1
|
Aktekin MB, Oksuz Z, Turkmenoglu B, Istifli ES, Kuzucu M, Algul O. Synthesis and evaluation of di-heterocyclic benzazole compounds as potential antibacterial and anti-biofilm agents against Staphylococcus aureus. Chem Biol Drug Des 2024; 104:e14601. [PMID: 39085984 DOI: 10.1111/cbdd.14601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/26/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Cumulative escalation in antibiotic-resistant pathogens necessitates the quest for novel antimicrobial agents, as current options continue to diminish bacterial resistance. Herein, we report the synthesis of di-heterocyclic benzazole structures (12-19) and their in vitro evaluation for some biological activities. Compounds 16 and 17 demonstrated potent antibacterial activity (MIC = 7.81 μg/mL) against Staphylococcus aureus, along with significant anti-biofilm activity. Noteworthy is the capability of Compound 17 to inhibit biofilm formation by at least 50% at sub-MIC (3.90 μg/mL) concentration. Furthermore, both compounds exhibited the potential to inhibit preformed biofilm by at least 50% at the MIC concentration (7.81 μg/mL). Additionally, Compounds 16 and 17 were examined for cytotoxic effects in HFF-1 cells, using the MTT method, and screened for binding interactions within the active site of S. aureus DNA gyrase using in silico molecular docking technique, employing AutoDock 4.2.6 and Schrödinger Glidse programs. Overall, our findings highlight Compounds 16 and 17 as promising scaffolds warranting further optimization for the development of effective antibacterial and anti-biofilm agents.
Collapse
Affiliation(s)
- Mine Buga Aktekin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
- Department of Pharmacy Services, Vocational School of Health Services, Tarsus University, Mersin, Turkey
| | - Zehra Oksuz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Burcin Turkmenoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Erman Salih Istifli
- Department of Biology, Faculty of Science and Literature, Çukurova University, Adana, Turkey
| | - Mehmet Kuzucu
- Department of Biology, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Oztekin Algul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkey
| |
Collapse
|
2
|
Sur S, Pujari S, Ranjan N, Azankia Temgoua L, Wicks SL, Conner A, Arya DP. Enhanced Sequence-Specific DNA Recognition Using Oligodeoxynucleotide-Benzimidazole Conjugates. ACS BIO & MED CHEM AU 2024; 4:154-164. [PMID: 38911908 PMCID: PMC11191566 DOI: 10.1021/acsbiomedchemau.3c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 06/25/2024]
Abstract
Synthetic modification of oligodeoxynucleotides (ODNs) via conjugation to nucleic acid binding small molecules can improve hybridization and pharmacokinetic properties. In the present study, five Hoechst 33258 derived benzimidazoles were conjugated to T rich ODNs and their hybridization effectiveness was tested. Thermal denaturation studies revealed significant stabilization of complementary duplexes by ODN-benzimidazole conjugates, with the extent of stabilization being highly dependent on the length of the linker between DNA and benzimidazole. The increases in thermal stability were determined to be due to the binding of the benzimidazole moiety to the duplex. Circular dichroism and molecular modeling studies provided insights toward the influence of conjugation on duplex structure and how linker length impacts placement of the benzimidazole moiety in the minor groove. Furthermore, thermal denaturation studies with the complementary strand containing a single base mismatch or being RNA revealed that covalent conjugation of benzimidazoles to an ODN also enhances the sequence specificity. The fundamental studies reported herein provide a strategy to improve the stability and specificity properties of the ODN probes, which can be of use for targeting and diagnostics applications.
Collapse
Affiliation(s)
- Souvik Sur
- Laboratory of Medicinal Chemistry,
Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Suresh Pujari
- Laboratory of Medicinal Chemistry,
Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Nihar Ranjan
- Laboratory of Medicinal Chemistry,
Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Lidivine Azankia Temgoua
- Laboratory of Medicinal Chemistry,
Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Sarah L. Wicks
- Laboratory of Medicinal Chemistry,
Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Andrea Conner
- Laboratory of Medicinal Chemistry,
Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Dev P. Arya
- Laboratory of Medicinal Chemistry,
Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
3
|
Wu K, Peng X, Chen M, Li Y, Tang G, Peng J, Peng Y, Cao X. Recent progress of research on anti‐tumor agents using benzimidazole as the structure unit. Chem Biol Drug Des 2022; 99:736-757. [DOI: 10.1111/cbdd.14022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Kaiyue Wu
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study College of Pharmacy Hengyang Medical School University of South China Hengyang China
| | - Xiaoyu Peng
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study College of Pharmacy Hengyang Medical School University of South China Hengyang China
| | - Miaojia Chen
- Department of Pharmacy the first People's Hospital Pingjiang Yueyang Hunan China
| | - Yang Li
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study College of Pharmacy Hengyang Medical School University of South China Hengyang China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study College of Pharmacy Hengyang Medical School University of South China Hengyang China
| | - Junmei Peng
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study College of Pharmacy Hengyang Medical School University of South China Hengyang China
| | - Yuanyuan Peng
- School of Electrical and Automation Engineering East China Jiaotong University Nanchang 330000 China
| | - Xuan Cao
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study College of Pharmacy Hengyang Medical School University of South China Hengyang China
| |
Collapse
|
4
|
Zha GF, Preetham HD, Rangappa S, Sharath Kumar KS, Girish YR, Rakesh KP, Ashrafizadeh M, Zarrabi A, Rangappa KS. Benzimidazole analogues as efficient arsenals in war against methicillin-resistance staphylococcus aureus (MRSA) and its SAR studies. Bioorg Chem 2021; 115:105175. [PMID: 34298242 DOI: 10.1016/j.bioorg.2021.105175] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/11/2021] [Indexed: 12/19/2022]
Abstract
Small molecule based inhibitors development is a growing field in medicinal chemistry. In recent years, different heterocyclic derivatives have been designed to counter the infections caused by multi-drug resistant bacteria. Indeed, small molecule inhibitors can be employed as an efficient antibacterial agents with different mechanism of action. Methicillin-resistant Staphylococcus aureus (MRSA) is becoming lethal to mankind due to easy transmission mode, rapid resistance development to existing antibiotics and affect difficult-to-treat skin and filmsy diseases. Benzimidazoles are a class of heterocyclic compounds which have capability to fight against MRSA. High biocompatibility of benzimidazoles, synergistic behaviour with antibiotics and their tunable physico-chemical properties attracted the researchers to develop new benzimidazole based antibacterial agents. The present review focus on recent developments of benzimidazole-hybrid molecules as anti MRSA agents and the results of in-vitro and in-vivo studies with possible mechanism of action and discussing structure-activity relationship (SAR) in different directions. Benzimdazoles act as DNA binding agents, enzyme inhibitors, anti-biofilm agents and showed synergistic effect with available antibiotics to achieve antibacterial activity against MRSA. This cumulative figures would help to design new benzimidazole-based MRSA growth inhibitors.
Collapse
Affiliation(s)
- Gao-Feng Zha
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhan 518107, China.
| | - Habbanakuppe D Preetham
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, B. G. Nagar, Nagamangala Taluk, Mandya District 571448, India
| | | | - Yarabahally R Girish
- Centre for Research and Innovations, School of Natural Sciences, BGSIT, Adichunchanagiri University, B. G. Nagara, Mandya, 571448, India
| | - Kadalipura P Rakesh
- School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | | |
Collapse
|
5
|
Bera SK, Boruah PJ, Parida SS, Paul AK, Mal P. A Photochemical Intramolecular C-N Coupling Toward the Synthesis of Benzimidazole-Fused Phenanthridines. J Org Chem 2021; 86:9587-9602. [PMID: 34191516 DOI: 10.1021/acs.joc.1c00871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Herein, we report a direct photochemical dehydrogenative C-N coupling of unactivated C(sp2)-H and N(sp2)-H bonds. The catalysts or additive-free transformation of 2-([1,1'-biphenyl]-2-yl)-1H-benzo[d]imidazole to benzo[4,5]imidazo[1,2-f]phenanthridine was achieved at ∼350 nm of irradiation via ε-hydrogen abstraction. DFT calculations helped to understand that the N-H···π interaction was essential for the reaction to proceed at a lower energy than expected.
Collapse
Affiliation(s)
- Shyamal Kanti Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, District Khurda, Jatni, Odisha 752050, India
| | - Palash J Boruah
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, Meghalaya, India
| | - Shraddha Saraswati Parida
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, District Khurda, Jatni, Odisha 752050, India
| | - Amit K Paul
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, Meghalaya, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, District Khurda, Jatni, Odisha 752050, India
| |
Collapse
|
6
|
Aragón-Muriel A, Liscano Y, Upegui Y, Robledo SM, Ramírez-Apan MT, Morales-Morales D, Oñate-Garzón J, Polo-Cerón D. In Vitro Evaluation of the Potential Pharmacological Activity and Molecular Targets of New Benzimidazole-Based Schiff Base Metal Complexes. Antibiotics (Basel) 2021; 10:728. [PMID: 34208759 PMCID: PMC8235109 DOI: 10.3390/antibiotics10060728] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Metal-based drugs, including lanthanide complexes, have been extremely effective in clinical treatments against various diseases and have raised major interest in recent decades. Hence, in this work, a series of lanthanum (III) and cerium (III) complexes, including Schiff base ligands derived from (1H-benzimidazol-2-yl)aniline, salicylaldehyde, and 2,4-dihydroxybenzaldehyde were synthesized and characterized using different spectroscopic methods. Besides their cytotoxic activities, they were examined in human U-937 cells, primate kidney non-cancerous COS-7, and six other, different human tumor cell lines: U251, PC-3, K562, HCT-15, MCF-7, and SK-LU-1. In addition, the synthesized compounds were screened for in vitro antiparasitic activity against Leishmania braziliensis, Plasmodium falciparum, and Trypanosoma cruzi. Additionally, antibacterial activities were examined against two Gram-positive strains (S. aureus ATCC® 25923, L. monocytogenes ATCC® 19115) and two Gram-negative strains (E. coli ATCC® 25922, P. aeruginosa ATCC® 27583) using the microdilution method. The lanthanide complexes generally exhibited increased biological activity compared with the free Schiff base ligands. Interactions between the tested compounds and model membranes were examined using differential scanning calorimetry (DSC), and interactions with calf thymus DNA (CT-DNA) were investigated by ultraviolet (UV) absorption. Molecular docking studies were performed using leishmanin (1LML), cruzain (4PI3), P. falciparum alpha-tubulin (GenBank sequence CAA34101 [453 aa]), and S.aureus penicillin-binding protein 2a (PBP2A; 5M18) as the protein receptors. The results lead to the conclusion that the synthesized compounds exhibited a notable effect on model membranes imitating mammalian and bacterial membranes and rolled along DNA strands through groove interactions. Interactions between the compounds and studied receptors depended primarily on ligand structures in the molecular docking study.
Collapse
Affiliation(s)
- Alberto Aragón-Muriel
- Laboratorio de Investigación en Catálisis y Procesos (LICAP), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali 760001, Colombia;
| | - Yamil Liscano
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760031, Colombia; (Y.L.); (J.O.-G.)
| | - Yulieth Upegui
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (Y.U.); (S.M.R.)
| | - Sara M. Robledo
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (Y.U.); (S.M.R.)
| | - María Teresa Ramírez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Circuito Exterior, Coyoacán, México 04510, Mexico; (M.T.R.-A.); (D.M.-M.)
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Circuito Exterior, Coyoacán, México 04510, Mexico; (M.T.R.-A.); (D.M.-M.)
| | - Jose Oñate-Garzón
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760031, Colombia; (Y.L.); (J.O.-G.)
| | - Dorian Polo-Cerón
- Laboratorio de Investigación en Catálisis y Procesos (LICAP), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali 760001, Colombia;
| |
Collapse
|
7
|
Bisbenzimidazole Derivatives as Potential Antimicrobial Agents: Design, Synthesis, Biological Evaluation and Pharmacophore Analysis. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02389-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Verma S, Ravichandiran V, Ranjan N, Flora SJS. Recent Advances in Therapeutic Applications of Bisbenzimidazoles. Med Chem 2021; 16:454-486. [PMID: 31038072 DOI: 10.2174/1573406415666190416120801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/19/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022]
Abstract
Nitrogen-containing heterocycles are one of the most common structural motifs in approximately 80% of the marketed drugs. Of these, benzimidazoles analogues are known to elicit a wide spectrum of pharmaceutical activities such as anticancer, antibacterial, antiparasitic, antiviral, antifungal as well as chemosensor effect. Based on the benzimidazole core fused heterocyclic compounds, crescent-shaped bisbenzimidazoles were developed which provided an early breakthrough in the sequence-specific DNA recognition. Over the years, a number of functional variations in the bisbenzimidazole core have led to the emergence of their unique properties and established them as versatile ligands against several classes of pathogens. The present review provides an overview of diverse pharmacological activities of the bisbenzimidazole analogues in the past decade with a brief account of its development through the years.
Collapse
Affiliation(s)
- Smita Verma
- National Institute of Pharmaceutical Education and Research, ITI Compound, Raebareli, 229010, India.,National Institute of Pharmaceutical Education and Research, Kolkata, Maniktala Main Road, Kolkata, 700054, India
| | - Vishnuvardh Ravichandiran
- National Institute of Pharmaceutical Education and Research, Kolkata, Maniktala Main Road, Kolkata, 700054, India
| | - Nihar Ranjan
- National Institute of Pharmaceutical Education and Research, ITI Compound, Raebareli, 229010, India
| | - Swaran J S Flora
- National Institute of Pharmaceutical Education and Research, ITI Compound, Raebareli, 229010, India
| |
Collapse
|
9
|
Seddek A, Annamalai T, Tse-Dinh YC. Type IA Topoisomerases as Targets for Infectious Disease Treatments. Microorganisms 2021; 9:E86. [PMID: 33401386 PMCID: PMC7823277 DOI: 10.3390/microorganisms9010086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Infectious diseases are one of the main causes of death all over the world, with antimicrobial resistance presenting a great challenge. New antibiotics need to be developed to provide therapeutic treatment options, requiring novel drug targets to be identified and pursued. DNA topoisomerases control the topology of DNA via DNA cleavage-rejoining coupled to DNA strand passage. The change in DNA topological features must be controlled in vital processes including DNA replication, transcription, and DNA repair. Type IIA topoisomerases are well established targets for antibiotics. In this review, type IA topoisomerases in bacteria are discussed as potential targets for new antibiotics. In certain bacterial pathogens, topoisomerase I is the only type IA topoisomerase present, which makes it a valuable antibiotic target. This review will summarize recent attempts that have been made to identify inhibitors of bacterial topoisomerase I as potential leads for antibiotics and use of these inhibitors as molecular probes in cellular studies. Crystal structures of inhibitor-enzyme complexes and more in-depth knowledge of their mechanisms of actions will help to establish the structure-activity relationship of potential drug leads and develop potent and selective therapeutics that can aid in combating the drug resistant bacterial infections that threaten public health.
Collapse
Affiliation(s)
- Ahmed Seddek
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (A.S.); (T.A.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Thirunavukkarasu Annamalai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (A.S.); (T.A.)
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (A.S.); (T.A.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
10
|
Singhal S, Khanna P, Khanna L. Synthesis, DFT studies, molecular docking, antimicrobial screening and UV fluorescence studies on ct-DNA for novel Schiff bases of 2-(1-aminobenzyl) benzimidazole. Heliyon 2019; 5:e02596. [PMID: 31667415 PMCID: PMC6812229 DOI: 10.1016/j.heliyon.2019.e02596] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/27/2019] [Accepted: 10/01/2019] [Indexed: 01/26/2023] Open
Abstract
Novel Schiff bases (SBs) were synthesized by condensation of 2-(1-Amino benzyl) benzimidazole with heterocyclic and aromatic carbonyl compounds. The structural characterization was done using 1H, 13C NMR, FTIR and ES-MS spectroscopic techniques. The in silico pharmacokinetics showed that nearly all compounds obeyed Lipinski rule of 5 with low toxicity and metabolic stability. The global reactivity descriptors were calculated using DFT approach. The molecular docking result of SBs with ct-DNA suggested interaction via groove binding mode. The antibacterial activity was tested against S. aureus and E. coli, indicated significant inhibition than reference drug. The compound 4d gave best results at 50 μg ml-1 concentrations. UV/Vis and Fluorescence spectroscopy tools were used to evaluate ct-DNA binding ability of compounds 4a-e through hypochromic shift. The steady state fluorescence predicted a moderate binding constant of 1.12 × 104 for 4d, indicative of non-intercalative mode.
Collapse
Affiliation(s)
- Sugandha Singhal
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi, 110078, India
| | - Pankaj Khanna
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Leena Khanna
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi, 110078, India
| |
Collapse
|
11
|
Gram-negative synergy and mechanism of action of alkynyl bisbenzimidazoles. Sci Rep 2019; 9:14171. [PMID: 31578425 PMCID: PMC6775084 DOI: 10.1038/s41598-019-48898-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/15/2019] [Indexed: 01/08/2023] Open
Abstract
Bisbenzimidazoles with terminal alkynyl linkers, selective inhibitors of bacterial topoisomerase I, have been evaluated using bacterial cytological profiling (BCP) to ascertain their mechanism of action and screened for synergism to improve Gram-negative bacterial coverage. Principal component analysis of high throughput fluorescence images suggests a dual-mechanism of action affecting DNA synthesis and cell membrane integrity. Fluorescence microscopy of bacteria challenged with two of the alkynyl-benzimidazoles revealed changes in the cellular ultrastructure that differed from topoisomerase II inhibitors including induction of spheroplasts and membrane lysis. The cytoskeleton recruitment enzyme inhibitor A22 in combination with one of the alkynyl-benzimidazoles was synergistic against Acinetobacter baumannii and Escherichia coli. Gram-positive coverage remained unchanged in the A22-alkynyl bisbenzimidazole combination. Efflux inhibitors were not synergistic, suggesting that the Gram-negative outer membrane was a significant barrier for alkynyl-bisbenzimidazole uptake. Time-kill assays demonstrated the A22-bisbenzimidazole combination had a similar growth inhibition curve to that of norfloxacin in E.coli. Bisbenzimidazoles with terminal alkynyl linkers likely impede bacterial growth by compromising cell membrane integrity and by interfering with DNA synthesis against Gram-positive pathogens and in the synergistic combination against Gram-negative pathogens including E. coli and multidrug-resistant A. baumanii.
Collapse
|
12
|
Fritzsch R, Greetham GM, Clark IP, Minnes L, Towrie M, Parker AW, Hunt NT. Monitoring Base-Specific Dynamics during Melting of DNA-Ligand Complexes Using Temperature-Jump Time-Resolved Infrared Spectroscopy. J Phys Chem B 2019; 123:6188-6199. [PMID: 31268327 DOI: 10.1021/acs.jpcb.9b04354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ultrafast time-resolved infrared spectroscopy employing nanosecond temperature-jump initiation has been used to study the melting of double-stranded (ds)DNA oligomers in the presence and absence of minor groove-binding ligand Hoechst 33258. Ligand binding to ds(5'-GCAAATTTCC-3'), which binds Hoechst 33258 in the central A-tract region with nanomolar affinity, causes a dramatic increase in the timescales for strand melting from 30 to ∼250 μs. Ligand binding also suppresses premelting disruption of the dsDNA structure, which takes place on 100 ns timescales and includes end-fraying. In contrast, ligand binding to the ds(5'-GCATATATCC-3') sequence, which exhibits an order of magnitude lower affinity for Hoechst 33258 than the A-tract motif, leads to an increase by only a factor of 5 in melting timescales and reduced suppression of premelting sequence perturbation and end-fraying. These results demonstrate a dynamic impact of the minor groove ligand on the dsDNA structure that correlates with binding strength and thermodynamic stabilization of the duplex. Moreover, the ability of the ligand to influence base pairs distant from the binding site has potential implications for allosteric communication mechanisms in dsDNA.
Collapse
Affiliation(s)
- Robby Fritzsch
- Department of Physics, SUPA , University of Strathclyde , Glasgow G4 0NG , U.K
| | - Gregory M Greetham
- STFC Central Laser Facility, Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus, Didcot OX11 0QX , U.K
| | - Ian P Clark
- STFC Central Laser Facility, Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus, Didcot OX11 0QX , U.K
| | - Lucy Minnes
- Department of Physics, SUPA , University of Strathclyde , Glasgow G4 0NG , U.K
| | - Michael Towrie
- STFC Central Laser Facility, Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus, Didcot OX11 0QX , U.K
| | - Anthony W Parker
- STFC Central Laser Facility, Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus, Didcot OX11 0QX , U.K
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute , University of York , Heslington, York YO10 5DD , U.K
| |
Collapse
|
13
|
Yang SC, Tang KW, Lin CH, Alalaiwe A, Tseng CH, Fang JY. Discovery of Furanoquinone Derivatives as a Novel Class of DNA Polymerase and Gyrase Inhibitors for MRSA Eradication in Cutaneous Infection. Front Microbiol 2019; 10:1197. [PMID: 31191504 PMCID: PMC6549599 DOI: 10.3389/fmicb.2019.01197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/13/2019] [Indexed: 11/26/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is the primary microbe responsible for skin infections that are particularly difficult to eradicate. This study sought to inhibit planktonic and biofilm MRSA using furanoquinone-derived compounds containing imine moiety. A total of 19 furanoquinone analogs were designed, synthesized, and assessed for anti-MRSA potency. Among 19 compounds, (Z)-4-(hydroxyimino)naphtho[1,2-b]furan-5(4H)-one (HNF) and (Z)-4-(acetoxyimino)naphtho[1,2-b]furan-5(4H)-one (ANF) showed antibacterial activity superior to the others based on an agar diffusion assay. HNF and ANF exerted a bactericidal effect with a minimum inhibitory concentration (MIC) of 9.7 ∼ 19.5 and 2.4 ∼ 9.7 μg/ml, respectively. Both compounds were able to reduce the MRSA count by 1,000-fold in biofilm as compared to the control. In vivo efficacy was evaluated using a mouse model of skin infection. Topical application of lead compounds significantly suppressed abscess occurrence and the MRSA burden, and also ameliorated the skin-barrier function. The biochemical assay indicated the compounds’ inhibition of DNA polymerase and gyrase. In silico docking revealed a favorable interaction of the compounds with DNA polymerase and gyrase although the binding was not very strong. The total DNA analysis and proteomic data suggested a greater impairment of some proteins by HNF than ANF. In general, HNF and ANF were similarly potent in MRSA inhibition in vitro and in vivo. The findings demonstrated that there was room for structural modification of furanoquinone compounds that could be used to identify anti-MRSA agent candidates.
Collapse
Affiliation(s)
- Shih-Chun Yang
- Department of Cosmetic Science, Providence University, Taichung, Taiwan
| | - Kai-Wei Tang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hung Lin
- Center for General Education, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Chih-Hua Tseng
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pharmacy, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
14
|
Synthesis, Characterization and Biological Evaluations of New Imidazo[4,5-a]Acridines as Potential Antibacterial Agents. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-01955-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Combined pharmacophore-guided 3D-QSAR, molecular docking, and virtual screening on bis-benzimidazoles and ter-benzimidazoles as DNA–topoisomerase I poisons. Struct Chem 2019. [DOI: 10.1007/s11224-018-1257-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
16
|
Guo L, Wang H, Wang Y, Feng L. Facile core–shell nanoparticles with controllable antibacterial activity assembled by chemical and biological molecules. Biomater Sci 2019; 7:5528-5534. [DOI: 10.1039/c9bm01367a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A newly switchable antibacterial self-assembly was developed by conjugated polymer nanoparticles, DNA, Hoechst 33258 and deoxyribonuclease I.
Collapse
Affiliation(s)
- Lixia Guo
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- P.R. China
| | - Haoping Wang
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- P.R. China
| | - Yunxia Wang
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- P.R. China
| | - Liheng Feng
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- P.R. China
| |
Collapse
|
17
|
Dhole S, Sun C. Direct Access to Dihydrobenzoimidazo[2,1‐
a
]isoquinolines through Ruthenium‐catalyzed Formal [4+2] Annulation. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sandip Dhole
- Department of Applied ChemistryNational Chiao Tung University 1001 Ta-Hseuh Road Hsinchu 300-10 Taiwan
- Department of ChemistryChandmal Tarachand Bora College, University of Pune Shirur, Maharashtra 412210 India
| | - Chung‐Ming Sun
- Department of Applied ChemistryNational Chiao Tung University 1001 Ta-Hseuh Road Hsinchu 300-10 Taiwan
- Department of Medicinal and Applied ChemistryKaohsiung Medical University 100, Shih-Chuan 1st Road Kaohsiung 807-08 Taiwan
| |
Collapse
|
18
|
Bistrović A, Krstulović L, Stolić I, Drenjančević D, Talapko J, Taylor MC, Kelly JM, Bajić M, Raić-Malić S. Synthesis, anti-bacterial and anti-protozoal activities of amidinobenzimidazole derivatives and their interactions with DNA and RNA. J Enzyme Inhib Med Chem 2018; 33:1323-1334. [PMID: 30165753 PMCID: PMC6127852 DOI: 10.1080/14756366.2018.1484733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/18/2018] [Accepted: 05/31/2018] [Indexed: 02/09/2023] Open
Abstract
Amidinobenzimidazole derivatives connected to 1-aryl-substituted 1,2,3-triazole through phenoxymethylene linkers 7a-7e, 8a-8e, and 9a-9e were designed and synthesised with the aim of evaluating their anti-bacterial and anti-trypanosomal activities and DNA/RNA binding affinity. Results from anti-bacterial evaluations of antibiotic-resistant pathogenic bacteria revealed that both o-chlorophenyl-1,2,3-triazole and N-isopropylamidine moieties in 8c led to strong inhibitory activity against resistant Gram-positive bacteria, particularly the MRSA strain. Furthermore, the non-substituted amidine and phenyl ring in 7a induced a marked anti-bacterial effect, with potency against ESBL-producing Gram-negative E. coli better than those of the antibiotics ceftazidime and ciprofloxacin. UV-Vis and CD spectroscopy, as well as thermal denaturation assays, indicated that compounds 7a and 8c showed also binding affinities towards ctDNA. Anti-trypanosomal evaluations showed that the p-methoxyphenyl-1,2,3-triazole moiety in 7b and 9b enhanced inhibitory activity against T. brucei, with 8b being more potent than nifurtimox, and having minimal toxicity towards mammalian cells.
Collapse
Affiliation(s)
- Andrea Bistrović
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Luka Krstulović
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivana Stolić
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Domagoj Drenjančević
- Department of Transfusion Medicine, Osijek University Hospital, Osijek, Croatia
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Jasminka Talapko
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Martin C. Taylor
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - John M. Kelly
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Miroslav Bajić
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Silvana Raić-Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
19
|
Bhaduri S, Ranjan N, Arya DP. An overview of recent advances in duplex DNA recognition by small molecules. Beilstein J Org Chem 2018; 14:1051-1086. [PMID: 29977379 PMCID: PMC6009268 DOI: 10.3762/bjoc.14.93] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
As the carrier of genetic information, the DNA double helix interacts with many natural ligands during the cell cycle, and is amenable to such intervention in diseases such as cancer biogenesis. Proteins bind DNA in a site-specific manner, not only distinguishing between the geometry of the major and minor grooves, but also by making close contacts with individual bases within the local helix architecture. Over the last four decades, much research has been reported on the development of small non-natural ligands as therapeutics to either block, or in some cases, mimic a DNA–protein interaction of interest. This review presents the latest findings in the pursuit of novel synthetic DNA binders. This article provides recent coverage of major strategies (such as groove recognition, intercalation and cross-linking) adopted in the duplex DNA recognition by small molecules, with an emphasis on major works of the past few years.
Collapse
Affiliation(s)
| | - Nihar Ranjan
- National Institute of Pharmaceutical Education and Research (NIPER), Raebareli 122003, India
| | - Dev P Arya
- NUBAD, LLC, 900B West Faris Rd., Greenville 29605, SC, USA.,Clemson University, Hunter Laboratory, Clemson 29634, SC, USA
| |
Collapse
|
20
|
Sović I, Jambon S, Kraljević Pavelić S, Markova-Car E, Ilić N, Depauw S, David-Cordonnier MH, Karminski-Zamola G. Synthesis, antitumor activity and DNA binding features of benzothiazolyl and benzimidazolyl substituted isoindolines. Bioorg Med Chem 2018. [DOI: 10.1016/j.bmc.2018.02.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Alonso C, Fuertes M, Martín-Encinas E, Selas A, Rubiales G, Tesauro C, Knudssen BK, Palacios F. Novel topoisomerase I inhibitors. Syntheses and biological evaluation of phosphorus substituted quinoline derivates with antiproliferative activity. Eur J Med Chem 2018; 149:225-237. [DOI: 10.1016/j.ejmech.2018.02.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/06/2018] [Accepted: 02/16/2018] [Indexed: 12/31/2022]
|
22
|
Ranjan N, Kellish P, King A, Arya DP. Impact of Linker Length and Composition on Fragment Binding and Cell Permeation: Story of a Bisbenzimidazole Dye Fragment. Biochemistry 2017; 56:6434-6447. [PMID: 29131946 DOI: 10.1021/acs.biochem.7b00929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Small molecules that modulate biological functions are targets of modern day drug discovery efforts. In a common platform fragment-based drug discovery, two fragments that bind to adjacent sites on a target are identified and are then linked together using different linkers to identify the linkage for optimum activity. What are not known from these studies are the effects these linkers, which typically contain C, H, and O atoms, have on the properties of the individual fragment. Herein, we investigate such effects in a bisbenzimidazole fragment whose derivatives have a wide range of therapeutic applications in nucleic acid recognition, sensing, and photodynamic therapy and as cellular probes. We report a dramatic effect of linker length and composition of alkynyl (clickable) Hoechst 33258 derivatives in target binding and cell uptake. We show that the binding of Hoechst 33258-modeled bisbenzimidazoles (1-9) that contain linkers of varying lengths (3-21 atoms) display length- and composition-dependent variation in B-DNA stabilization using a variety of spectroscopic methods. For a dodecamer DNA duplex, the thermal stabilization varied from 0.3 to 9.0 °C as the linker length increased from 3 to 21 atoms, respectively. Compounds with linker lengths of ≤11 atoms (such as compounds 1 and 5) are localized in the nucleus, while compounds with long linkers (such as compounds 8 and 9) are distributed in the extranuclear space, as well, with possible interactions with extranuclear targets. These findings provide insights into future drug design by revealing how linkers can influence the biophysical and cellular properties of individual drug fragments.
Collapse
Affiliation(s)
- Nihar Ranjan
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University , Clemson, South Carolina 29634, United States
| | - Patrick Kellish
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University , Clemson, South Carolina 29634, United States
| | - Ada King
- NUBAD LLC , 900 B West Faris Road, Greenville, South Carolina 29605, United States
| | - Dev P Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University , Clemson, South Carolina 29634, United States.,NUBAD LLC , 900 B West Faris Road, Greenville, South Carolina 29605, United States
| |
Collapse
|