037, Germany.
| | - Peter Kolb
- Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 8, Marburg 35037, Germany.
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest 1117, Hungary.
| |
Collapse
|
10
|
Subtype-selective mechanisms of negative allosteric modulators binding to group I metabotropic glutamate receptors. Acta Pharmacol Sin 2021; 42:1354-1367. [PMID: 33122823 PMCID: PMC8285414 DOI: 10.1038/s41401-020-00541-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Group I metabotropic glutamate receptors (mGlu1 and mGlu5) are promising targets for multiple psychiatric and neurodegenerative disorders. Understanding the subtype selectivity of mGlu1 and mGlu5 allosteric sites is essential for the rational design of novel modulators with single- or dual-target mechanism of action. In this study, starting from the deposited mGlu1 and mGlu5 crystal structures, we utilized computational modeling approaches integrating docking, molecular dynamics simulation, and efficient post-trajectory analysis to reveal the subtype-selective mechanism of mGlu1 and mGlu5 to 10 diverse drug scaffolds representing known negative allosteric modulators (NAMs) in the literature. The results of modeling identified six pairs of non-conserved residues and four pairs of conserved ones as critical features to distinguish the selective NAMs binding to the corresponding receptors. In addition, nine pairs of residues are beneficial to the development of novel dual-target NAMs of group I metabotropic glutamate receptors. Furthermore, the binding modes of a reported dual-target NAM (VU0467558) in mGlu1 and mGlu5 were predicted to verify the identified residues that play key roles in the receptor selectivity and the dual-target binding. The results of this study can guide rational structure-based design of novel NAMs, and the approach can be generally applicable to characterize the features of selectivity for other G-protein-coupled receptors.
Collapse
|
11
|
Maltsev DV, Spasov AA, Miroshnikov MV, Skripka MO. Current Approaches to the Search of Anxiolytic Drugs. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021030122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Maltsev DV, Spasov AA, Yakovlev DS, Vassiliev PM, Skripka MO, Miroshnikov MV, Sultanova KT, Kochetkov AN, Divaeva LN, Kuzmenko TA, Morkovnik AS. Searching for new anxiolytic agents among derivatives of 11-dialkylaminoethyl-2,3,4,5-tetrahydrodiazepino[1,2-a]benzimidazole. Eur J Pharm Sci 2021; 161:105792. [PMID: 33705965 DOI: 10.1016/j.ejps.2021.105792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
A study on the anxiolytic activity of the new derivatives of 11-dialkylaminoethyl-2,3,4,5-tetrahydrodiazepino[1,2-a]benzimidazole, containing privileged scaffolds of benzodiazepine and benzimidazole in their structure, was conducted. The cytotoxic properties of low levels of six compounds were preliminary determined in vitro using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide test. The screening of these substances for anxiolytic activity was conducted using elevated plus maze (EPM) test in vivo, and DAB-21 was found to be the most active compound. The acute toxicity of DAB-21 was determined as less toxic than that of diazepam. The dose-dependent effect of the most active compound revealed a minimum dose of 1.26 mg/kg, which resulted in the maximum counterphobic effect. The effect of DAB-21 was superior in a number of tests compared with that of diazepam, which indicated a high level of tranquilizing activity for DAB-21. The results of in silico docking analysis suggest that DAB-21 should have a slightly lower anxiolytic activity than diazepam, but should exhibit greater specific affinity for the benzodiazepine site of the GABAA receptor, in comparison with its GABA-binding site. The interaction between DAB-21 and flumazenil in terms of EPM verifies the GABAergic mechanism of action of DAB-21. Our results highlight the potential of 11-dialkylaminomethyl-2,3,4,5-tetrahydrodiazepino[1,2-a]benzimidazoles as promising compounds in the search for new highly effective anxiolytics.
Collapse
Affiliation(s)
- Dmitriy V Maltsev
- Volgograd State Medical University, Department of Pharmacology and Bioinformatics; 1 Pavshikh Bortsov sq., Volgograd, Russia; Volgograd Medical Research Center; 1 Pavshikh Bortsov sq., Volgograd, Russia.
| | - Alexander A Spasov
- Volgograd State Medical University, Department of Pharmacology and Bioinformatics; 1 Pavshikh Bortsov sq., Volgograd, Russia; Volgograd Medical Research Center; 1 Pavshikh Bortsov sq., Volgograd, Russia
| | - Dmitriy S Yakovlev
- Volgograd State Medical University, Department of Pharmacology and Bioinformatics; 1 Pavshikh Bortsov sq., Volgograd, Russia; Volgograd Medical Research Center; 1 Pavshikh Bortsov sq., Volgograd, Russia
| | - Pavel M Vassiliev
- Volgograd State Medical University, Department of Pharmacology and Bioinformatics; 1 Pavshikh Bortsov sq., Volgograd, Russia
| | - Maria O Skripka
- Volgograd State Medical University, Department of Pharmacology and Bioinformatics; 1 Pavshikh Bortsov sq., Volgograd, Russia
| | - Mikhail V Miroshnikov
- Volgograd State Medical University, Department of Pharmacology and Bioinformatics; 1 Pavshikh Bortsov sq., Volgograd, Russia
| | - Kira T Sultanova
- Volgograd State Medical University, Department of Pharmacology and Bioinformatics; 1 Pavshikh Bortsov sq., Volgograd, Russia; Volgograd Medical Research Center; 1 Pavshikh Bortsov sq., Volgograd, Russia
| | - Andrey N Kochetkov
- Volgograd State Medical University, Department of Pharmacology and Bioinformatics; 1 Pavshikh Bortsov sq., Volgograd, Russia
| | - Lyudmila N Divaeva
- Southern Federal University, Research Institute of Physical and Organic Chemistry; 105/42 Bolshaya Sadovaya str., Rostov-on-Don, Russia
| | - Tatyana A Kuzmenko
- Southern Federal University, Research Institute of Physical and Organic Chemistry; 105/42 Bolshaya Sadovaya str., Rostov-on-Don, Russia
| | - Anatolii S Morkovnik
- Southern Federal University, Research Institute of Physical and Organic Chemistry; 105/42 Bolshaya Sadovaya str., Rostov-on-Don, Russia
| |
Collapse
|
13
|
Orgován Z, Ferenczy GG, Keserű GM. Allosteric Molecular Switches in Metabotropic Glutamate Receptors. ChemMedChem 2021; 16:81-93. [PMID: 32686363 PMCID: PMC7818470 DOI: 10.1002/cmdc.202000444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 12/22/2022]
Abstract
Metabotropic glutamate receptors (mGlu) are class C G protein-coupled receptors of eight subtypes that are omnipresently expressed in the central nervous system. mGlus have relevance in several psychiatric and neurological disorders, therefore they raise considerable interest as drug targets. Allosteric modulators of mGlus offer advantages over orthosteric ligands owing to their increased potential to achieve subtype selectivity, and this has prompted discovery programs that have produced a large number of reported allosteric mGlu ligands. However, the optimization of allosteric ligands into drug candidates has proved to be challenging owing to induced-fit effects, flat or steep structure-activity relationships and unexpected changes in theirpharmacology. Subtle structural changes identified as molecular switches might modulate the functional activity of allosteric ligands. Here we review these switches discovered in the metabotropic glutamate receptor family..
Collapse
Affiliation(s)
- Zoltán Orgován
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| | - György G. Ferenczy
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| | - György M. Keserű
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| |
Collapse
|
14
|
Karuppasamy M, Vachan B, Sridharan V. Copper catalysis for the synthesis of quinolines and isoquinolines. COPPER IN N-HETEROCYCLIC CHEMISTRY 2021:249-288. [DOI: 10.1016/b978-0-12-821263-9.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
15
|
Chan CK, Lai CY, Lo WC, Cheng YT, Chang MY, Wang CC. p-TsOH-mediated synthesis of substituted 2,4-diaryl-3-sulfonylquinolines from functionalized 2-aminobenzophenones and aromatic β-ketosulfones under microwave irradiation. Org Biomol Chem 2020; 18:305-315. [PMID: 31845709 DOI: 10.1039/c9ob02445j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study describes an efficient protocol for the preparation of substituted 2,4-diaryl-3-sulfonylquinolines from functionalized 2-aminobenzophenones and aromatic β-ketosulfones by using p-toluenesulfonic acid monohydrate under microwave irradiation. In this atom-economical synthetic route, a series of pharmaceutically active 3-arylsulfonylquinolines with good functional group tolerance are prepared in good to excellent yields. Some structures are confirmed by single-crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Chieh-Kai Chan
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | | | | | | | | | | |
Collapse
|
16
|
Yuan JM, Li J, Zhou H, Xu J, Zhu F, Liang Q, Liu Z, Huang G, Huang J. Synthesis of 3-sulfonylquinolines by visible-light promoted metal-free cascade cycloaddition involving N-propargylanilines and sodium sulfinates. NEW J CHEM 2020. [DOI: 10.1039/c9nj05248h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A visible-light promoted radical cascade reaction of N-propargylanilines with sodium sulfinates as sulfonyl radical precursors was developed under metal-free conditions.
Collapse
Affiliation(s)
- Jing-Mei Yuan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- College of Chemistry and Materials
- Nanning Normal University
- Nanning 530001
- China
| | - Jinnan Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- College of Chemistry and Materials
- Nanning Normal University
- Nanning 530001
- China
| | - Heyang Zhou
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- College of Chemistry and Materials
- Nanning Normal University
- Nanning 530001
- China
| | - Jiali Xu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- College of Chemistry and Materials
- Nanning Normal University
- Nanning 530001
- China
| | - Fengting Zhu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- College of Chemistry and Materials
- Nanning Normal University
- Nanning 530001
- China
| | - Qiuli Liang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- College of Chemistry and Materials
- Nanning Normal University
- Nanning 530001
- China
| | - Zhiping Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- College of Chemistry and Materials
- Nanning Normal University
- Nanning 530001
- China
| | - Guobao Huang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- China
| | - Jun Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- College of Chemistry and Materials
- Nanning Normal University
- Nanning 530001
- China
| |
Collapse
|
17
|
Discovery of dihydropyrazino-benzimidazole derivatives as metabotropic glutamate receptor-2 (mGluR2) positive allosteric modulators (PAMs). Eur J Med Chem 2020; 186:111881. [DOI: 10.1016/j.ejmech.2019.111881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 11/17/2022]
|
18
|
Li L, Zhang XG, Hu BL, Zhang XH. Copper-Catalyzed Electrophilic Cyclization of N-Propargylamines with Sodium Sulfinate for the Synthesis of 3-Sulfonated Quinolines. Chem Asian J 2019; 14:4358-4364. [PMID: 31680431 DOI: 10.1002/asia.201901298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/20/2019] [Indexed: 12/17/2022]
Abstract
A convenient and effective protocol for the synthesis of 3-sulfonated quinolines via copper-catalyzed electrophilic cyclization of N-propargylamines has been developed, in which cheap and stable sodium sulfinates were utilized as green sulfonylation reagents. This cascade transformation involves radical addition, cyclization and dehydrogenative aromatization processes in a one-pot reaction under mild conditions.
Collapse
Affiliation(s)
- Ling Li
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan Town, Wenzhou, 325035, China
| | - Xing-Guo Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan Town, Wenzhou, 325035, China
| | - Bo-Lun Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan Town, Wenzhou, 325035, China
| | - Xiao-Hong Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan Town, Wenzhou, 325035, China
| |
Collapse
|
19
|
Politanskaya LV, Selivanova GA, Panteleeva EV, Tretyakov EV, Platonov VE, Nikul’shin PV, Vinogradov AS, Zonov YV, Karpov VM, Mezhenkova TV, Vasilyev AV, Koldobskii AB, Shilova OS, Morozova SM, Burgart YV, Shchegolkov EV, Saloutin VI, Sokolov VB, Aksinenko AY, Nenajdenko VG, Moskalik MY, Astakhova VV, Shainyan BA, Tabolin AA, Ioffe SL, Muzalevskiy VM, Balenkova ES, Shastin AV, Tyutyunov AA, Boiko VE, Igumnov SM, Dilman AD, Adonin NY, Bardin VV, Masoud SM, Vorobyeva DV, Osipov SN, Nosova EV, Lipunova GN, Charushin VN, Prima DO, Makarov AG, Zibarev AV, Trofimov BA, Sobenina LN, Belyaeva KV, Sosnovskikh VY, Obydennov DL, Usachev SA. Organofluorine chemistry: promising growth areas and challenges. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4871] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Graziani D, Caligari S, Callegari E, De Toma C, Longhi M, Frigerio F, Dilernia R, Menegon S, Pinzi L, Pirona L, Tazzari V, Valsecchi AE, Vistoli G, Rastelli G, Riva C. Evaluation of Amides, Carbamates, Sulfonamides, and Ureas of 4-Prop-2-ynylidenecycloalkylamine as Potent, Selective, and Bioavailable Negative Allosteric Modulators of Metabotropic Glutamate Receptor 5. J Med Chem 2019; 62:1246-1273. [PMID: 30624919 DOI: 10.1021/acs.jmedchem.8b01226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Negative allosteric modulators (NAMs) of the metabotropic glutamate receptor 5 (mGlu5) hold great promise for the treatment of a variety of central nervous system disorders. We have recently reported that prop-2-ynylidenecycloalkylamine derivatives are potent and selective NAMs of the mGlu5 receptor. In this work, we explored the amide, carbamate, sulfonamide, and urea derivatives of prop-2-ynylidenecycloalkylamine compounds with the aim of improving solubility and metabolic stability. In silico and experimental analyses were performed on the synthesized series of compounds to investigate structure-activity relationships. Compounds 12, 32, and 49 of the carbamate, urea, and amide classes, respectively, showed the most suitable cytochrome inhibition and metabolic stability profiles. Among them, compound 12 showed excellent selectivity, solubility, and stability profiles as well as suitable in vitro and in vivo pharmacokinetic properties. It was highly absorbed in rats and dogs and was active in anxiety, neuropathic pain, and lower urinary tract models.
Collapse
Affiliation(s)
- Davide Graziani
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Silvia Caligari
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Elisa Callegari
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Carlo De Toma
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Matteo Longhi
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Fabio Frigerio
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Roberto Dilernia
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Sergio Menegon
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Luca Pinzi
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Campi 103 , 41125 Modena , Italy
| | - Lorenza Pirona
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Valerio Tazzari
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Anna Elisa Valsecchi
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences , Università degli Studi di Milano , Via Mangiagalli 25 , 20133 Milan , Italy
| | - Giulio Rastelli
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Campi 103 , 41125 Modena , Italy
| | - Carlo Riva
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| |
Collapse
|
21
|
Lu S, Zhang J. Small Molecule Allosteric Modulators of G-Protein-Coupled Receptors: Drug–Target Interactions. J Med Chem 2018; 62:24-45. [DOI: 10.1021/acs.jmedchem.7b01844] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
22
|
Christopher JA, Orgován Z, Congreve M, Doré AS, Errey JC, Marshall FH, Mason JS, Okrasa K, Rucktooa P, Serrano-Vega MJ, Ferenczy GG, Keserű GM. Structure-Based Optimization Strategies for G Protein-Coupled Receptor (GPCR) Allosteric Modulators: A Case Study from Analyses of New Metabotropic Glutamate Receptor 5 (mGlu5) X-ray Structures. J Med Chem 2018; 62:207-222. [DOI: 10.1021/acs.jmedchem.7b01722] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- John A. Christopher
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Zoltán Orgován
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest H-1117, Hungary
| | - Miles Congreve
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Andrew S. Doré
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - James C. Errey
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Fiona H. Marshall
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Jonathan S. Mason
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Krzysztof Okrasa
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Prakash Rucktooa
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | | | - György G. Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest H-1117, Hungary
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest H-1117, Hungary
| |
Collapse
|
23
|
Peng F, Liu J, Li L, Chen Z. Copper-Catalyzed Tandem Reaction of Enamino Esters with ortho
-Halogenated Aromatic Carbonyls: One-Pot Approach to Functionalized Quinolines. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Fei Peng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; College of Pharmaceutical Sciences; Zhejiang University of Technology; Chao Wang Road 18th 310014 Hangzhou China
| | - Jin Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; College of Pharmaceutical Sciences; Zhejiang University of Technology; Chao Wang Road 18th 310014 Hangzhou China
| | - Lili Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; College of Pharmaceutical Sciences; Zhejiang University of Technology; Chao Wang Road 18th 310014 Hangzhou China
| | - Zhiwei Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; College of Pharmaceutical Sciences; Zhejiang University of Technology; Chao Wang Road 18th 310014 Hangzhou China
| |
Collapse
|
24
|
Cui FH, Chen J, Su SX, Xu YL, Wang HS, Pan YM. Regioselective Synthesis of Selenide Ethers through a Decarboxylative Coupling Reaction. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700676] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Fei-Hu Cui
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University; Guilin 541004 People's Republic of China
| | - Jing Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University; Guilin 541004 People's Republic of China
| | - Shi-Xia Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University; Guilin 541004 People's Republic of China
| | - Yan-li Xu
- College of Pharmacy; Guilin Medical University; Guilin 541004 People's Republic of China
| | - Heng-shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University; Guilin 541004 People's Republic of China
| | - Ying-ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University; Guilin 541004 People's Republic of China
| |
Collapse
|