1
|
Qin Q, Guo Z, Lu S, Wang X, Fu Q, Wu T, Sun Y, Liu N, Zhang H, Zhao D, Cheng M. Discovery of novel 3-(1H-pyrazol-4-yl)-1H-indazole derivatives as potent type II TRK inhibitors against acquired resistance. Eur J Med Chem 2024; 264:115953. [PMID: 38029466 DOI: 10.1016/j.ejmech.2023.115953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023]
Abstract
Tropomyosin receptor kinase (TRK) is a promising target for treating NTRK fusion cancers. The solvent front and xDFG mutations induced by larotrectinib and entrectinib result in acquired resistance in advanced-stage patients. In this study, we report a highly potent and selective type II TRK inhibitor, 40l, developed using a structure-based design strategy. Compound 40l significantly suppressed Km-12, Ba/F3-TRKAG595R, and Ba/F3-TRKAG667C cell proliferation. In biochemical and cellular assays, 40l showed better inhibitory activity against TRKAG667C than that by the positive control, selitrectinib. Additionally, it induced apoptosis of Ba/F3-TRKAG595R and Ba/F3-TRKAG667C cells in a dose-dependent manner. Furthermore, 40l showed good selectivity for a panel of 41 kinases. In vitro assays indicated that 40l possessed outstanding plasma stability and moderate liver microsomal stability. Based on the above results, compound 40l could be further optimized to overcome the solvent front and xDFG TRK mutations.
Collapse
Affiliation(s)
- Qiaohua Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Zhiqiang Guo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Shuyu Lu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Xin Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Qinglin Fu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Nian Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Haoyu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| |
Collapse
|
2
|
Thiel A, Kostikov A, Ahn H, Daoud Y, Soucy JP, Blinder S, Jaworski C, Wängler C, Wängler B, Juengling F, Enger SA, Schirrmacher R. Dosimetry of [ 18F]TRACK, the first PET tracer for imaging of TrkB/C receptors in humans. EJNMMI Radiopharm Chem 2023; 8:33. [PMID: 37870640 PMCID: PMC10593718 DOI: 10.1186/s41181-023-00219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Reduced expression or impaired signalling of tropomyosin receptor kinases (Trk receptors) are found in a vast spectrum of CNS disorders. [18F]TRACK is the first PET radioligand for TrkB/C with proven in vivo brain penetration and on-target specific signal. Here we report dosimetry data for [18F]TRACK in healthy humans. 6 healthy participants (age 22-61 y, 3 female) were scanned on a General Electric Discovery PET/CT 690 scanner. [18F]TRACK was synthesized with high molar activities (Am = 250 ± 75 GBq/µmol), and a dynamic series of 12 whole-body scans were acquired after injection of 129 to 147 MBq of the tracer. Images were reconstructed with standard corrections using the manufacturer's OSEM algorithm. Tracer concentration time-activity curves (TACs) were obtained using CT-derived volumes-of-interest. Organ-specific doses and the total effective dose were estimated using the Committee on Medical Internal Radiation Dose equation for adults and tabulated Source tissue values (S values). RESULTS Average organ absorbed dose was highest for liver and gall bladder with 6.1E-2 (± 1.06E-2) mGy/MBq and 4.6 (± 1.18E-2) mGy/MBq, respectively. Total detriment weighted effective dose EDW was 1.63E-2 ± 1.68E-3 mSv/MBq. Organ-specific TACs indicated predominantly hepatic tracer elimination. CONCLUSION Total and organ-specific effective doses for [18F]TRACK are low and the dosimetry profile is similar to other 18F-labelled radio tracers currently used in clinical settings.
Collapse
Affiliation(s)
- Alexander Thiel
- Jewish General Hospital and Lady Davis Institute for Medical Research, 3755 Chemin de la Cote St. Cathérine, Montreal, Québec, H3T 1E2, Canada.
- Department of Neurology & Neurosurgery, McGill Univesrity, Montreal, Canada.
| | - Alexey Kostikov
- Department of Neurology & Neurosurgery, McGill Univesrity, Montreal, Canada
- Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada
- Department of Chemistry, McGill University, Montreal, Canada
| | - Hailey Ahn
- Jewish General Hospital and Lady Davis Institute for Medical Research, 3755 Chemin de la Cote St. Cathérine, Montreal, Québec, H3T 1E2, Canada
- Medical Physics Unit, McGill University, Montreal, Canada
| | - Youstina Daoud
- Jewish General Hospital and Lady Davis Institute for Medical Research, 3755 Chemin de la Cote St. Cathérine, Montreal, Québec, H3T 1E2, Canada
- Medical Physics Unit, McGill University, Montreal, Canada
| | - Jean-Paul Soucy
- Department of Neurology & Neurosurgery, McGill Univesrity, Montreal, Canada
- Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada
- PERFORM Centre Concordia University, Montreal, Canada
| | - Stephan Blinder
- Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada
- PERFORM Centre Concordia University, Montreal, Canada
| | - Carolin Jaworski
- Cross Cancer Institute, Medical Isotope Cyclotron Facility, University of Alberta, Edmonton, Canada
| | - Carmen Wängler
- Biomedical Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Freimut Juengling
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Oncology, Division of Oncologic Imaging, University of Alberta, Edmonton, Canada
- Medical Faculty, University Bern, Bern, Switzerland
| | - Shirin A Enger
- Jewish General Hospital and Lady Davis Institute for Medical Research, 3755 Chemin de la Cote St. Cathérine, Montreal, Québec, H3T 1E2, Canada
- Medical Physics Unit, McGill University, Montreal, Canada
| | - Ralf Schirrmacher
- Cross Cancer Institute, Medical Isotope Cyclotron Facility, University of Alberta, Edmonton, Canada
- Department of Oncology, Division of Oncologic Imaging, University of Alberta, Edmonton, Canada
| |
Collapse
|
3
|
Qin Q, Fu Q, Wang X, Lv R, Lu S, Guo Z, Wu T, Sun Y, Sun Y, Liu N, Zhao D, Cheng M. Design, synthesis and biological evaluation of novel indolin-2-one derivatives as potent second-generation TRKs inhibitors. Eur J Med Chem 2023; 253:115291. [PMID: 37030091 DOI: 10.1016/j.ejmech.2023.115291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023]
Abstract
Tropomyosin receptor kinases (TRKs) are effective targets for anti-cancer drug discovery. The first-generation type I TRKs inhibitors, larotrectinib and entrectinib, exhibit durable disease control in the clinic. The emergence of acquired resistance mediated by secondary mutations in the TRKs domain significantly reduces the therapeutic efficacy of these two drugs, indicating an unmet clinical need. In this study, we designed a potent and orally bioavailable TRK inhibitor, compound 24b, using a molecular hybridization strategy. Compound 24b exhibited significant inhibitory potency against multiple TRK mutants in both biochemical and cellular assays. Furthermore, compound 24b induced apoptosis of Ba/F3-TRKAG595R and Ba/F3-TRKAG667C cells in a dose-dependent manner. Additionally, compound 24b exhibited moderate kinase selectivity. In vitro stability revealed that compound 24b showed excellent plasma stability (t1/2 > 289.1 min) and moderate liver microsomal stability (t1/2 = 44.3 min). Pharmacokinetic studies have revealed that compound 24b is an orally bioavailable TRK inhibitor with a good oral bioavailability of 116.07%. These results indicate that compound 24b be used as a lead molecule for further modifications to overcome drug-resistant mutants of TRK.
Collapse
|
4
|
Pees A, Chassé M, Lindberg A, Vasdev N. Recent Developments in Carbon-11 Chemistry and Applications for First-In-Human PET Studies. Molecules 2023; 28:931. [PMID: 36770596 PMCID: PMC9920299 DOI: 10.3390/molecules28030931] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Positron emission tomography (PET) is a molecular imaging technique that makes use of radiolabelled molecules for in vivo evaluation. Carbon-11 is a frequently used radionuclide for the labelling of small molecule PET tracers and can be incorporated into organic molecules without changing their physicochemical properties. While the short half-life of carbon-11 (11C; t½ = 20.4 min) offers other advantages for imaging including multiple PET scans in the same subject on the same day, its use is limited to facilities that have an on-site cyclotron, and the radiochemical transformations are consequently more restrictive. Many researchers have embraced this challenge by discovering novel carbon-11 radiolabelling methodologies to broaden the synthetic versatility of this radionuclide. This review presents new carbon-11 building blocks and radiochemical transformations as well as PET tracers that have advanced to first-in-human studies over the past five years.
Collapse
Affiliation(s)
- Anna Pees
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Melissa Chassé
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
5
|
Gong Y, Wu FX, Wang MS, Xu HC, Zhuo LS, Yang GF, Huang W. Discovery of 3-pyrazolyl-substituted pyrazolo[1,5-a]pyrimidine derivatives as potent TRK inhibitors to overcome clinically acquired resistance. Eur J Med Chem 2022; 241:114654. [DOI: 10.1016/j.ejmech.2022.114654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
|
6
|
Wuest M, Bailey JJ, Dufour J, Glubrecht D, Omana V, Johnston TH, Brotchie JM, Schirrmacher R. Toward in vivo proof of binding of 18F-labeled inhibitor [ 18F]TRACK to peripheral tropomyosin receptor kinases. EJNMMI Res 2022; 12:46. [PMID: 35907096 PMCID: PMC9339071 DOI: 10.1186/s13550-022-00915-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/18/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Tropomyosin receptor kinases (TrkA, TrkB, TrkC) are a family of tyrosine kinases primarily expressed in neuronal cells of the brain. Identification of oncogenic alterations in Trk expression as a driver in multiple tumor types has increased interest in their role in human cancers. Recently, first- and second-generation 11C and 18F-labeled Trk inhibitors, e.g., [18F]TRACK, have been developed. The goal of the present study was to analyze the direct interaction of [18F]TRACK with peripheral Trk receptors in vivo to prove its specificity for use as a functional imaging probe. METHODS In vitro uptake and competition experiments were carried out using the colorectal cancer cell line KM12. Dynamic PET experiments were performed with [18F]TRACK, either alone or in the presence of amitriptyline, an activator of Trk, entrectinib, a Trk inhibitor, or unlabeled reference compound TRACK in KM12 tumor-bearing athymic nude mice as well as B6129SF2/J and corresponding B6;129S2-Ntrk2tm1Bbd/J mice. Western blot and immunohistochemistry experiments were done with KM12 tumors, brown adipose tissue (BAT), and brain tissue samples. RESULTS Uptake of [18F]TRACK was increasing over time reaching 208 ± 72% radioactivity per mg protein (n = 6/2) after 60 min incubation time. Entrectinib and TRACK competitively blocked [18F]TRACK uptake in vitro (IC50 30.9 ± 3.6 and 29.4 ± 9.4 nM; both n = 6/2). [18F]TRACK showed uptake into KM12 tumors (SUVmean,60 min 0.43 ± 0.03; n = 6). Tumor-to-muscle ratio reached 0.9 (60 min) and 1.2 (120 min). In TrkB expressing BAT, [18F]TRACK uptake reached SUVmean,60 min 1.32 ± 0.08 (n = 7). Activation of Trk through amitriptyline resulted in a significant radioactivity increase of 21% in KM12 tumor (SUVmean,60 min from 0.53 ± 0.01 to 0.43 ± 0.03; n = 6; p < 0.05) and of 21% in BAT (SUVmean,60 min from 1.32 ± 0.08; n = 5 to 1.59 ± 0.07; n = 6; p < 0.05) respectively. Immunohistochemistry showed TrkB > TrkA expression on BAT fat cells, but TrkA > TrkB in whole brain. WB analysis showed sevenfold higher TrkB expression in BAT versus KM12 tumor tissue. CONCLUSION The present data show that radiotracer [18F]TRACK can target peripheral Trk receptors in human KM12 colon cancer as well as brown adipose tissue as confirmed through in vitro and in vivo blocking experiments. Higher TrkB versus TrkA protein expression was detected in brown adipose tissue of mice confirming a peripheral functional role of brain-derived neurotrophic factor in adipose tissue.
Collapse
Affiliation(s)
- Melinda Wuest
- grid.17089.370000 0001 2190 316XDepartment of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2 Canada
| | - Justin J. Bailey
- grid.17089.370000 0001 2190 316XDepartment of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2 Canada
| | - Jennifer Dufour
- grid.17089.370000 0001 2190 316XDepartment of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2 Canada
| | - Darryl Glubrecht
- grid.17089.370000 0001 2190 316XDepartment of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2 Canada
| | - Vanessa Omana
- grid.14709.3b0000 0004 1936 8649The Neuro - Montreal Neurological Institute-Hospital, McGill University, Montreal, QC Canada
| | - Tom H. Johnston
- grid.231844.80000 0004 0474 0428Krembil Research Institute, University Health Network, Toronto, ON Canada ,grid.511892.6Atuka Inc., Toronto, ON Canada
| | - Jonathan M. Brotchie
- grid.231844.80000 0004 0474 0428Krembil Research Institute, University Health Network, Toronto, ON Canada ,grid.511892.6Atuka Inc., Toronto, ON Canada
| | - Ralf Schirrmacher
- grid.17089.370000 0001 2190 316XDepartment of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2 Canada ,grid.17089.370000 0001 2190 316XDepartment of Oncology, Medical Isotope Cyclotron Facility, University of Alberta, 6820-116 St, South Campus, Edmonton, AB T6H 2V8 Canada
| |
Collapse
|
7
|
Pan S, Zhang L, Luo X, Nan J, Yang W, Bin H, Li Y, Huang Q, Wang T, Pan Z, Mu B, Wang F, Tian C, Liu Y, Li L, Yang S. Structural Optimization and Structure-Activity Relationship Studies of 6,6-Dimethyl-4-(phenylamino)-6 H-pyrimido[5,4- b][1,4]oxazin-7(8 H)-one Derivatives as A New Class of Potent Inhibitors of Pan-Trk and Their Drug-Resistant Mutants. J Med Chem 2022; 65:2035-2058. [PMID: 35080890 DOI: 10.1021/acs.jmedchem.1c01597] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tropomyosin receptor kinases (TrkA, TrkB, and TrkC) are attractive therapeutic targets for multiple cancers. Two first-generation small-molecule Trks inhibitors, larotrectinib and entrectinib, have just been approved to use clinically. However, the drug-resistance mutations of Trks have already emerged, which calls for new-generation Trks inhibitors. Herein, we report the structural optimization and structure-activity relationship studies of 6,6-dimethyl-4-(phenylamino)-6H-pyrimido[5,4-b][1,4]oxazin-7(8H)-one derivatives as a new class of pan-Trk inhibitors. The prioritized compound 11g exhibited low nanomolar IC50 values against TrkA, TrkB, and TrkC and various drug-resistant mutants. It also showed good kinase selectivity. 11g displayed excellent in vitro antitumor activity and strongly suppressed Trk-mediated signaling pathways in intact cells. In in vivo studies, compound 11g exhibited good antitumor activity in BaF3-TEL-TrkA and BaF3-TEL-TrkCG623R allograft mouse models without exhibiting apparent toxicity. Collectively, 11g could be a promising lead compound for drug discovery targeting Trks and deserves further investigation.
Collapse
Affiliation(s)
- Shulei Pan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Liting Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xinling Luo
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinshan Nan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Huachao Bin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yang Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiao Huang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tianqi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhiling Pan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Bo Mu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Falu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chenyu Tian
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Linli Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
8
|
Osman HM, Tuncbilek M. Entrectinib: A new Selective Tyrosine Kinase Inhibitor Approved for the Treatment of Pediatric and Adult Patients with NTRK Fusion-positive, Recurrent or Advanced Solid Tumors. Curr Med Chem 2021; 29:2602-2616. [PMID: 34521321 DOI: 10.2174/0929867328666210914121324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Entrectinib is a highly potent ATP-competitive and selective inhibitor of tyrosine kinases - Trk A B C, ALK, and ROS1. It was developed by Roche and initially approved in Japan in 2019 for the treatment of pediatric and adult patients with NTRK fusion-positive, recurrent, or advanced solid tumors. In August 2019, entrectinib received accelerated approval by the U.S FDA for this indication. It is also the first FDA-approved drug designed to target both NTRK and ROS1. OBJECTIVE We aim to summarize recent studies related to the synthesis, mechanism of action, and clinical trials of the newly approved selective tyrosine kinase inhibitor entrectinib. METHOD We conduct a literature review of the research studies on the new highly-potent small-molecule entrectinib. CONCLUSION Entrectinib, based on three clinical studies (ALKA, STARTRK-1, and STARTRK-2), was well tolerated, with a manageable safety profile. It induced clinically meaningful responses in recurrent or advanced solid tumors associated with NTRK fusion-positive or ROS1+ NSCLC. It demonstrated substantial efficacy in patients with CNS metastases.
Collapse
Affiliation(s)
- Hind M Osman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara. Turkey
| | - Meral Tuncbilek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara. Turkey
| |
Collapse
|
9
|
Abstract
This article presents an overview of imaging agents for PET that have been applied for research and diagnostic purposes in patients affected by dementia. Classified by the target which the agents visualize, seven groups of tracers can be distinguished, namely radiopharmaceuticals for: (1) Misfolded proteins (ß-amyloid, tau, α-synuclein), (2) Neuroinflammation (overexpression of translocator protein), (3) Elements of the cholinergic system, (4) Elements of monoamine neurotransmitter systems, (5) Synaptic density, (6) Cerebral energy metabolism (glucose transport/ hexokinase), and (7) Various other proteins. This last category contains proteins involved in mechanisms underlying neuroinflammation or cognitive impairment, which may also be potential therapeutic targets. Many receptors belong to this category: AMPA, cannabinoid, colony stimulating factor 1, metabotropic glutamate receptor 1 and 5 (mGluR1, mGluR5), opioid (kappa, mu), purinergic (P2X7, P2Y12), sigma-1, sigma-2, receptor for advanced glycation endproducts, and triggering receptor expressed on myeloid cells-1, besides several enzymes: cyclooxygenase-1 and 2 (COX-1, COX-2), phosphodiesterase-5 and 10 (PDE5, PDE10), and tropomyosin receptor kinase. Significant advances in neuroimaging have been made in the last 15 years. The use of 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) for quantification of regional cerebral glucose metabolism is well-established. Three tracers for ß-amyloid plaques have been approved by the Food and Drug Administration and European Medicines Agency. Several tracers for tau neurofibrillary tangles are already applied in clinical research. Since many novel agents are in the preclinical or experimental stage of development, further advances in nuclear medicine imaging can be expected in the near future. PET studies with established tracers and tracers for novel targets may result in early diagnosis and better classification of neurodegenerative disorders and in accurate monitoring of therapy trials which involve these targets. PET data have prognostic value and may be used to assess the response of the human brain to interventions, or to select the appropriate treatment strategy for an individual patient.
Collapse
Affiliation(s)
- Aren van Waarde
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen, the Netherlands.
| | - Sofia Marcolini
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, the Netherlands
| | - Peter Paul de Deyn
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, the Netherlands; University of Antwerp, Born-Bunge Institute, Neurochemistry and Behavior, Campus Drie Eiken, Wilrijk, Belgium
| | - Rudi A J O Dierckx
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen, the Netherlands; Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Design, synthesis, and Structure–Activity Relationships (SAR) of 3-vinylindazole derivatives as new selective tropomyosin receptor kinases (Trk) inhibitors. Eur J Med Chem 2020; 203:112552. [DOI: 10.1016/j.ejmech.2020.112552] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/07/2020] [Accepted: 06/07/2020] [Indexed: 11/20/2022]
|
11
|
Singleton TA, Bdair H, Bailey JJ, Choi S, Aliaga A, Rosa-Neto P, Schirrmacher R, Bernard-Gauthier V, Kostikov A. Efficient radiosynthesis and preclinical evaluation of [ 18 F]FOMPyD as a positron emission tomography tracer candidate for TrkB/C receptor imaging. J Labelled Comp Radiopharm 2020; 63:144-150. [PMID: 31919878 DOI: 10.1002/jlcr.3827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/05/2019] [Accepted: 01/07/2020] [Indexed: 01/20/2023]
Abstract
Herein we report an efficient radiolabeling of a 18 F-fluorinated derivative of dual inhibitor GW2580, with its subsequent evaluation as a positron emission tomography (PET) tracer candidate for imaging of two neuroreceptor targets implicated in the pathophysiology of neurodegeneration: tropomyosin receptor kinases (TrkB/C) and colony stimulating factor receptor (CSF-1R). [18 F]FOMPyD was synthesized from a boronic acid pinacolate precursor via copper-mediated 18 F-fluorination concerted with thermal deprotection of the four Boc groups on a diaminopyrimidine moiety in an 8.7±2.8% radiochemical yield, a radiochemical purity >99%, and an effective molar activity of 187±93 GBq/μmol. [18 F]FOMPyD showed moderate brain permeability in wild-type rats (SUVmax = 0.75) and a slow washout rate. The brain uptake was partially reduced (ΔAUC40-90 = 11.6%) by administration of the nonradioactive FOMPyD (up to 30 μg/kg). In autoradiography, [18 F]FOMPyD exhibits ubiquitous distribution in rat and human brain tissues with relatively high nonspecific binding revealed by self-blocking experiment. The binding was blocked by TrkB/C inhibitors, but not with a CSF-1R inhibitor, suggesting selective binding to the former receptor. Although an unfavorable pharmacokinetic profile will likely preclude application of [18 F]FOMPyD as a PET tracer for brain imaging, the concomitant one-pot copper-mediated 18 F-fluorination/Boc-deprotection is a practical technique for the automated radiosynthesis of acid-sensitive PET tracers.
Collapse
Affiliation(s)
- Thomas A Singleton
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Quebec, Canada
| | - Hussein Bdair
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Quebec, Canada
| | - Justin J Bailey
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Sangho Choi
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Arturo Aliaga
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Douglas Mental Health University Institute, Quebec, Canada
| | - Pedro Rosa-Neto
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Quebec, Canada
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Douglas Mental Health University Institute, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Quebec, Canada
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Vadim Bernard-Gauthier
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Alexey Kostikov
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Quebec, Canada
| |
Collapse
|
12
|
Cui S, Wang Y, Wang Y, Tang X, Ren X, Zhang L, Xu Y, Zhang Z, Zhang ZM, Lu X, Ding K. Design, synthesis and biological evaluation of 3-(imidazo[1,2-a]pyrazin-3-ylethynyl)-2-methylbenzamides as potent and selective pan-tropomyosin receptor kinase (TRK) inhibitors. Eur J Med Chem 2019; 179:470-482. [DOI: 10.1016/j.ejmech.2019.06.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 01/14/2023]
|
13
|
Bailey JJ, Kaiser L, Lindner S, Wüst M, Thiel A, Soucy JP, Rosa-Neto P, Scott PJH, Unterrainer M, Kaplan DR, Wängler C, Wängler B, Bartenstein P, Bernard-Gauthier V, Schirrmacher R. First-in-Human Brain Imaging of [ 18F]TRACK, a PET tracer for Tropomyosin Receptor Kinases. ACS Chem Neurosci 2019; 10:2697-2702. [PMID: 31017386 DOI: 10.1021/acschemneuro.9b00144] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The tropomyosin receptor kinase TrkA/B/C family is responsible for human neuronal growth, survival, and differentiation from early nervous system development stages onward. Downregulation of TrkA/B/C receptors characterizes numerous neurological disorders including Alzheimer's disease (AD). Abnormally expressed Trk receptors or chimeric Trk fusion proteins are also well-characterized oncogenic drivers in a variety of neurogenic and non-neurogenic human neoplasms and are currently the focus of intensive clinical research. Previously, we have described the clinical translation of a highly selective and potent carbon-11-labeled pan-Trk radioligand and the preclinical characterization of the optimized fluorine-18-labeled analogue, [18F]TRACK, for in vivo Trk positron emission tomography (PET) imaging. We describe herein central nervous system selectivity assessment and first-in-human study of [18F]TRACK.
Collapse
Affiliation(s)
- Justin J. Bailey
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Lena Kaiser
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich 81377, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich 81377, Germany
| | - Melinda Wüst
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Alexander Thiel
- McConnel Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec HT3 1E2, Canada
| | - Jean-Paul Soucy
- McConnel Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
| | - Peter J. H. Scott
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Marcus Unterrainer
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich 81377, Germany
| | - David R. Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim 68167, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich 81377, Germany
| | | | - Ralf Schirrmacher
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
14
|
Radioligands for Tropomyosin Receptor Kinase (Trk) Positron Emission Tomography Imaging. Pharmaceuticals (Basel) 2019; 12:ph12010007. [PMID: 30609832 PMCID: PMC6469173 DOI: 10.3390/ph12010007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 11/17/2022] Open
Abstract
The tropomyosin receptor kinases family (TrkA, TrkB, and TrkC) supports neuronal growth, survival, and differentiation during development, adult life, and aging. TrkA/B/C downregulation is a prominent hallmark of various neurological disorders including Alzheimer's disease (AD). Abnormally expressed or overexpressed full-length or oncogenic fusion TrkA/B/C proteins were shown to drive tumorigenesis in a variety of neurogenic and non-neurogenic human cancers and are currently the focus of intensive clinical research. Neurologic and oncologic studies of the spatiotemporal alterations in TrkA/B/C expression and density and the determination of target engagement of emerging antineoplastic clinical inhibitors in normal and diseased tissue are crucially needed but have remained largely unexplored due to the lack of suitable non-invasive probes. Here, we review the recent development of carbon-11- and fluorine-18-labeled positron emission tomography (PET) radioligands based on specifically designed small molecule kinase catalytic domain-binding inhibitors of TrkA/B/C. Basic developments in medicinal chemistry, radiolabeling and translational PET imaging in multiple species including humans are highlighted.
Collapse
|
15
|
Zou J, Zhang Z, Xu F, Cui S, Qi C, Luo J, Wang Z, Lu X, Tu Z, Ren X, Song L, Ding K. GZD2202, a novel TrkB inhibitor, suppresses BDNF-mediated proliferation and metastasis in neuroblastoma models. J Drug Target 2018; 27:442-450. [DOI: 10.1080/1061186x.2018.1533964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jian Zou
- School of Pharmacy, Jinan University, Guangzhou, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, China
- Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Fang Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, China
- Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Shengyang Cui
- University of Chinese Academy of Sciences, Beijing, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Chunli Qi
- Insititute of Laboratory Animal Science, Jinan University, Guangzhou, China
| | - Jinfeng Luo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhen Wang
- University of Chinese Academy of Sciences, Beijing, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, China
- Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Zhengchao Tu
- School of Pharmacy, Jinan University, Guangzhou, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaomei Ren
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, China
- Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Liyan Song
- School of Pharmacy, Jinan University, Guangzhou, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, China
- Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Yan W, Lakkaniga NR, Carlomagno F, Santoro M, McDonald NQ, Lv F, Gunaganti N, Frett B, Li HY. Insights into Current Tropomyosin Receptor Kinase (TRK) Inhibitors: Development and Clinical Application. J Med Chem 2018; 62:1731-1760. [PMID: 30188734 DOI: 10.1021/acs.jmedchem.8b01092] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The use of kinase-directed precision medicine has been heavily pursued since the discovery and development of imatinib. Annually, it is estimated that around ∼20 000 new cases of tropomyosin receptor kinase (TRK) cancers are diagnosed, with the majority of cases exhibiting a TRK genomic rearrangement. In this Perspective, we discuss current development and clinical applications for TRK precision medicine by providing the following: (1) the biological background and significance of the TRK kinase family, (2) a compilation of known TRK inhibitors and analysis of their cocrystal structures, (3) an overview of TRK clinical trials, and (4) future perspectives for drug discovery and development of TRK inhibitors.
Collapse
Affiliation(s)
- Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Francesca Carlomagno
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Via S Pansini 5 , 80131 Naples , Italy.,Istituto di Endocrinologia e Oncologia Sperimentale del CNR , Via S Pansini 5 , 80131 Naples , Italy
| | - Massimo Santoro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Via S Pansini 5 , 80131 Naples , Italy
| | - Neil Q McDonald
- Signaling and Structural Biology Laboratory , The Francis Crick Institute , London NW1 1AT , U.K.,Institute of Structural and Molecular Biology, Department of Biological Sciences , Birkbeck College , Malet Street , London WC1E 7HX , U.K
| | - Fengping Lv
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Naresh Gunaganti
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| |
Collapse
|
17
|
Collier TL, Maresca KP, Normandin MD, Richardson P, McCarthy TJ, Liang SH, Waterhouse RN, Vasdev N. Brain Penetration of the ROS1/ALK Inhibitor Lorlatinib Confirmed by PET. Mol Imaging 2018; 16:1536012117736669. [PMID: 29067878 PMCID: PMC5661750 DOI: 10.1177/1536012117736669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Massachusetts General Hospital Radiochemistry Program, in collaboration with Pfizer, has developed unique 11C and 18F-labeling strategies to synthesize isotopologs of lorlatinib (PF-06463922) which is undergoing phase III clinical trial investigations for treatment of non-small-cell lung cancers with specific molecular alterations. A major goal in cancer therapeutics is to measure the concentrations of this drug in the brain metastases of patients with lung cancer, and penetration of the blood–brain barrier is important for optimal therapeutic outcomes. Our recent publication in Nature Communications employed radiolabeled lorlatinib and positron emission tomography (PET) studies in preclinical models including nonhuman primates (NHPs) that demonstrated high brain permeability of this compound. Our future work with radiolabeled lorlatinib will include advanced PET evaluations in rodent tumor models and normal NHPs with the goal of clinical translation.
Collapse
Affiliation(s)
- T Lee Collier
- 1 Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital (MGH) & Department of Radiology, Harvard Medical School, Boston, MA, USA.,2 Advion, Inc, Ithaca, NY, USA
| | - Kevin P Maresca
- 3 Clinical and Translational Imaging, Worldwide Research and Development, Pfizer Inc, Cambridge, MA, USA
| | - Marc D Normandin
- 1 Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital (MGH) & Department of Radiology, Harvard Medical School, Boston, MA, USA
| | | | - Timothy J McCarthy
- 3 Clinical and Translational Imaging, Worldwide Research and Development, Pfizer Inc, Cambridge, MA, USA
| | - Steven H Liang
- 1 Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital (MGH) & Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Rikki N Waterhouse
- 3 Clinical and Translational Imaging, Worldwide Research and Development, Pfizer Inc, Cambridge, MA, USA.,5 Waterhouse Imaging and Biomarker Consultants, Chester, NH, USA
| | - Neil Vasdev
- 1 Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital (MGH) & Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Mossine AV, Brooks AF, Bernard-Gauthier V, Bailey JJ, Ichiishi N, Schirrmacher R, Sanford MS, Scott PJH. Automated synthesis of PET radiotracers by copper-mediated 18 F-fluorination of organoborons: Importance of the order of addition and competing protodeborylation. J Labelled Comp Radiopharm 2018; 61:228-236. [PMID: 29143408 PMCID: PMC5896751 DOI: 10.1002/jlcr.3583] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 12/15/2022]
Abstract
In this paper, we describe the use of Cu-mediated [18 F]fluorodeboronation for the automated production of positron emission tomography radiotracers suitable for clinical use. Two recurrent issues with the method, low radiochemical conversion on automation and protoarene byproduct purification issues, have been successfully addressed. The new method was utilized to produce sterile injectable doses of [18 F]-(±)-IPMICF17, a positron emission tomography radiotracer for tropomyosin receptor kinase B/C, using an automated synthesis module. The product was isolated in 1.9 ± 0.1% isolated radiochemical yield, excellent radiochemical purity (>99%), and high specific activity (5294 ± 1227 Ci/mmol). Quality control testing confirmed that doses were suitable for clinical use.
Collapse
Affiliation(s)
- Andrew V. Mossine
- Department of Radiology, University of Michigan Medical School, 1301 Catherine St., Ann Arbor, MI 48109, USA
| | - Allen F. Brooks
- Department of Radiology, University of Michigan Medical School, 1301 Catherine St., Ann Arbor, MI 48109, USA
| | - Vadim Bernard-Gauthier
- Medical Isotope and Cyclotron Facility, Cross Cancer Institute, University of Alberta, AB, Canada
| | - Justin J. Bailey
- Medical Isotope and Cyclotron Facility, Cross Cancer Institute, University of Alberta, AB, Canada
| | - Naoko Ichiishi
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | - Ralf Schirrmacher
- Medical Isotope and Cyclotron Facility, Cross Cancer Institute, University of Alberta, AB, Canada
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan Medical School, 1301 Catherine St., Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
Bernard-Gauthier V, Mossine AV, Mahringer A, Aliaga A, Bailey JJ, Shao X, Stauff J, Arteaga J, Sherman P, Grand’Maison M, Rochon PL, Wängler B, Wängler C, Bartenstein P, Kostikov A, Kaplan DR, Fricker G, Rosa-Neto P, Scott PJH, Schirrmacher R. Identification of [18F]TRACK, a Fluorine-18-Labeled Tropomyosin Receptor Kinase (Trk) Inhibitor for PET Imaging. J Med Chem 2018; 61:1737-1743. [DOI: 10.1021/acs.jmedchem.7b01607] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Vadim Bernard-Gauthier
- Department of Oncology,
Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Andrew V. Mossine
- Department of Radiology, Division of Nuclear Medicine, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Anne Mahringer
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg 69120, Germany
| | - Arturo Aliaga
- Translational
Neuroimaging Laboratory, McGill Centre for Studies in Aging, Douglas Mental Health University Institute, Montreal, QC H4H 1R3, Canada
| | - Justin J. Bailey
- Department of Oncology,
Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Xia Shao
- Department of Radiology, Division of Nuclear Medicine, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Jenelle Stauff
- Department of Radiology, Division of Nuclear Medicine, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Janna Arteaga
- Department of Radiology, Division of Nuclear Medicine, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Phillip Sherman
- Department of Radiology, Division of Nuclear Medicine, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | | | - Pierre-Luc Rochon
- McConnell
Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | | | | | - Peter Bartenstein
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich 81377, Germany
| | - Alexey Kostikov
- McConnell
Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - David R. Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G
0A4, Canada
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg 69120, Germany
| | - Pedro Rosa-Neto
- Translational
Neuroimaging Laboratory, McGill Centre for Studies in Aging, Douglas Mental Health University Institute, Montreal, QC H4H 1R3, Canada
| | - Peter J. H. Scott
- Department of Radiology, Division of Nuclear Medicine, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- The Interdepartmental
Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ralf Schirrmacher
- Department of Oncology,
Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|