1
|
Twarda-Clapa A. An update patent review of MDM2-p53 interaction inhibitors (2019-2023). Expert Opin Ther Pat 2024; 34:1177-1198. [PMID: 39435470 DOI: 10.1080/13543776.2024.2419836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION The activity of the major tumor suppressor protein p53 is disrupted in nearly all human cancer types, either by mutations in TP53 gene or by overexpression of its negative regulator, Mouse Double Minute 2 (MDM2). The release of p53 from MDM2 and its homolog MDM4 with inhibitors based on different chemistries opened up a prospect for a broad, non-genotoxic anticancer therapy. AREAS COVERED This article reviews the patents and patent applications between years 2019 and 2023 in the field of MDM2-p53 interaction inhibitors. The newly reported molecules searched in Espacenet, Google Patents, and PubMed were grouped into five general categories: compounds having single-ring, multi-ring, or spiro-oxindole scaffolds, peptide derivatives, and proteolysis-targeting chimeras (PROTACs). The article also presents the progress of MDM2 antagonists of various structures in recruiting or completed cancer clinical trials. EXPERT OPINION Despite 20 years of intensive studies after the discovery of the first-in-class small-molecule inhibitor, Nutlin-3, no drugs targeting MDM2-p53 interaction have reached the market. Nevertheless, more than 10 compounds are still being evaluated in clinics, both as standalone drugs and in combinations with other targeted therapies or standard chemotherapy agents, including two inhibitors in phase 3 studies and two compounds granted orphan-drug/fast-track designation by the FDA.
Collapse
Affiliation(s)
- Aleksandra Twarda-Clapa
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
2
|
Liu W, Ma Y, He Y, Liu Y, Guo Z, He J, Han X, Hu Y, Li M, Jiang R, Wang S. Discovery of Novel p53-MDM2 Inhibitor (RG7388)-Conjugated Platinum IV Complexes as Potent Antitumor Agents. J Med Chem 2024; 67:9645-9661. [PMID: 38776419 DOI: 10.1021/acs.jmedchem.4c00784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
While a number of p53-MDM2 inhibitors have progressed into clinical trials for the treatment of cancer, their progression has been hampered by a variety of problems, including acquired drug resistance, dose-dependent toxicity, and limited clinical efficiency. To make more progress, we integrated the advantages of MDM2 inhibitors and platinum drugs to construct novel PtIV-RG7388 (a selective MDM2 inhibitor) complexes. Most complexes, especially 5a and 5b, displayed greatly improved antiproliferative activity against both wild-type and mutated p53 cancer cells. Remarkably, 5a exhibited potent in vivo tumor growth inhibition in the A549 xenograft model (66.5%) without apparent toxicity. It arrested the cell cycle at both the S phase and the G2/M phase and efficiently induced apoptosis via the synergistic effects of RG7388 and cisplatin. Altogether, PtIV-RG7388 complex 5a exhibited excellent in vitro and in vivo antitumor activities, highlighting the therapeutic potential of PtIV-RG7388 complexes as antitumor agents.
Collapse
Affiliation(s)
- Wei Liu
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yi Ma
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Youyou He
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yanhong Liu
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Zhongjie Guo
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jin He
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaodong Han
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yujiao Hu
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Muqiong Li
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ru Jiang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shengzheng Wang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
3
|
Feng Y, Xuan X, Hu Y, Lu J, Dong Z, Sun Z, Yao H, Hu L, Yin Q, Liu Y, Wang H. Targeting G-rich sequence to regulate the transcription of murine double minute (MDM) genes in triple-negative breast cancers. Eur J Med Chem 2024; 267:116156. [PMID: 38295687 DOI: 10.1016/j.ejmech.2024.116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024]
Abstract
Murine double minute 2 (MDM2) and homologous protein murine double minute X (MDMX) are p53 negative regulators that perform significant driving effects in tumorigenesis, and targeting these oncoproteins has became an efficient strategy in treating cancers. However, the definite antitumor activity and significance ordering of each protein in MDM family is still unclear due to the similar structure and complicated regulation. Herein, we identified two G-rich sequences (G1 and G5) located in the promoter that could assemble the G-quadruplex to respectively inhibit and promote the transcription of the MDM2 and MDMX. Based on this target, we designed and synthesized a novel G-quadruplex ligand A3f and achieved the differentiated regulation of MDM protein. In triple-negative breast cancer (TNBC) cells, A3f could induce MDM2-dependent proliferation arrest and exhibit additive therapeutic effect with MDMX inhibitors. Overall, this study provided a novel strategy to regulate the transcription of MDM genes by targeting certain G-rich sequences, and discovered an active antitumor molecule for use in TNBC treatment.
Collapse
Affiliation(s)
- Yuxin Feng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Xuan Xuan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Yuemiao Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Jiaguo Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Zhiwen Dong
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Ziqiang Sun
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Hongying Yao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Lei Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qikun Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| |
Collapse
|
4
|
Lee H, Lee JY, Jang H, Cho HY, Kang M, Bae SH, Kim S, Kim E, Jang J, Kim JY, Jeon YH. Discovery of proteolysis-targeting chimera targeting undruggable proteins using a covalent ligand screening approach. Eur J Med Chem 2024; 263:115929. [PMID: 37956552 DOI: 10.1016/j.ejmech.2023.115929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Targeted protein degradation (TPD) technology, such as proteolysis-targeting chimera (PROTAC), has become a new therapeutic modality. However, the degradation of undruggable proteins, such as those involved in protein-protein interactions (PPIs), using PROTAC is still limited owing to the difficulties in finding small-molecule binders of these proteins. To identify new chemical moieties that bind to the target sites of the protein of interest (POI), we conducted a site-specific and fragment-based covalent ligand screening using liquid chromatography-tandem mass spectrometry (LC-MS/MS). To apply the selected hits to the PROTAC approach, two-dimensional (2D) nuclear magnetic resonance (NMR) experiments were performed to evaluate the reversible binding of their analogs without covalent warheads. To proof the proposed approach, human mouse double minute (MDM)2 was selected as a model system since it is involved in PPIs and is known to be a degradable target protein. Western blot analysis showed that newly synthesized PROTACs, incorporated reversible analogs of screening hits, affected degradation in a dose- and time-dependent manner. This methodology makes it possible to use PROTAC technology to exploit previously undruggable proteins for TPD.
Collapse
Affiliation(s)
- Hyeonjun Lee
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Ju Yeon Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, South Korea
| | - Hyunsoo Jang
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Hye Young Cho
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Minhee Kang
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Sang Hyun Bae
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, South Korea
| | - Suin Kim
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Eunji Kim
- Azcuris, Co., Ltd., 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Jaebong Jang
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea.
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, South Korea.
| | - Young Ho Jeon
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea; Azcuris, Co., Ltd., 2511 Sejong-ro, Sejong, 30019, South Korea.
| |
Collapse
|
5
|
Cheng J, Yan Z, Jiang K, Liu C, Xu D, Lyu X, Hu X, Zhang S, Zhou Y, Li J, Zhao Y. Discovery of JN122, a Spiroindoline-Containing Molecule that Inhibits MDM2/p53 Protein-Protein Interaction and Exerts Robust In Vivo Antitumor Efficacy. J Med Chem 2023; 66:16991-17025. [PMID: 38062557 DOI: 10.1021/acs.jmedchem.3c01815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
MDM2 and MDM4 cooperatively and negatively regulate p53, while this pathway is often hijacked by cancer cells in favor of their survival. Blocking MDM2/p53 interaction with small-molecule inhibitors liberates p53 from MDM2 mediated degradation, which is an attractive strategy for drug discovery. We reported herein structure-based discovery of highly potent spiroindoline-containing MDM2 inhibitor (-)60 (JN122), which also exhibited moderate activities against MDM4/p53 interactions. In a panel of cancer cell lines harboring wild type p53, (-)60 efficiently promoted activation of p53 and its target genes, inhibited cell cycle progression, and induced cell apoptosis. Interestingly, (-)60 also promoted degradation of MDM4. More importantly, (-)60 exhibited good PK properties and exerted robust antitumor efficacies in a systemic mouse xenograft model of MOLM-13. Taken together, our study showcases a class of potent MDM2 inhibitors featuring a novel spiro-indoline scaffold, which is promising for future development targeting cancer cells with wild-type p53.
Collapse
Affiliation(s)
- Jing Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, P. R. China
| | - Ziqin Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
| | - Kailong Jiang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, P. R. China
| | - Chen Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Dehua Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, P. R. China
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124000, P. R. China
| | - Xilin Lyu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
| | - Xiaobei Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, P. R. China
| | - Shiyan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, P. R. China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, P. R. China
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124000, P. R. China
| | - Yujun Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, P. R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, P. R. China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
6
|
Hu L, Liu S, Yao H, Hu Y, Wang Y, Jiang J, Li X, Fu F, Yin Q, Wang H. Identification of a novel heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) ligand that disrupts HnRNPA2B1/nucleic acid interactions to inhibit the MDMX-p53 axis in gastric cancer. Pharmacol Res 2023; 189:106696. [PMID: 36791898 DOI: 10.1016/j.phrs.2023.106696] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
Gastric carcinoma is a highly malignant tumor that still lacks effective molecular targets. Heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) is an essential oncogenic driver overexpressed in various cancers. The potential role of hnRNPA2B1 in oncotherapy has not been revealed because of the absence of active chemical molecules. In this study, we identified the pseudourea derivative XI-011 as a novel hnRNPA2B1 ligand using chemical proteomics. An interaction study indicated that XI-011 could bind the nucleotide-binding domain to disrupt the recruitment of hnRNPA2B1 to the promoter and untranslated region of the murine double minute X (MDMX) gene, thereby inhibiting its transcription. In addition, chemical targeting of hnRNPA2B1 recovered inactivated p53 and enhanced the therapeutic efficacy of apatinib in vivo. This work presented a novel strategy to restore p53 activity for the treatment of gastric cancers via chemically targeting hnRNPA2B1.
Collapse
Affiliation(s)
- Lei Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Shuqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hongying Yao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yuemiao Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Yingjie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jingpeng Jiang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xiaopeng Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Qikun Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
7
|
Recent advances in the pharmacological targeting of ubiquitin-regulating enzymes in cancer. Semin Cell Dev Biol 2022; 132:213-229. [PMID: 35184940 DOI: 10.1016/j.semcdb.2022.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022]
Abstract
As a post-translational modification that has pivotal roles in protein degradation, ubiquitination ensures that intracellular proteins act in a precise spatial and temporal manner to regulate diversified cellular processes. Perturbation of the ubiquitin system contributes directly to the onset and progression of a wide variety of diseases, including various subtypes of cancer. This highly regulated system has been for years an active research area for drug discovery that is exemplified by several approved drugs. In this review, we will provide an update of the main breakthrough scientific discoveries that have been leading the clinical development of ubiquitin-targeting therapies in the last decade, with a special focus on E1 and E3 modulators. We will further discuss the unique challenges of identifying new potential therapeutic targets within this ubiquitous and highly complex machinery, based on available crystallographic structures, and explore chemical approaches by which these challenges might be met.
Collapse
|
8
|
Zhu H, Gao H, Ji Y, Zhou Q, Du Z, Tian L, Jiang Y, Yao K, Zhou Z. Targeting p53-MDM2 interaction by small-molecule inhibitors: learning from MDM2 inhibitors in clinical trials. J Hematol Oncol 2022; 15:91. [PMID: 35831864 PMCID: PMC9277894 DOI: 10.1186/s13045-022-01314-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/07/2022] [Indexed: 12/17/2022] Open
Abstract
p53, encoded by the tumor suppressor gene TP53, is one of the most important tumor suppressor factors in vivo and can be negatively regulated by MDM2 through p53–MDM2 negative feedback loop. Abnormal p53 can be observed in almost all tumors, mainly including p53 mutation and functional inactivation. Blocking MDM2 to restore p53 function is a hotspot in the development of anticancer candidates. Till now, nine MDM2 inhibitors with different structural types have entered clinical trials. However, no MDM2 inhibitor has been approved for clinical application. This review focused on the discovery, structural modification, preclinical and clinical research of the above compounds from the perspective of medicinal chemistry. Based on this, the possible defects in MDM2 inhibitors in clinical development were analyzed to suggest that the multitarget strategy or targeted degradation strategy based on MDM2 has the potential to reduce the dose-dependent hematological toxicity of MDM2 inhibitors and improve their anti-tumor activity, providing certain guidance for the development of agents targeting the p53–MDM2 interaction.
Collapse
Affiliation(s)
- Haohao Zhu
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China
| | - Hui Gao
- Jiangyin People's Hospital, Wuxi, 214400, Jiangsu, China
| | - Yingying Ji
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China
| | - Qin Zhou
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China
| | - Zhiqiang Du
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China
| | - Lin Tian
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China
| | - Ying Jiang
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China.
| | - Kun Yao
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China.
| | - Zhenhe Zhou
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China.
| |
Collapse
|
9
|
Wang Y, Ji B, Cheng Z, Zhang L, Cheng Y, Li Y, Ren J, Liu W, Ma Y. Synthesis and Biological Evaluation of Novel Synthetic Indolone Derivatives as Anti-Tumor Agents Targeting p53-MDM2 and p53-MDMX. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123721. [PMID: 35744849 PMCID: PMC9230548 DOI: 10.3390/molecules27123721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
A series of novel indolone derivatives were synthesized and evaluated for their binding affinities toward MDM2 and MDMX. Some compounds showed potent MDM2 and moderate MDMX activities. Among them, compound A13 exhibited the most potent affinity toward MDM2 and MDMX, with a Ki of 0.031 and 7.24 μM, respectively. A13 was also the most potent agent against HCT116, MCF7, and A549, with IC50 values of 6.17, 11.21, and 12.49 μM, respectively. Western blot analysis confirmed that A13 upregulated the expression of MDM2, MDMX, and p53 by Western blot analysis. These results indicate that A13 is a potent dual p53-MDM2 and p53-MDMX inhibitor and deserves further investigation.
Collapse
Affiliation(s)
- Yali Wang
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; (B.J.); (Z.C.); (L.Z.); (Y.C.); (Y.L.); (J.R.); (W.L.)
- Correspondence:
| | - Bo Ji
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; (B.J.); (Z.C.); (L.Z.); (Y.C.); (Y.L.); (J.R.); (W.L.)
| | - Zhongshui Cheng
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; (B.J.); (Z.C.); (L.Z.); (Y.C.); (Y.L.); (J.R.); (W.L.)
| | - Lianghui Zhang
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; (B.J.); (Z.C.); (L.Z.); (Y.C.); (Y.L.); (J.R.); (W.L.)
| | - Yingying Cheng
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; (B.J.); (Z.C.); (L.Z.); (Y.C.); (Y.L.); (J.R.); (W.L.)
| | - Yingying Li
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; (B.J.); (Z.C.); (L.Z.); (Y.C.); (Y.L.); (J.R.); (W.L.)
| | - Jin Ren
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; (B.J.); (Z.C.); (L.Z.); (Y.C.); (Y.L.); (J.R.); (W.L.)
| | - Wenbo Liu
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; (B.J.); (Z.C.); (L.Z.); (Y.C.); (Y.L.); (J.R.); (W.L.)
| | - Yuanyuan Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China;
| |
Collapse
|
10
|
Zhang S, Yan Z, Li Y, Gong Y, Lyu X, Lou J, Zhang D, Meng X, Zhao Y. Structure-Based Discovery of MDM2/4 Dual Inhibitors that Exert Antitumor Activities against MDM4-Overexpressing Cancer Cells. J Med Chem 2022; 65:6207-6230. [PMID: 35420431 DOI: 10.1021/acs.jmedchem.2c00095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite recent clinical progress in peptide-based dual inhibitors of MDM2/4, small-molecule ones with robust antitumor activities remain challenging. To tackle this issue, 31 (YL93) was structure-based designed and synthesized, which had MDM2/4 binding Ki values of 1.1 and 642 nM, respectively. In three MDM4-overexpressing cancer cell lines harboring wild-type p53, 31 shows improved cell growth inhibition activities compared to RG7388, an MDM2-selective inhibitor in late-stage clinical trials. Mechanistic studies show that 31 increased cellular protein levels of p53 and p21 and upregulated the expression of p53-targeted genes in RKO cells with MDM4 amplification. In addition, 31 induced cell-cycle arrest and apoptosis in western blot and flow cytometry assays. Taken together, dual inhibition of MDM2/4 by 31 elicited stronger antitumor activities in vitro compared to selective MDM2 inhibitors in wild-type p53 and MDM4-overexpressing cancer cells.
Collapse
Affiliation(s)
- Shiyan Zhang
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ziqin Yan
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yafang Li
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Yang Gong
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xilin Lyu
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jianfeng Lou
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Daizhou Zhang
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Xiangjing Meng
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Yujun Zhao
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.,Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| |
Collapse
|
11
|
Li H, Chen X, Wu M, Song P, Zhao X. Bicyclic stapled peptides based on p53 as dual inhibitors for the interactions of p53 with MDM2 and MDMX. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Zhang S, Lou J, Li Y, Zhou F, Yan Z, Lyu X, Zhao Y. Recent Progress and Clinical Development of Inhibitors that Block MDM4/p53 Protein-Protein Interactions. J Med Chem 2021; 64:10621-10640. [PMID: 34286973 DOI: 10.1021/acs.jmedchem.1c00940] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MDM4 is a homologue of MDM2, serving cooperatively as the negative regulator of tumor suppressor p53. Under the shadow of MDM2 inhibitors, limited efforts had been put into the discovery of MDM4 modulators. Recent studies of the experimental drug ALRN-6924, a dual MDM4 and MDM2 inhibitor, suggest that concurrent inhibition of MDM4 and MDM2 might be beneficial over only MDM2 inhibition. In view of the present research progress, we summarized published inhibitors of MDM4/p53 interactions including both peptide-based compounds and small molecules. Cocrystal structures of ligand/MDM4 complexes have been examined, and their structural features were compiled and compared in order to show the molecular basis required for high MDM4 binding affinities. Representative examples of small-molecule MDM4 inhibitors were discussed, followed by clinical results of ALRN-6924, together, providing a consolidated reference for further development of MDM4 inhibitors, either dual or selective.
Collapse
Affiliation(s)
- Shiyan Zhang
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.,State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jianfeng Lou
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.,State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yafang Li
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu 215123, China.,State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Feilong Zhou
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Ziqin Yan
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xilin Lyu
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yujun Zhao
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.,State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
13
|
Algar S, Martín-Martínez M, González-Muñiz R. Evolution in non-peptide α-helix mimetics on the road to effective protein-protein interaction modulators. Eur J Med Chem 2020; 211:113015. [PMID: 33423841 DOI: 10.1016/j.ejmech.2020.113015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/04/2023]
Abstract
Modulation of interactome networks, essentially protein-protein interactions (PPIs), might represent valuable therapeutic approaches to different pathological conditions. Since a high percentage of PPIs are mediated by α-helical structures at the interacting surface, the development of compounds able to reproduce the amino acid side-chain organization of α-helices (e.g. stabilized α-helix peptides and β-derivatives, proteomimetics, and α-helix small-molecule mimetics) focuses the attention of different research groups. This appraisal describes the recent progress in the non-peptide α-helix mimetics field, which has evolved from single-face to multi-face reproducing compounds and from oligomeric to monomeric scaffolds able to bear different substituents in similar spatial dispositions as the side-chains in canonical helices. Grouped by chemical structures, the review contemplates terphenyl-like molecules, oligobenzamides and heterocyclic analogues, benzamide-amino acid conjugates and non-oligomeric small-molecules mimetics, among others, and their effectiveness to stabilize/disrupt therapeutically relevant PPIs. The X-ray structures of a couple of oligomeric peptidomimetics and of some small-molecules complexed with the MDM2 protein, as well as the state of the art on their development in clinical trials, are also remarked. The discovery of a continuously increasing number of new disease-relevant PPIs could offer future opportunities for these and other forthcoming α-helix mimetics.
Collapse
Affiliation(s)
- Sergio Algar
- Instituto de Química Médica, IQM-CSIC, Juan de La Cierva 3, 28006, Madrid, Spain
| | | | | |
Collapse
|
14
|
Wang B, Peng F, Huang W, Zhou J, Zhang N, Sheng J, Haruehanroengra P, He G, Han B. Rational drug design, synthesis, and biological evaluation of novel chiral tetrahydronaphthalene-fused spirooxindole as MDM2-CDK4 dual inhibitor against glioblastoma. Acta Pharm Sin B 2020; 10:1492-1510. [PMID: 32963945 PMCID: PMC7488488 DOI: 10.1016/j.apsb.2019.12.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/17/2019] [Accepted: 12/12/2019] [Indexed: 02/08/2023] Open
Abstract
Simultaneous inhibition of MDM2 and CDK4 may be an effective treatment against glioblastoma. A collection of chiral spirocyclic tetrahydronaphthalene (THN)-oxindole hybrids for this purpose have been developed. Appropriate stereochemistry in THN-fused spirooxindole compounds is key to their inhibitory activity: selectivity differed by over 40-fold between the least and most potent stereoisomers in time-resolved FRET and KINOMEscan® in vitro assays. Studies in glioblastoma cell lines showed that the most active compound ent-4g induced apoptosis and cell cycle arrest by interfering with MDM2 -P53 interaction and CDK4 activation. Cells treated with ent-4g showed up-regulation of proteins involved in P53 and cell cycle pathways. The compound showed good anti-tumor efficacy against glioblastoma xenografts in mice. These results suggested that rational design, asymmetric synthesis and biological evaluation of novel tetrahydronaphthalene fused spirooxindoles could generate promising MDM2-CDK4 dual inhibitors in glioblastoma therapy.
Collapse
|
15
|
Small-molecule MDM2/X inhibitors and PROTAC degraders for cancer therapy: advances and perspectives. Acta Pharm Sin B 2020; 10:1253-1278. [PMID: 32874827 PMCID: PMC7452049 DOI: 10.1016/j.apsb.2020.01.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/31/2019] [Accepted: 12/26/2019] [Indexed: 12/26/2022] Open
Abstract
Blocking the MDM2/X–P53 protein–protein interaction has been widely recognized as an attractive therapeutic strategy for the treatment of cancers. Numerous small-molecule MDM2 inhibitors have been reported since the release of the structure of the MDM2–P53 interaction in 1996, SAR405838, NVP-CGM097, MK-8242, RG7112, RG7388, DS-3032b, and AMG232 currently undergo clinical evaluation for cancer therapy. This review is intended to provide a comprehensive and updated overview of MDM2 inhibitors and proteolysis targeting chimera (PROTAC) degraders with a particular focus on how these inhibitors or degraders are identified from starting points, strategies employed, structure–activity relationship (SAR) studies, binding modes or co-crystal structures, biochemical data, mechanistic studies, and preclinical/clinical studies. Moreover, we briefly discuss the challenges of designing MDM2/X inhibitors for cancer therapy such as dual MDM2/X inhibition, acquired resistance and toxicity of P53 activation as well as future directions.
Collapse
|
16
|
Satyam K, Murugesh V, Suresh S. The base-free van Leusen reaction of cyclic imines on water: synthesis of N-fused imidazo 6,11-dihydro β-carboline derivatives. Org Biomol Chem 2019; 17:5234-5238. [PMID: 31074750 DOI: 10.1039/c9ob00660e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Construction of imidazoles has been demonstrated on water under base-free conditions. The reaction of dihydro β-carboline imines and p-toluenesulfonylmethyl isocyanides furnished the corresponding substituted N-fused imidazo 6,11-dihydro β-carboline derivatives in very good yields under ambient conditions. The use of deuterium oxide (D2O) as a solvent enabled the incorporation of deuterium isotopes in the imidazole ring.
Collapse
Affiliation(s)
- Killari Satyam
- Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.
| | | | | |
Collapse
|
17
|
Shi S, Sui K, Liu W, Lei Y, Zhang S, Zhang Q. Revealing binding selectivity of ligands toward murine double minute 2 and murine double minute X based on molecular dynamics simulations and binding free energy calculations. J Biomol Struct Dyn 2019; 38:5081-5094. [PMID: 31755361 DOI: 10.1080/07391102.2019.1695671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It is well known that the interactions of p53 with murine double minute 2 and murine double minute X, namely MDM2 and MDMX, have been significant targets of efficient anti-cancer drug design. In this study, molecular dynamics (MD) simulations, principal component (PC) analysis and binding free energy calculations are combined to recognize binding selectivity of three ligands to MDM2 and MDMX. The binding free energies were estimated by using molecular mechanics generalized Born surface area (MM-GBSA) method and the obtained results display that the increase in the binding enthalpy of three ligands to MDM2 relative to MDMX mainly drives the binding selectivity of them toward MDM2 and MDMX. The information obtained from PC analysis shows that the associations of ligands exert important impacts on internal dynamics of MDM2 and MDMX. Meanwhile, the calculations of residue-based free energy decomposition not only identify the hot interaction spots of ligands with MDM2 and MDMX, but also show the residues (L54, M53), (Y67, Y66), (V93, V92), (H96, P95), (I99, I98) and (Y100, Y99) in (MDM2, MDMX) are responsible for most contributions to the binding selectivity of three ligands toward MDM2 and MDMX. It is believed that this work can provide useful information for design of highly selective and dual inhibitors targeting MDM2 and MDMX.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shuhua Shi
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Kai Sui
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Weizhe Liu
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Yanzi Lei
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Shaolong Zhang
- College of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Qinggang Zhang
- College of Physics and Electronics, Shandong Normal University, Jinan, China
| |
Collapse
|
18
|
Aguida B, Bouceba T, Créchet JB, Hounguè H, Capo-Chichi C, Nakayama JI, Baouz S, Pelczar H, Woisard A, Jourdan N, Hountondji C. In Vitro Analysis of Protein:Protein Interactions in the Human Cancer-Pertinent rp.eL42-p53-Mdm2 Pathway. Open Biochem J 2019. [DOI: 10.2174/1874091x01913010064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction:
We have recently demonstrated that the eukaryote-specific large subunit ribosomal protein
(rp) eL42 assists catalysis of peptide bond formation at the peptidyl transferase center of 80S
ribosomes in eukaryotic cells. Recently, several ribosomal proteins were shown to have extraribosomal
functions independent of protein biosynthesis. Such functions include regulation of
apoptosis, cell cycle arrest, cell proliferation, neoplastic transformation, cell migration and
invasion, and tumorigenesis through both Mdm2-p53-dependent and p53-independent
mechanisms. Our objective is to demonstrate that overexpression of eL42 in tumor may
incapacitate cell anti-tumor mechanism through interaction with the tumor suppressor protein
p53 and its partner Mdm2.
Methods:
Co-immunoprecipitation technique and the binding assays on Biacore were used to
probe interactions between recombinant eL42, p53 and Mdm2 proteins in a so-called rp-p53-Mdm2 axis.
Results:
We demonstrate that the ribosomal protein eL42, the tumor suppressor protein p53 and the ubiquitin E3 ligase Mdm2 interact with each other in a ternary rp.eL42:p53:Mdm2 complex. Precisely, the interaction between eL42 and p53 is characterized by a strong binding affinity (KD value in the nanomolar range) that is likely to trigger the sequestration of p53 and the inhibition of its tumor suppressor activity. Furthermore, the p53:Mdm2 and eL42:Mdm2 complexes exhibit comparable binding affinities in the micromolar range compatible with Mdm2 being the enzyme which ubiquitinates both the p53 and eL42 substrates. Interestingly, pyridoxal 5'-phosphate (PLP), one of the active forms of vitamin B6, binds to eL42 and significantly inhibits the interaction between eL42 and p53, in accordance with the observation that vitamin B6 is associated with reduced risk of cancer.
Conclusion:
Our study emphasized one more major mechanism of p53 downregulation involving its sequestration by eL42 upon the overexpression of this ribosomal protein. The mechanism described in the present report complemented the well-known p53 downregulation triggered by proteasomal degradation mediated through its ubiquitination by Mdm2.
Collapse
|
19
|
Hitting on the move: Targeting intrinsically disordered protein states of the MDM2-p53 interaction. Eur J Med Chem 2019; 182:111588. [PMID: 31421630 DOI: 10.1016/j.ejmech.2019.111588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/22/2019] [Accepted: 08/04/2019] [Indexed: 01/17/2023]
Abstract
Intrinsically disordered proteins are an emerging class of proteins without a folded structure and currently disorder-based drug targeting remains a challenge. p53 is the principal regulator of cell division and growth whereas MDM2 consists its main negative regulator. The MDM2-p53 recognition is a dynamic and multistage process that amongst other, employs the dissociation of a transient α-helical N-terminal ''lid'' segment of MDM2 from the proximity of the p53-complementary interface. Several small molecule inhibitors have been reported to inhibit the formation of the p53-MDM2 complex with the vast majority mimicking the p53 residues Phe19, Trp23 and Leu26. Recently, we have described the transit from the 3-point to 4-point pharmacophore model stabilizing this intrinsically disordered N-terminus by increasing the binding affinity by a factor of 3. Therefore, we performed a thorough SAR analysis, including chiral separation of key compound which was evaluated by FP and 2D NMR. Finally, p53-specific anti-cancer activity towards p53-wild-type cancer cells was observed for several representative compounds.
Collapse
|
20
|
Lemos A, Gomes AS, Loureiro JB, Brandão P, Palmeira A, Pinto MMM, Saraiva L, Sousa ME. Synthesis, Biological Evaluation, and In Silico Studies of Novel Aminated Xanthones as Potential p53-Activating Agents. Molecules 2019; 24:molecules24101975. [PMID: 31121972 PMCID: PMC6571851 DOI: 10.3390/molecules24101975] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/10/2023] Open
Abstract
Xanthone scaffold has been regarded as an attractive chemical tool in the search for bioactive molecules with antitumor activity, and in particular two xanthone derivatives, 12-hydroxy-2,2-dimethyl-3,4-dihydro-2H,6H-pyrano [3,2-b]xanthen-6-one (4) and 3,4-dimethoxy-9-oxo-9H-xanthene-1-carbaldehyde (5), were described as a murine double minute 2 (MDM2)-p53 inhibitor and a TAp73 activator, respectively. The xanthone 5 was used as a starting point for the construction of a library of 3,4-dioxygenated xanthones bearing chemical moieties of described MDM2-p53 inhibitors. Eleven aminated xanthones were successfully synthesized and initially screened for their ability to disrupt the MDM2-p53 interaction using a yeast cell-based assay. With this approach, xanthone 37 was identified as a putative p53-activating agent through inhibition of interaction with MDM2. Xanthone 37 inhibited the growth of human colon adenocarcinoma HCT116 cell lines in a p53-dependent manner. The growth inhibitory effect of xanthone 37 was associated with the induction of G1-phase cell cycle arrest and increased protein expression levels of p53 transcriptional targets. These results demonstrated the potential usefulness of coupling amine-containing structural motifs of known MDM2-p53 disruptors into a 3,4-dioxygenated xanthone scaffold in the design of novel and potent p53 activators with antitumor activity and favorable drug-like properties. Moreover, in silico docking studies were performed in order to predict the binding poses and residues involved in the potential MDM2-p53 interaction.
Collapse
Affiliation(s)
- Agostinho Lemos
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Ana Sara Gomes
- UCIBIO/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Joana B Loureiro
- UCIBIO/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Pedro Brandão
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Andreia Palmeira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Madalena M M Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edificio do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| | - Lucília Saraiva
- UCIBIO/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edificio do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
21
|
Haupt S, Mejía-Hernández JO, Vijayakumaran R, Keam SP, Haupt Y. The long and the short of it: the MDM4 tail so far. J Mol Cell Biol 2019; 11:231-244. [PMID: 30689920 PMCID: PMC6478121 DOI: 10.1093/jmcb/mjz007] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/16/2018] [Accepted: 01/21/2019] [Indexed: 12/27/2022] Open
Abstract
The mouse double minute 4 (MDM4) is emerging from the shadow of its more famous relative MDM2 and is starting to steal the limelight, largely due to its therapeutic possibilities. MDM4 is a vital regulator of the tumor suppressor p53. It restricts p53 transcriptional activity and also, at least in development, facilitates MDM2's E3 ligase activity toward p53. These functions of MDM4 are critical for normal cell function and a proper response to stress. Their importance for proper cell maintenance and proliferation identifies them as a risk for deregulation associated with the uncontrolled growth of cancer. MDM4 tails are vital for its function, where its N-terminus transactivation domain engages p53 and its C-terminus RING domain binds to MDM2. In this review, we highlight recently identified cellular functions of MDM4 and survey emerging therapies directed to correcting its dysregulation in disease.
Collapse
Affiliation(s)
- Sue Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Reshma Vijayakumaran
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
| | - Simon P Keam
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
| | - Ygal Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
22
|
Gambouz K, Driowya M, Loubidi M, Tber Z, Allouchi H, El Kazzouli S, Akssira M, Guillaumet G. Unusual rearrangement of imidazo[1,5- a]imidazoles and imidazo[1,2- b]pyrazoles into imidazo[1,5- a]pyrimidines and pyrazolo[1,5- a]pyrimidines. RSC Adv 2019; 9:29051-29055. [PMID: 35528450 PMCID: PMC9071803 DOI: 10.1039/c9ra04609g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/10/2019] [Indexed: 01/19/2023] Open
Abstract
A multicomponent reaction giving easy and cheap access to a variety of bicyclic 5,5-fused hetero-rings has been developed.
Collapse
Affiliation(s)
- Khadija Gambouz
- Laboratoire de Chimie Physique et Chimie Bioorganique
- URAC 22 FSTM
- Université Hassan II – Casablanca
- Morocco
- Euromed Research Center
| | - Mohsine Driowya
- Institut de Chimie Organique et Analytique
- Université d’Orléans
- UMR CNRS 7311
- 45067 Orléans Cedex 2
- France
| | - Mohammed Loubidi
- Laboratoire de Chimie Physique et Chimie Bioorganique
- URAC 22 FSTM
- Université Hassan II – Casablanca
- Morocco
- Institut de Chimie Organique et Analytique
| | - Zahira Tber
- Laboratoire de Chimie Physique et Chimie Bioorganique
- URAC 22 FSTM
- Université Hassan II – Casablanca
- Morocco
- Institut de Chimie Organique et Analytique
| | - Hassan Allouchi
- Laboratoire de Chimie Physique
- équipe EA 7502 SIMBA
- Faculté de Pharmacie
- Université de Tours
- 37200 Tours
| | - Saïd El Kazzouli
- Euromed Research Center
- Euromed Faculty of Enginnering
- Euromed University of Fes (UEMF)
- 30000 Fès
- Morocco
| | - Mohamed Akssira
- Laboratoire de Chimie Physique et Chimie Bioorganique
- URAC 22 FSTM
- Université Hassan II – Casablanca
- Morocco
| | - Gérald Guillaumet
- Institut de Chimie Organique et Analytique
- Université d’Orléans
- UMR CNRS 7311
- 45067 Orléans Cedex 2
- France
| |
Collapse
|
23
|
Zhu HP, Xie K, He XH, Huang W, Zeng R, Fan Y, Peng C, He G, Han B. Organocatalytic diastereoselective [3+2] cyclization of MBH carbonates with dinucleophiles: synthesis of bicyclic imidazoline derivatives that inhibit MDM2–p53 interaction. Chem Commun (Camb) 2019; 55:11374-11377. [PMID: 31478534 DOI: 10.1039/c9cc05916d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
MBH carbonates were successfully applied to a stereoselective [3+3] annulation with N,C-dinucleophiles for the first time, yielding a collection of pharmacologically interesting bicyclic imidazolines which were found to inhibit MDM2–p53 binding.
Collapse
Affiliation(s)
- Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu
- China
| | - Ke Xie
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- China
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu
- China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu
- China
| | - Rong Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- China
| | - Yang Fan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu
- China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital, Sichuan University
- Chengdu 610041
- China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu
- China
| |
Collapse
|
24
|
Niazi S, Purohit M, Niazi JH. Role of p53 circuitry in tumorigenesis: A brief review. Eur J Med Chem 2018; 158:7-24. [PMID: 30199707 DOI: 10.1016/j.ejmech.2018.08.099] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 01/07/2023]
Abstract
Maintenance of genome integrity under the stressed condition is paramount for normal functioning of cells in the multicellular organisms. Cells are programmed to protect their genome through specialized adaptive mechanisms which will help decide their fate under stressed conditions. These mechanisms are the outcome of activation of the intricate circuitries that are regulated by the p53 master protein. In this paper, we provided a comprehensive review on p53, p53 homologues and their isoforms, including a description about the ubiquitin-proteasome system emphasizing its role in p53 regulation. p53 induced E3(Ub)-ligases are an integral part of the ubiquitin-proteasome system. This review outlines the roles of important E3(Ub)-ligases and their splice variants in maintaining cellular p53 protein homeostasis. It also covers up-to-date and relevant information on small molecule Mdm2 inhibitors originated from different organizations. The review ends with a discussion on future prospects and investigation directives for the development of next-generation modulators as p53 therapeutics.
Collapse
Affiliation(s)
- Sarfaraj Niazi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy-Mysuru, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| | - Madhusudan Purohit
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy-Mysuru, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| | - Javed H Niazi
- Sabanci University SUNUM Nanotechnology Research Centre, TR-34956, Istanbul, Turkey
| |
Collapse
|
25
|
Chen J, Wang J, Pang L, Zhu W. Inhibiting mechanism of small molecule toward the p53-MDM2 interaction: A molecular dynamic exploration. Chem Biol Drug Des 2018; 92:1763-1777. [DOI: 10.1111/cbdd.13345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/01/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Jianzhong Chen
- School of Science; Shandong Jiaotong University; Jinan China
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| | - Jinan Wang
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| | - Laixue Pang
- School of Science; Shandong Jiaotong University; Jinan China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| |
Collapse
|
26
|
Abstract
Artificial macrocycles recently became popular as a novel research field in drug discovery. As opposed to their natural twins, artificial macrocycles promise to have better control on synthesizability and control over their physicochemical properties resulting in druglike properties. Very few synthetic methods allow for the convergent, fast but diverse access to large macrocycles chemical space. One synthetic technology to access artificial macrocycles with potential biological activity, multicomponent reactions, is reviewed here, with a focus on our own work. We believe that synthetic chemists have to acquaint themselves more with structure and activity to leverage the design aspect of their daily work.
Collapse
Affiliation(s)
- Eman M M Abdelraheem
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands,
- Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Shabnam Shaabani
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands,
| | - Alexander Dömling
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands,
| |
Collapse
|