1
|
Wei C, Zhang H, Niu L, Zhong Q, Yan H, Wang J. 4D-QSAR, ADMET properties, and molecular dynamics simulations for designing N-substituted urea/thioureas as human glutaminyl cyclase inhibitors. Comput Biol Chem 2024; 112:108131. [PMID: 38968781 DOI: 10.1016/j.compbiolchem.2024.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/07/2024]
Abstract
Human glutaminyl cyclase (hQC) inhibitors have great potential to be used as anti- Alzheimer's disease (AD) agents by reducing the toxic pyroform of β-amyloid in the brains of AD patients. The four-dimensional quantitative structure activity relationship (4D-QSAR) model of N-substituted urea/thioureas was established with satisfying predictive ability and statistical reliability (Q2 = 0.521, R2 = 0.933, R2prep = 0.619). By utilizing the developed 4D-QSAR model, a set of new N-substituted urea/thioureas was designed and evaluated for their Absorption Distribution Metabolism Excretion and Toxicity (ADMET) properties. The results of molecular dynamics (MD) simulations, Principal component analysis (PCA), free energy landscape (FEL), dynamic cross-correlation matrix (DCCM) and molecular mechanics generalized Born Poisson-Boltzmann surface area (MM-PBSA) free energy calculations, revealed that the designed compounds were remained stable in protein binding pocket and compounds b ∼ f (-35.1 to -44.55 kcal/mol) showed higher binding free energy than that of compound 14 (-33.51 kcal/mol). The findings of this work will be a theoretical foundation for further research and experimental validation of urea/thiourea derivatives as hQC inhibitors.
Collapse
Affiliation(s)
- Chaochun Wei
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Haolin Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Lexuan Niu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Qidi Zhong
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, PR China
| | - Hong Yan
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China.
| | - Juan Wang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
2
|
Tassone G, Pozzi C, Mangani S. Metal Ion Binding to Human Glutaminyl Cyclase: A Structural Perspective. Int J Mol Sci 2024; 25:8279. [PMID: 39125848 PMCID: PMC11312887 DOI: 10.3390/ijms25158279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Glutaminyl-peptide cyclotransferases (QCs) convert the N-terminal glutamine or glutamate residues of protein and peptide substrates into pyroglutamate (pE) by releasing ammonia or a water molecule. The N-terminal pE modification protects peptides/proteins against proteolytic degradation by amino- or exopeptidases, increasing their stability. Mammalian QC is abundant in the brain and a large amount of evidence indicates that pE peptides are involved in the onset of neural human pathologies such as Alzheimer's and Huntington's disease and synucleinopathies. Hence, human QC (hQC) has become an intensively studied target for drug development against these diseases. Soon after its characterization, hQC was identified as a Zn-dependent enzyme, but a partial restoration of the enzyme activity in the presence of the Co(II) ion was also reported, suggesting a possible role of this metal ion in catalysis. The present work aims to investigate the structure of demetallated hQC and of the reconstituted enzyme with Zn(II) and Co(II) and their behavior in the presence of known inhibitors. Furthermore, our structural determinations provide a possible explanation for the presence of the mononuclear metal binding site of hQC, despite the presence of the same conserved metal binding motifs present in distantly related dinuclear aminopeptidase enzymes.
Collapse
Affiliation(s)
- Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy;
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy;
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, I-50019 Sesto Fiorentino, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy;
| |
Collapse
|
3
|
Wang EB, Fan Q, Lu X, Sun B, Zhang FL. Visible light-induced reductive aza-6π electrocyclization access to phenanthridines. Org Biomol Chem 2024; 22:4968-4972. [PMID: 38825973 DOI: 10.1039/d4ob00656a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Visible light-induced aza-6π electrocyclization was developed for the synthesis of aza-arenes from nitroarenes with diverse aldehydes. This protocol allows the reduction of nitroarenes by B2nep2 and subsequent 6π-electrocyclization of the in situ formed imine under visible light. An array of 6- and multi-substituted phenanthridines were constructed in moderate to good yields under purple LEDs at room temperature. A wide scope of substrates with diverse functional groups were well tolerated. In addition, the synthetic utility of this methodology was further demonstrated in the late-stage functionalization of celecoxib.
Collapse
Affiliation(s)
- Er-Bin Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Qingtian Fan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Xuelian Lu
- Shenzhen Research Institute, Wuhan University of Technology, Shenzhen 518057, P. R. China
| | - Bing Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Fang-Lin Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China.
| |
Collapse
|
4
|
Mou J, Ning XL, Wang XY, Hou SY, Meng FB, Zhou C, Wu JW, Li C, Jia T, Wu X, Wu Y, Chen Y, Li GB. X-ray Structure-Guided Discovery of a Potent Benzimidazole Glutaminyl Cyclase Inhibitor That Shows Activity in a Parkinson's Disease Mouse Model. J Med Chem 2024; 67:8730-8756. [PMID: 38817193 DOI: 10.1021/acs.jmedchem.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The secretory glutaminyl cyclase (sQC) and Golgi-resident glutaminyl cyclase (gQC) are responsible for N-terminal protein pyroglutamation and associated with various human diseases. Although several sQC/gQC inhibitors have been reported, only one inhibitor, PQ912, is currently undergoing clinic trials for the treatment of Alzheimer's disease. We report an X-ray crystal structure of sQC complexed with PQ912, revealing that the benzimidazole makes "anchor" interactions with the active site zinc ion and catalytic triad. Structure-guided design and optimization led to a series of new benzimidazole derivatives exhibiting nanomolar inhibition for both sQC and gQC. In a MPTP-induced Parkinson's disease (PD) mouse model, BI-43 manifested efficacy in mitigating locomotor deficits through reversing dopaminergic neuronal loss, reducing microglia, and decreasing levels of the sQC/gQC substrates, α-synuclein, and CCL2. This study not only offers structural basis and new leads for drug discovery targeting sQC/gQC but also provides evidence supporting sQC/gQC as potential targets for PD treatment.
Collapse
Affiliation(s)
- Jun Mou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiang-Li Ning
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xin-Yue Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shu-Yan Hou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fan-Bo Meng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Cong Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jing-Wei Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunyan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yongping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Coimbra JRM, Moreira PI, Santos AE, Salvador JAR. Therapeutic potential of glutaminyl cyclases: Current status and emerging trends. Drug Discov Today 2023; 28:103644. [PMID: 37244566 DOI: 10.1016/j.drudis.2023.103644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Glutaminyl cyclase (QC) activity has been identified as a key effector in distinct biological processes. Human glutaminyl-peptide cyclotransferase (QPCT) and glutaminyl-peptide cyclotransferase-like (QPCTL) are considered attractive therapeutic targets in many human disorders, such as neurodegenerative diseases, and a range of inflammatory conditions, as well as for cancer immunotherapy, because of their capacity to modulate cancer immune checkpoint proteins. In this review, we explore the biological functions and structures of QPCT/L enzymes and highlight their therapeutic relevance. We also summarize recent developments in the discovery of small-molecule inhibitors targeting these enzymes, including an overview of preclinical and clinical studies.
Collapse
Affiliation(s)
- Judite R M Coimbra
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paula I Moreira
- Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal; Laboratory of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Armanda E Santos
- Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal; Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal.
| |
Collapse
|
6
|
Chen D, Chen Q, Qin X, Tong P, Peng L, Zhang T, Xia C. Development and evolution of human glutaminyl cyclase inhibitors (QCIs): an alternative promising approach for disease-modifying treatment of Alzheimer's disease. Front Aging Neurosci 2023; 15:1209863. [PMID: 37600512 PMCID: PMC10435661 DOI: 10.3389/fnagi.2023.1209863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Human glutaminyl cyclase (hQC) is drawing considerable attention and emerging as a potential druggable target for Alzheimer's disease (AD) due to its close involvement in the pathology of AD via the post-translational pyroglutamate modification of amyloid-β. A recent phase 2a study has shown promising early evidence of efficacy for AD with a competitive benzimidazole-based QC inhibitor, PQ912, which also demonstrated favorable safety profiles. This finding has sparked new hope for the treatment of AD. In this review, we briefly summarize the discovery and evolution of hQC inhibitors, with a particular interest in classic Zinc binding group (ZBG)-containing chemicals reported in recent years. Additionally, we highlight several high-potency inhibitors and discuss new trends and challenges in the development of QC inhibitors as an alternative and promising disease-modifying therapy for AD.
Collapse
Affiliation(s)
- Daoyuan Chen
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Qingxiu Chen
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Xiaofei Qin
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Peipei Tong
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Liping Peng
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Tao Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Institute of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Chunli Xia
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
7
|
Tsai KC, Zhang YX, Kao HY, Fung KM, Tseng TS. Pharmacophore-driven identification of human glutaminyl cyclase inhibitors from foods, plants and herbs unveils the bioactive property and potential of Azaleatin in the treatment of Alzheimer's disease. Food Funct 2022; 13:12632-12647. [PMID: 36416361 DOI: 10.1039/d2fo02507h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of disabilities in old age and a rapidly growing condition in the elderly population. AD brings significant burden and has a devastating impact on public health, society and the global economy. Thus, developing new therapeutics to combat AD is imperative. Human glutaminyl cyclase (hQC), which catalyzes the formation of neurotoxic pyroglutamate (pE)-modified β-amyloid (Aβ) peptides, is linked to the amyloidogenic process that leads to the initiation of AD. Hence, hQC is an essential target for developing anti-AD therapeutics. Here, we systematically screened and identified hQC inhibitors from natural products by pharmacophore-driven inhibitor screening coupled with biochemical and biophysical examinations. We employed receptor-ligand pharmacophore generation to build pharmacophore models and Phar-MERGE and Phar-SEN for inhibitor screening through ligand-pharmacophore mapping. About 11 and 24 hits identified from the Natural Product and Traditional Chinese Medicine databases, respectively, showed diverse hQC inhibitory abilities. Importantly, the inhibitors TCM1 (Azaleatin; IC50 = 1.1 μM) and TCM2 (Quercetin; IC50 = 4.3 μM) found in foods and plants exhibited strong inhibitory potency against hQC. Furthermore, the binding affinity and molecular interactions were analyzed by surface plasmon resonance (SPR) and molecular modeling/simulations to explore the possible modes of action of Azaleatin and Quercetin. Our study successfully screened and characterized the foundational biochemical and biophysical properties of Azaleatin and Quercetin toward targeting hQC, unveiling their bioactive potential in the treatment of AD.
Collapse
Affiliation(s)
- Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan. .,Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Xuan Zhang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.
| | - Hsiang-Yun Kao
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.
| | - Kit-Man Fung
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan. .,Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tien-Sheng Tseng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
8
|
Discovery of potent indazole-based human glutaminyl cyclase (QC) inhibitors as Anti-Alzheimer's disease agents. Eur J Med Chem 2022; 244:114837. [DOI: 10.1016/j.ejmech.2022.114837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/20/2022]
|
9
|
Park E, Song KH, Kim D, Lee M, Van Manh N, Kim H, Hong KB, Lee J, Song JY, Kang S. 2-Amino-1,3,4-thiadiazoles as Glutaminyl Cyclases Inhibitors Increase Phagocytosis through Modification of CD47-SIRPα Checkpoint. ACS Med Chem Lett 2022; 13:1459-1467. [PMID: 36105338 PMCID: PMC9465712 DOI: 10.1021/acsmedchemlett.2c00256] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
Glutaminyl cyclases (QC, isoQC) convert N-terminal glutamine or glutamate into pyroglutamate (pGlu) on substrates. IsoQC has recently been demonstrated to promote pGlu formation on the N-terminus of CD47, the SIRPα binding site, contributing to the "don't eat me" cancer immune signaling of CD47-SIRPα. We developed new QC inhibitors by applying a structure-based optimization approach starting from fragments identified through library screening. Screening of metal binding fragments identified 5-(1H-benzimidazol-5-yl)-1,3,4-thiadiazol-2-amine (9) as a potent fragment, and further modification provided 5-(1-(3-methoxy-4-(3-(piperidin-1-yl)propoxy)benzyl)-1H-benzo[d]imidazol-5-yl)-1,3,4-thiadiazol-2-amine (22b) as a potent QC inhibitor. Treatment with 22b in A549 and H1975 lung cancer cells decreased the CD47/αhCD47-CC2C6 interaction, indicative of the CD47/SIRPα interaction, and enhanced the increased phagocytic activity of both THP-1 and U937 macrophages.
Collapse
Affiliation(s)
- Eunsun Park
- College
of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyung-Hee Song
- Division
of Radiation Biomedical Research, Korea
Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Darong Kim
- New
Drug Development Center, Daegu-Gyeongbuk
Medical Innovation Foundation, Daegu 41061, Republic
of Korea
| | - Minyoung Lee
- Medifron
DBT, 517ho, JEI-Platz,
186, Gasan digital 1-ro, Geumcheon-gu, Seoul 08502, Republic of Korea
| | - Nguyen Van Manh
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee Kim
- Medifron
DBT, 517ho, JEI-Platz,
186, Gasan digital 1-ro, Geumcheon-gu, Seoul 08502, Republic of Korea
| | - Ki Bum Hong
- New
Drug Development Center, Daegu-Gyeongbuk
Medical Innovation Foundation, Daegu 41061, Republic
of Korea
| | - Jeewoo Lee
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jie-Young Song
- Division
of Radiation Biomedical Research, Korea
Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Soosung Kang
- College
of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
10
|
Zhang Y, Wang J, Yang Z, Zhang Z, He X, Chen G, Huang G, Lu X. Hydrazine Hydrate Accelerates Neocuproine-Copper Complex Generation and Utilization in Alkyne Reduction, a Significant Supplement Method for Catalytic Hydrogenation. J Org Chem 2021; 86:17696-17709. [PMID: 34818024 DOI: 10.1021/acs.joc.1c01803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Diimine (HN═NH) is a strong reducing agent, but the efficiency of diimine oxidized from hydrazine hydrate or its derivatives is still not good enough. Herein, we report an in situ neocuproine-copper complex formation method. The redox potential of this complex enable it can serve as an ideal redox catalyst in the synthesis of diimine by oxidation of hydrazine hydrate, and we successfully applied this technique in the reduction of alkynes. This reduction method displays a broad functional group tolerance and substrate adaptability as well as the advantages of safety and high efficiency. Especially, nitro, benzyl, boc, and sulfur containing alkynes can be reduced to the corresponding alkanes directly, which provides a useful complementary method to traditional catalytic hydrogenation. Besides, we applied this method in the preparation of the Alzheimer's disease drug CT-1812 and studied the mechanism.
Collapse
Affiliation(s)
- Yongsheng Zhang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.,Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Jincheng Wang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China
| | - Zhenjiao Yang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.,Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Zeng Zhang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China
| | - Xiaoyan He
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China
| | - Xiuhong Lu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China
| |
Collapse
|
11
|
Tetrahydroimidazo[4,5- c]pyridine-Based Inhibitors of Porphyromonas gingivalis Glutaminyl Cyclase. Pharmaceuticals (Basel) 2021; 14:ph14121206. [PMID: 34959608 PMCID: PMC8709289 DOI: 10.3390/ph14121206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 01/05/2023] Open
Abstract
Periodontitis is a severe yet underestimated oral disease. Since it is linked to several systemic diseases, such as diabetes, artheriosclerosis, and even Alzheimer’s disease, growing interest in treating periodontitis has emerged recently. The major cause of periodontitis is a shift in the oral microbiome. A keystone pathogen that is associated with this shift is Porphyromonas gingivalis. Hence, targeting P. gingivalis came into focus of drug discovery for the development of novel antiinfective compounds. Among others, glutaminyl cyclases (QCs) of oral pathogens might be promising drug targets. Here, we report the discovery and structure–activity relationship of a novel class of P. gingivalis QC inhibitors according to a tetrahydroimidazo[4,5-c]pyridine scaffold. Some compounds exhibited activity in the lower nanomolar range and thus were further characterized with regard to their selectivity and toxicity.
Collapse
|
12
|
Van Manh N, Hoang VH, Ngo VTH, Ann J, Jang TH, Ha JH, Song JY, Ha HJ, Kim H, Kim YH, Lee J, Lee J. Discovery of highly potent human glutaminyl cyclase (QC) inhibitors as anti-Alzheimer's agents by the combination of pharmacophore-based and structure-based design. Eur J Med Chem 2021; 226:113819. [PMID: 34536669 DOI: 10.1016/j.ejmech.2021.113819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022]
Abstract
The inhibition of glutaminyl cyclase (QC) may provide a promising strategy for the treatment of early Alzheimer's disease (AD) by reducing the amount of the toxic pyroform of β-amyloid (AβΝ3pE) in the brains of AD patients. In this work, we identified potent QC inhibitors with subnanomolar IC50 values that were up to 290-fold higher than that of PQ912, which is currently being tested in Phase II clinical trials. Among the tested compounds, the cyclopentylmethyl derivative (214) exhibited the most potent in vitro activity (IC50 = 0.1 nM), while benzimidazole (227) showed the most promising in vivo efficacy, selectivity and druggable profile. 227 significantly reduced the concentration of pyroform Aβ and total Aβ in the brain of an AD animal model and improved the alternation behavior of mice during Y-maze tests. The crystal structure of human QC (hQC) in complex with 214 indicated tight binding at the active site, supporting that the specific inhibition of QC results in potent in vitro and in vivo activity. Considering the recent clinical success of donanemab, which targets AβΝ3pE, small molecule-based QC inhibitors may also provide potential therapeutic options for early-stage AD treatment.
Collapse
Affiliation(s)
- Nguyen Van Manh
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Van-Hai Hoang
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Van T H Ngo
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea; Graduate Department of Healthcare Science, Dainam University, Hanoi, Viet Nam
| | - Jihyae Ann
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae-Ho Jang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Jung-Hye Ha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Jae Young Song
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Hee-Jin Ha
- Medifron DBT, Seoul, 08502, Republic of Korea
| | - Hee Kim
- Medifron DBT, Seoul, 08502, Republic of Korea
| | | | - Jiyoun Lee
- Department of Global Medical Science, Sungshin University, Seoul, 01133, Republic of Korea
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
13
|
Choi J, Laudadio G, Godineau E, Baran PS. Practical and Regioselective Synthesis of C-4-Alkylated Pyridines. J Am Chem Soc 2021; 143:11927-11933. [PMID: 34318659 PMCID: PMC8721863 DOI: 10.1021/jacs.1c05278] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The direct position-selective C-4 alkylation of pyridines has been a long-standing challenge in heterocyclic chemistry, particularly from pyridine itself. Historically this has been addressed using prefunctionalized materials to avoid overalkylation and mixtures of regioisomers. This study reports the invention of a simple maleate-derived blocking group for pyridines that enables exquisite control for Minisci-type decarboxylative alkylation at C-4 that allows for inexpensive access to these valuable building blocks. The method is employed on a variety of different pyridines and carboxylic acid alkyl donors, is operationally simple and scalable, and is applied to access known structures in a rapid and inexpensive fashion. Finally, this work points to an interesting strategic departure for the use of Minisci chemistry at the earliest possible stage (native pyridine) rather than current dogma that almost exclusively employs Minisci chemistry as a late-stage functionalization technique.
Collapse
Affiliation(s)
- Jin Choi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Gabriele Laudadio
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Edouard Godineau
- Process Research, Syngenta Crop Protection, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
14
|
Baumann N, Rösner T, Jansen JHM, Chan C, Marie Eichholz K, Klausz K, Winterberg D, Müller K, Humpe A, Burger R, Peipp M, Schewe DM, Kellner C, Leusen JHW, Valerius T. Enhancement of epidermal growth factor receptor antibody tumor immunotherapy by glutaminyl cyclase inhibition to interfere with CD47/signal regulatory protein alpha interactions. Cancer Sci 2021; 112:3029-3040. [PMID: 34058788 PMCID: PMC8353920 DOI: 10.1111/cas.14999] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/17/2021] [Accepted: 05/23/2021] [Indexed: 12/21/2022] Open
Abstract
Integrin associated protein (CD47) is an important target in immunotherapy, as it is expressed as a "don't eat me" signal on many tumor cells. Interference with its counter molecule signal regulatory protein alpha (SIRPα), expressed on myeloid cells, can be achieved with blocking Abs, but also by inhibiting the enzyme glutaminyl cyclase (QC) with small molecules. Glutaminyl cyclase inhibition reduces N-terminal pyro-glutamate formation of CD47 at the SIRPα binding site. Here, we investigated the impact of QC inhibition on myeloid effector cell-mediated tumor cell killing by epidermal growth factor receptor (EGFR) Abs and the influence of Ab isotypes. SEN177 is a QC inhibitor and did not interfere with EGFR Ab-mediated direct growth inhibition, complement-dependent cytotoxicity, or Ab-dependent cell-mediated cytotoxicity (ADCC) by mononuclear cells. However, binding of a human soluble SIRPα-Fc fusion protein to SEN177 treated cancer cells was significantly reduced in a dose-dependent manner, suggesting that pyro-glutamate formation of CD47 was affected. Glutaminyl cyclase inhibition in tumor cells translated into enhanced Ab-dependent cellular phagocytosis by macrophages and enhanced ADCC by polymorphonuclear neutrophilic granulocytes. Polymorphonuclear neutrophilic granulocyte-mediated ADCC was significantly more effective with EGFR Abs of human IgG2 or IgA2 isotypes than with IgG1 Abs, proposing that the selection of Ab isotypes could critically affect the efficacy of Ab therapy in the presence of QC inhibition. Importantly, QC inhibition also enhanced the therapeutic efficacy of EGFR Abs in vivo. Together, these results suggest a novel approach to specifically enhance myeloid effector cell-mediated efficacy of EGFR Abs by orally applicable small molecule QC inhibitors.
Collapse
Affiliation(s)
- Niklas Baumann
- Section for Stem Cell Transplantation and ImmunotherapyDepartment of Medicine IIChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Thies Rösner
- Section for Stem Cell Transplantation and ImmunotherapyDepartment of Medicine IIChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - J. H. Marco Jansen
- Immunotherapy LaboratoryCenter for Translational ImmunologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Chilam Chan
- Immunotherapy LaboratoryCenter for Translational ImmunologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Klara Marie Eichholz
- Section for Stem Cell Transplantation and ImmunotherapyDepartment of Medicine IIChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Katja Klausz
- Section for Stem Cell Transplantation and ImmunotherapyDepartment of Medicine IIChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Dorothee Winterberg
- Pediatric Hematology/OncologyALL‐BFM Study GroupChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Kristina Müller
- Pediatric Hematology/OncologyALL‐BFM Study GroupChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Andreas Humpe
- Department of Transfusion Medicine, Cell Therapeutics and HemostaseologyUniversity HospitalLMU MunichMunichGermany
| | - Renate Burger
- Section for Stem Cell Transplantation and ImmunotherapyDepartment of Medicine IIChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Matthias Peipp
- Section for Stem Cell Transplantation and ImmunotherapyDepartment of Medicine IIChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Denis M. Schewe
- Pediatric Hematology/OncologyALL‐BFM Study GroupChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Christian Kellner
- Department of Transfusion Medicine, Cell Therapeutics and HemostaseologyUniversity HospitalLMU MunichMunichGermany
| | - Jeanette H. W. Leusen
- Immunotherapy LaboratoryCenter for Translational ImmunologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Thomas Valerius
- Section for Stem Cell Transplantation and ImmunotherapyDepartment of Medicine IIChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| |
Collapse
|
15
|
Coimbra JRM, Salvador JAR. A patent review of glutaminyl cyclase inhibitors (2004-present). Expert Opin Ther Pat 2021; 31:809-836. [PMID: 33896339 DOI: 10.1080/13543776.2021.1917549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Glutaminyl cyclase (QC) enzymes catalyze the post-translational processing of several substrates with N-terminal glutamine or glutamate to form pyroglutamate (pE) residue. In addition to physiological functions, emerging evidence demonstrates that human QCs play a part in pathological processes in diverse diseases such as Alzheimer's disease (AD), inflammatory and cancer diseases.Areas covered: In recent years, efforts to effectively develop QC small-molecule inhibitors have been made and different chemical classes have been disclosed. This review summarizes the patents/applications regarding QC inhibitors released from 2004 (first patent) to now. The patents are mostly described in terms of chemical structures, biochemical/pharmacological activities, and potential clinical applications.Expert opinion: For more than 15 years of research, the knowledge on the QC activity domain has considerably increased and therapeutic potential of QC inhibitors has been explored. An important number of studies and patents have been published to expand the use of QC inhibitors. QC enzymes are pharmacologically interesting targets to be used as an AD-modifying therapy, or for other QC-associated disorder. Distinct classes of chemical scaffolds and potential clinical uses have been claimed by various organizations. For the coming years, there is much to experience in the QC field.
Collapse
Affiliation(s)
- Judite R M Coimbra
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
16
|
Xu C, Wang YN, Wu H. Glutaminyl Cyclase, Diseases, and Development of Glutaminyl Cyclase Inhibitors. J Med Chem 2021; 64:6549-6565. [PMID: 34000808 DOI: 10.1021/acs.jmedchem.1c00325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyroglutamate (pE) modification, catalyzed mainly by glutaminyl cyclase (QC), is prevalent throughout nature and is particularly important in mammals including humans for the maturation of hormones, peptides, and proteins. In humans, the upregulation of QC is involved in multiple diseases and conditions including Alzheimer's disease, Huntington's disease, melanomas, thyroid carcinomas, accelerated atherosclerosis, septic arthritics, etc. This upregulation catalyzes the generation of modified mediators such as pE-amyloid beta (Aß) and pE-chemokine ligand 2 (CCL2) peptides. Not surprisingly, QC has emerged as a reasonable target for the development of therapeutics to combat these diseases and conditions. In this manuscript the deleterious effects of upregulated QC resulting in disease manifestation are reviewed, along with progress on the development of QC inhibitors.
Collapse
Affiliation(s)
- Chenshu Xu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yi-Nan Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Haiqiang Wu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
17
|
|
18
|
Lamers S, Feng Q, Cheng Y, Yu S, Sun B, Lukman M, Jiang J, Ruiz-Carrillo D. Structural and kinetic characterization of Porphyromonas gingivalis glutaminyl cyclase. Biol Chem 2021; 402:759-768. [PMID: 33823093 DOI: 10.1515/hsz-2020-0298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/16/2021] [Indexed: 11/15/2022]
Abstract
Porphyromonas gingivalis is a bacterial species known to be involved in the pathogenesis of chronic periodontitis, that more recently has been as well associated with Alzheimer's disease. P. gingivalis expresses a glutaminyl cyclase (PgQC) whose human ortholog is known to participate in the beta amyloid peptide metabolism. We have elucidated the crystal structure of PgQC at 1.95 Å resolution in unbound and in inhibitor-complexed forms. The structural characterization of PgQC confirmed that PgQC displays a mammalian fold rather than a bacterial fold. Our biochemical characterization indicates that PgQC uses a mammalian-like catalytic mechanism enabled by the residues Asp149, Glu182, Asp183, Asp218, Asp267 and His299. In addition, we could observe that a non-conserved Trp193 may drive differences in the binding affinity of ligands which might be useful for drug development. With a screening of a small molecule library, we have identified a benzimidazole derivative rendering PgQC inhibition in the low micromolar range that might be amenable for further medicinal chemistry development.
Collapse
Affiliation(s)
- Sebastiaan Lamers
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu215123, China
| | - Qiaoli Feng
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu215123, China
| | - Yili Cheng
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu215123, China
| | - Sihong Yu
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu215123, China
| | - Bo Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai201204, China
| | - Maxwell Lukman
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu215123, China
| | - Jie Jiang
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu215123, China
| | - David Ruiz-Carrillo
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu215123, China
| |
Collapse
|
19
|
Zhu H, Dronamraju V, Xie W, More SS. Sulfur-containing therapeutics in the treatment of Alzheimer's disease. Med Chem Res 2021; 30:305-352. [PMID: 33613018 PMCID: PMC7889054 DOI: 10.1007/s00044-020-02687-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
Sulfur is widely existent in natural products and synthetic organic compounds as organosulfur, which are often associated with a multitude of biological activities. OBenzothiazole, in which benzene ring is fused to the 4,5-positions of the thiazolerganosulfur compounds continue to garner increasing amounts of attention in the field of medicinal chemistry, especially in the development of therapeutic agents for Alzheimer's disease (AD). AD is a fatal neurodegenerative disease and the primary cause of age-related dementia posing severe societal and economic burdens. Unfortunately, there is no cure for AD. A lot of research has been conducted on sulfur-containing compounds in the context of AD due to their innate antioxidant potential and some are currently being evaluated in clinical trials. In this review, we have described emerging trends in the field, particularly the concept of multi-targeting and formulation of disease-modifying strategies. SAR, pharmacological targets, in vitro/vivo ADMET, efficacy in AD animal models, and applications in clinical trials of such sulfur compounds have also been discussed. This article provides a comprehensive review of organosulfur-based AD therapeutic agents and provides insights into their future development.
Collapse
Affiliation(s)
- Haizhou Zhu
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Venkateshwara Dronamraju
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
20
|
Dileep KV, Sakai N, Ihara K, Kato-Murayama M, Nakata A, Ito A, Sivaraman DM, Shin JW, Yoshida M, Shirouzu M, Zhang KYJ. Piperidine-4-carboxamide as a new scaffold for designing secretory glutaminyl cyclase inhibitors. Int J Biol Macromol 2020; 170:415-423. [PMID: 33373636 DOI: 10.1016/j.ijbiomac.2020.12.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD), a common chronic neurodegenerative disease, has become a major public health concern. Despite years of research, therapeutics for AD are limited. Overexpression of secretory glutaminyl cyclase (sQC) in AD brain leads to the formation of a highly neurotoxic pyroglutamate variant of amyloid beta, pGlu-Aβ, which acts as a potential seed for the aggregation of full length Aβ. Preventing the formation of pGlu-Aβ through inhibition of sQC has become an attractive disease-modifying therapy in AD. In this current study, through a pharmacophore assisted high throughput virtual screening, we report a novel sQC inhibitor (Cpd-41) with a piperidine-4-carboxamide moiety (IC50 = 34 μM). Systematic molecular docking, MD simulations and X-ray crystallographic analysis provided atomistic details of the binding of Cpd-41 in the active site of sQC. The unique mode of binding and moderate toxicity of Cpd-41 make this molecule an attractive candidate for designing high affinity sQC inhibitors.
Collapse
Affiliation(s)
- K V Dileep
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Naoki Sakai
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kentaro Ihara
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Miyuki Kato-Murayama
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Akiko Nakata
- Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akihiro Ito
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - D M Sivaraman
- Laboratory for Advanced Genomics Circuit, Centre for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Department of Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 011, Kerala, India
| | - Jay W Shin
- Laboratory for Advanced Genomics Circuit, Centre for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Minoru Yoshida
- Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Biotechnology, Graduate School of Agricultural Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
21
|
Ngo ST. Estimating the ligand-binding affinity via λ-dependent umbrella sampling simulations. J Comput Chem 2020; 42:117-123. [PMID: 33078419 DOI: 10.1002/jcc.26439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/21/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022]
Abstract
The umbrella sampling (US) approach has been demonstrated to be a very efficient method for estimating the ligand-binding affinity. However, most of the calculated values overestimate experimental ones that are probably caused by the inaccurate representation of the interaction between the ligand and the surrounding molecules. The issue can be resolved via the implementation aspects of λ-alteration simulation into the US approach, which we call the λ-dependent umbrella sampling (λUS) scheme. In particular, the electrostatic and van der Waals interactions were simultaneously changed by using the coupling parameter λ during λUS simulations. The mean value of obtained results, ∆ G US λ = 0.20 = - 11.59 ± 1.51 kcal mol-1 , is in good fitting to the mean value of respective experiments, ∆GEXP = - 11.26 ± 0.89 kcal mol-1 . Moreover, the correlation between the proposed approach and experiment is quite good with a value of R US λ = 0.20 = 0.82 ± 0.10 . The λUS scheme significantly enhances the calculated accuracy since the RMSE of the proposed scheme is smaller than traditional US simulations, RMSE US λ = 0.20 = 2.99 ± 0.82 kcal mol-1 versus RMSE US λ = 0.00 = 5.48 ± 0.81 kcal mol-1 . Furthermore, the precision is increased since the computed error via λUS approach, δ US λ = 0.20 = 1.51 kcal mol-1 , was smaller than those of the US simulation, δ US λ = 0.00 = 1.78 kcal mol-1 . Overall, the proposed approach perhaps provides an efficient way to accurately and precisely estimate the ligand-binding free energy.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
22
|
Abstract
A diverse range of N-terminally truncated and modified forms of amyloid-β (Aβ) oligomers have been discovered in Alzheimer’s disease brains, including the pyroglutamate-Aβ (AβpE3). AβpE3 species are shown to be more neurotoxic when compared with the full-length Aβ peptide. Findings visibly suggest that glutaminyl cyclase (QC) catalyzed the generation of cerebral AβpE3, and therapeutic effects are achieved by reducing its activity. In recent years, efforts to effectively develop QC inhibitors have been pursued worldwide. The inhibitory activity of current QC inhibitors is mainly triggered by zinc-binding groups that coordinate Zn2+ ion in the active site and other common features. Herein, we summarized the current state of discovery and evolution of QC inhibitors as a potential Alzheimer’s disease-modifying strategy.
Collapse
|
23
|
Wang X, Wang L, Yu X, Li Y, Liu Z, Zou Y, Zheng Y, He Z, Wu H. Glutaminyl cyclase inhibitor exhibits anti-inflammatory effects in both AD and LPS-induced inflammatory model mice. Int Immunopharmacol 2019; 75:105770. [DOI: 10.1016/j.intimp.2019.105770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 01/08/2023]
|
24
|
Xu A, He F, Yu C, Qu Y, Zhang Q, Lv J, Zhang X, Ran Y, Wei C, Wu J. The Development of Small Molecule Inhibitors of Glutaminyl Cyclase and Isoglutaminyl Cyclase for Alzheimer's Disease. ChemistrySelect 2019. [DOI: 10.1002/slct.201902852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ana Xu
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Feng He
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Chenggong Yu
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Ying Qu
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Qiuqiong Zhang
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Jiahui Lv
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Xiangna Zhang
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Yingying Ran
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Chao Wei
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Jingde Wu
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| |
Collapse
|
25
|
Vijayan DK, Zhang KY. Human glutaminyl cyclase: Structure, function, inhibitors and involvement in Alzheimer’s disease. Pharmacol Res 2019; 147:104342. [DOI: 10.1016/j.phrs.2019.104342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/19/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022]
|
26
|
Hoang VH, Ngo VTH, Cui M, Manh NV, Tran PT, Ann J, Ha HJ, Kim H, Choi K, Kim YH, Chang H, Macalino SJY, Lee J, Choi S, Lee J. Discovery of Conformationally Restricted Human Glutaminyl Cyclase Inhibitors as Potent Anti-Alzheimer's Agents by Structure-Based Design. J Med Chem 2019; 62:8011-8027. [PMID: 31411468 DOI: 10.1021/acs.jmedchem.9b00751] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is an incurable, progressive neurodegenerative disease whose pathogenesis cannot be defined by one single element but consists of various factors; thus, there is a call for alternative approaches to tackle the multifaceted aspects of AD. Among the potential alternative targets, we aim to focus on glutaminyl cyclase (QC), which reduces the toxic pyroform of β-amyloid in the brains of AD patients. On the basis of a putative active conformation of the prototype inhibitor 1, a series of N-substituted thiourea, urea, and α-substituted amide derivatives were developed. The structure-activity relationship analyses indicated that conformationally restrained inhibitors demonstrated much improved QC inhibition in vitro compared to nonrestricted analogues, and several selected compounds demonstrated desirable therapeutic activity in an AD mouse model. The conformational analysis of a representative inhibitor indicated that the inhibitor appeared to maintain the Z-E conformation at the active site, as it is critical for its potent activity.
Collapse
Affiliation(s)
- Van-Hai Hoang
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Van T H Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Pharmacy , Ton Duc Thang University , Ho Chi Minh City 75307 , Vietnam
| | - Minghua Cui
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Nguyen Van Manh
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Phuong-Thao Tran
- Department of Pharmaceutical Chemistry , Hanoi University of Pharmacy , Hanoi 10000 , Vietnam
| | - Jihyae Ann
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Hee-Jin Ha
- Medifron DBT , Sandanro 349 , Danwon-Gu, Ansan-City , Gyeonggi-Do 15426 , Republic of Korea
| | - Hee Kim
- Medifron DBT , Sandanro 349 , Danwon-Gu, Ansan-City , Gyeonggi-Do 15426 , Republic of Korea
| | - Kwanghyun Choi
- Medifron DBT , Sandanro 349 , Danwon-Gu, Ansan-City , Gyeonggi-Do 15426 , Republic of Korea
| | - Young-Ho Kim
- Medifron DBT , Sandanro 349 , Danwon-Gu, Ansan-City , Gyeonggi-Do 15426 , Republic of Korea
| | - Hyerim Chang
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Stephani Joy Y Macalino
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Jiyoun Lee
- Department of Global Medical Science , Sungshin University , Seoul 01133 , Republic of Korea
| | - Sun Choi
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|
27
|
Tran PT, Hoang VH, Lee J, Hien TTT, Tung NT, Ngo ST. In vitroandin silicodetermination of glutaminyl cyclase inhibitors. RSC Adv 2019; 9:29619-29627. [PMID: 35531555 PMCID: PMC9071946 DOI: 10.1039/c9ra05763c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative disease currently. It is widely accepted that AD is characterized by the self-assembly of amyloid beta (Aβ) peptides. The human glutaminyl cyclase (hQC) enzyme is characterized by association with Aβ peptide generation. The development of hQC inhibitors could prevent the self-aggregation of Aβ peptides, resulting in impeding AD. Utilizing structural knowledge of the hQC substrates and known hQC inhibitors, new heterocyclic and peptidomimetic derivatives were synthesized and were able to inhibit the hQC enzyme. The inhibiting abilities of these compounds were evaluated using a fluorometric assay. The binding mechanism at the atomic level was estimated using molecular docking, free energy perturbation, and quantum chemical calculation methods. The predicted log(BBB) and human intestinal absorption values indicated that these compounds are able to permeate the blood–brain barrier and be well-absorbed through the gastrointestinal tract. Overall, 5,6-dimethoxy-N-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1H-benzo[d]imidazol-2-amine (1_2) was indicated as a potential drug for AD treatment. Rational design of new hQC inhibitors.![]()
Collapse
Affiliation(s)
- Phuong-Thao Tran
- Department of Pharmaceutical Chemistry
- Hanoi University of Pharmacy
- Hanoi
- Vietnam
| | - Van-Hai Hoang
- Institute of Research and Development
- Duy Tan University
- Da Nang 550000
- Vietnam
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry
- College of Pharmacy
- Seoul National University
- Seoul
- Korea
| | | | - Nguyen Thanh Tung
- Institute of Materials Science
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Applied Sciences
| |
Collapse
|
28
|
Sharma A, Pachauri V, Flora SJS. Advances in Multi-Functional Ligands and the Need for Metal-Related Pharmacology for the Management of Alzheimer Disease. Front Pharmacol 2018; 9:1247. [PMID: 30498443 PMCID: PMC6249274 DOI: 10.3389/fphar.2018.01247] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/12/2018] [Indexed: 01/07/2023] Open
Abstract
Alzheimer’s disease (AD) is the age linked neurodegenerative disorder with no disease modifying therapy currently available. The available therapy only offers short term symptomatic relief. Several hypotheses have been suggested for the pathogenesis of the disease while the molecules developed as possible therapeutic agent in the last decade, largely failed in the clinical trials. Several factors like tau protein hyperphosphorylation, amyloid-β (Aβ) peptide aggregation, decline in acetyl cholinesterase and oxidative stress might be contributing toward the pathogenesis of AD. Additionally, biometals dyshomeostasis (Iron, Copper, and Zinc) in the brain are also reported to be involved in the pathogenesis of AD. Thus, targeting these metal ions may be an effective strategy for the development of a drug to treat AD. Chelation therapy is currently employed for the metal intoxication but we lack a safe and effective chelating agents with additional biological properties for their possible use as multi target directed ligands for a complex disease like AD. Chelating agents possess the ability to disaggregate Aβ aggregation, dissolve amyloid plaques, and delay the cognitive impairment. Thus there is an urgent need to develop disease modifying therapeutic molecules with multiple beneficial features like targeting more than one factor responsible of the disease. These molecules, as disease modifying therapeutic agents for AD, should possess the potential to inhibit Aβ-metal interactions, the formation of toxic Aβ aggregates; and the capacity to reinstate metal homeostasis.
Collapse
Affiliation(s)
- Abha Sharma
- Department of Pharmacology and Toxicology and Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Vidhu Pachauri
- Department of Pharmacology and Toxicology and Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - S J S Flora
- Department of Pharmacology and Toxicology and Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| |
Collapse
|
29
|
Lin W, Zheng X, Fang D, Zhou S, Wu W, Zheng K. Identifying hQC Inhibitors of Alzheimer's Disease by Effective Customized Pharmacophore-Based Virtual Screening, Molecular Dynamic Simulation, and Binding Free Energy Analysis. Appl Biochem Biotechnol 2018; 187:1173-1192. [PMID: 30187344 DOI: 10.1007/s12010-018-2780-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/06/2018] [Indexed: 01/14/2023]
Abstract
Human glutaminyl cyclase (hQC) appeared as a promising new target with its inhibitors attracted much attention for the treatment of Alzheimer's disease (AD) in recent years. But so far, only a few compounds have been reported as hQC inhibitors. To find novel and potent hQC inhibitors, a high-specificity ZBG (zinc-binding groups)-based pharmacophore model comprising customized ZBG feature was first generated using HipHop algorithm in Discovery Studio software for screening out hQC inhibitors from the SPECS database. After purification by docking studies and drug-like ADMET properties filters, four potential hit compounds were retrieved. Subsequently, these hit compounds were subjected to 30-ns molecular dynamic (MD) simulations to explore their binding modes at the active side of hQC. MD simulations demonstrated that these hit compounds formed a chelating interaction with the zinc ion, which was consistent with the finding that the electrostatic interaction was the major driving force for binding to hQC confirmed with MMPBSA energy decomposition. Higher binding affinities of these compounds were also verified by the binding free energy calculations comparing with the references. Thus, these identified compounds might be potential hQC candidates and could be used for further investigation.
Collapse
Affiliation(s)
- Weicong Lin
- Department of Physical Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaojie Zheng
- Department of Physical Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Danqing Fang
- Department of Cardiothoracic Surgery, Affiliated Second Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Shengfu Zhou
- Department of Physical Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wenjuan Wu
- Department of Physical Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Kangcheng Zheng
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
30
|
The structure of the human glutaminyl cyclase–SEN177 complex indicates routes for developing new potent inhibitors as possible agents for the treatment of neurological disorders. J Biol Inorg Chem 2018; 23:1219-1226. [DOI: 10.1007/s00775-018-1605-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/16/2018] [Indexed: 12/17/2022]
|
31
|
Macalino SJY, Basith S, Clavio NAB, Chang H, Kang S, Choi S. Evolution of In Silico Strategies for Protein-Protein Interaction Drug Discovery. Molecules 2018; 23:E1963. [PMID: 30082644 PMCID: PMC6222862 DOI: 10.3390/molecules23081963] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/14/2022] Open
Abstract
The advent of advanced molecular modeling software, big data analytics, and high-speed processing units has led to the exponential evolution of modern drug discovery and better insights into complex biological processes and disease networks. This has progressively steered current research interests to understanding protein-protein interaction (PPI) systems that are related to a number of relevant diseases, such as cancer, neurological illnesses, metabolic disorders, etc. However, targeting PPIs are challenging due to their "undruggable" binding interfaces. In this review, we focus on the current obstacles that impede PPI drug discovery, and how recent discoveries and advances in in silico approaches can alleviate these barriers to expedite the search for potential leads, as shown in several exemplary studies. We will also discuss about currently available information on PPI compounds and systems, along with their usefulness in molecular modeling. Finally, we conclude by presenting the limits of in silico application in drug discovery and offer a perspective in the field of computer-aided PPI drug discovery.
Collapse
Affiliation(s)
- Stephani Joy Y Macalino
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea.
| | - Shaherin Basith
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea.
| | - Nina Abigail B Clavio
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea.
| | - Hyerim Chang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea.
| | - Soosung Kang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea.
| | - Sun Choi
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
32
|
Structure-activity relationship investigation of Phe-Arg mimetic region of human glutaminyl cyclase inhibitors. Bioorg Med Chem 2018; 26:3133-3144. [DOI: 10.1016/j.bmc.2018.04.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 11/20/2022]
|
33
|
Potent human glutaminyl cyclase inhibitors as potential anti-Alzheimer’s agents: Structure-activity relationship study of Arg-mimetic region. Bioorg Med Chem 2018; 26:1035-1049. [DOI: 10.1016/j.bmc.2018.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 01/17/2023]
|