1
|
Wang Y, Li S, Wang W. The ubiquitin-proteasome system in the tumor immune microenvironment: a key force in combination therapy. Front Immunol 2024; 15:1436174. [PMID: 39315102 PMCID: PMC11416925 DOI: 10.3389/fimmu.2024.1436174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
The ubiquitin-proteasome system (UPS) plays a crucial role in modulating the proliferation, activation, and normal functioning of immune cells through the regulation of protein degradation and function. By influencing the expression of immune checkpoint-associated proteins, the UPS modulates T cell-mediated anti-tumor immune responses and can potentially facilitate the immune escape of tumor cells. Additionally, the UPS contributes to the remodeling of the tumor immunosuppressive microenvironment (TIME) by regulating B cells, dendritic cells (DCs), macrophages, and Treg cells. Targeting the UPS in conjunction with immune checkpoint-associated proteins, and combining these with other therapeutic approaches, may significantly enhance the efficacy of combination therapies and pave the way for novel cancer treatment strategies. In this review, we first summarize the composition and alterations of the TIME, with a particular emphasis on the role of the UPS in TIME and its interactions with various immune cell types. Finally, we explore the potential of combining UPS-targeted therapies with immunotherapy to substantially improve the effectiveness of immunotherapy and enhance patient survival outcomes.
Collapse
Affiliation(s)
- Yongmei Wang
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Saisai Li
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wenqin Wang
- School of Life Sciences, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Sun L, He M, Li F, Wu D, Zheng P, Zhang C, Liu Y, Liu D, Shan M, Yang M, Ma Y, Lian J, Xiong H. Oxyberberine sensitizes liver cancer cells to sorafenib via inhibiting NOTCH1-USP7-c-Myc pathway. Hepatol Commun 2024; 8:e0405. [PMID: 38573832 PMCID: PMC10997235 DOI: 10.1097/hc9.0000000000000405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/04/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Sorafenib is the first-line therapy for patients with advanced-stage HCC, but its clinical cure rate is unsatisfactory due to adverse reactions and drug resistance. Novel alternative strategies to overcome sorafenib resistance are urgently needed. Oxyberberine (OBB), a major metabolite of berberine in vivo, exhibits potential antitumor potency in various human malignancies, including liver cancer. However, it remains unknown whether and how OBB sensitizes liver cancer cells to sorafenib. METHODS Cell viability, trypan blue staining and flow cytometry assays were employed to determine the synergistic effect of OBB and sorafenib on killing HCC cells. PCR, western blot, co-immunoprecipitation and RNA interference assays were used to decipher the mechanism by which OBB sensitizes sorafenib. HCC xenograft models and clinical HCC samples were utilized to consolidate our findings. RESULTS We found for the first time that OBB sensitized liver cancer cells to sorafenib, enhancing its inhibitory effect on cell growth and induction of apoptosis in vitro. Interestingly, we observed that OBB enhanced the sensitivity of HCC cells to sorafenib by reducing ubiquitin-specific peptidase 7 (USP7) expression, a well-known tumor-promoting gene. Mechanistically, OBB inhibited notch homolog 1-mediated USP7 transcription, leading to the downregulation of V-Myc avian myelocytomatosis viral oncogene homolog (c-Myc), which synergized with sorafenib to suppress liver cancer. Furthermore, animal results showed that cotreatment with OBB and sorafenib significantly inhibited the tumor growth of liver cancer xenografts in mice. CONCLUSIONS These results indicate that OBB enhances the sensitivity of liver cancer cells to sorafenib through inhibiting notch homolog 1-USP7-c-Myc signaling pathway, which potentially provides a novel therapeutic strategy for liver cancer to improve the effectiveness of sorafenib.
Collapse
Affiliation(s)
- Liangbo Sun
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, China
| | - Meng He
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, China
| | - Feng Li
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Di Wu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ping Zheng
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Cong Zhang
- Department of Laboratory Animal Science, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yang Liu
- Department of Laboratory Animal Science, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dong Liu
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, China
| | - Meihua Shan
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mingzhen Yang
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuanhang Ma
- Department of General Surgery of Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiqin Lian
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, China
| | - Haojun Xiong
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
3
|
Pereira TO, Abbasi M, Oliveira RI, Guedes RA, Salvador JAR, Arrais JP. Artificial intelligence for prediction of biological activities and generation of molecular hits using stereochemical information. J Comput Aided Mol Des 2023; 37:791-806. [PMID: 37847342 PMCID: PMC10618333 DOI: 10.1007/s10822-023-00539-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
In this work, we develop a method for generating targeted hit compounds by applying deep reinforcement learning and attention mechanisms to predict binding affinity against a biological target while considering stereochemical information. The novelty of this work is a deep model Predictor that can establish the relationship between chemical structures and their corresponding [Formula: see text] values. We thoroughly study the effect of different molecular descriptors such as ECFP4, ECFP6, SMILES and RDKFingerprint. Also, we demonstrated the importance of attention mechanisms to capture long-range dependencies in molecular sequences. Due to the importance of stereochemical information for the binding mechanism, this information was employed both in the prediction and generation processes. To identify the most promising hits, we apply the self-adaptive multi-objective optimization strategy. Moreover, to ensure the existence of stereochemical information, we consider all the possible enumerated stereoisomers to provide the most appropriate 3D structures. We evaluated this approach against the Ubiquitin-Specific Protease 7 (USP7) by generating putative inhibitors for this target. The predictor with SMILES notations as descriptor plus bidirectional recurrent neural network using attention mechanism has the best performance. Additionally, our methodology identify the regions of the generated molecules that are important for the interaction with the receptor's active site. Also, the obtained results demonstrate that it is possible to discover synthesizable molecules with high biological affinity for the target, containing the indication of their optimal stereochemical conformation.
Collapse
Affiliation(s)
- Tiago O Pereira
- Centre for Informatics and Systems, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal.
| | - Maryam Abbasi
- Centre for Informatics and Systems, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal
- Applied Research Institute, Polytechnic Institute of Coimbra, Coimbra, Portugal
- Research Centre for Natural Resources Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Coimbra, Portugal
| | - Rita I Oliveira
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal
| | - Romina A Guedes
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal
| | - Joel P Arrais
- Centre for Informatics and Systems, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Jiang Y, Ni S, Xiao B, Jia L. Function, mechanism and drug discovery of ubiquitin and ubiquitin-like modification with multiomics profiling for cancer therapy. Acta Pharm Sin B 2023; 13:4341-4372. [PMID: 37969742 PMCID: PMC10638515 DOI: 10.1016/j.apsb.2023.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/21/2023] [Accepted: 07/17/2023] [Indexed: 11/17/2023] Open
Abstract
Ubiquitin (Ub) and ubiquitin-like (Ubl) pathways are critical post-translational modifications that determine whether functional proteins are degraded or activated/inactivated. To date, >600 associated enzymes have been reported that comprise a hierarchical task network (e.g., E1-E2-E3 cascade enzymatic reaction and deubiquitination) to modulate substrates, including enormous oncoproteins and tumor-suppressive proteins. Several strategies, such as classical biochemical approaches, multiomics, and clinical sample analysis, were combined to elucidate the functional relations between these enzymes and tumors. In this regard, the fundamental advances and follow-on drug discoveries have been crucial in providing vital information concerning contemporary translational efforts to tailor individualized treatment by targeting Ub and Ubl pathways. Correspondingly, emphasizing the current progress of Ub-related pathways as therapeutic targets in cancer is deemed essential. In the present review, we summarize and discuss the functions, clinical significance, and regulatory mechanisms of Ub and Ubl pathways in tumorigenesis as well as the current progress of small-molecular drug discovery. In particular, multiomics analyses were integrated to delineate the complexity of Ub and Ubl modifications for cancer therapy. The present review will provide a focused and up-to-date overview for the researchers to pursue further studies regarding the Ub and Ubl pathways targeted anticancer strategies.
Collapse
Affiliation(s)
| | | | - Biying Xiao
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
5
|
Shin SC, Park J, Kim KH, Yoon JM, Cho J, Ha BH, Oh Y, Choo H, Song EJ, Kim EE. Structural and functional characterization of USP47 reveals a hot spot for inhibitor design. Commun Biol 2023; 6:970. [PMID: 37740002 PMCID: PMC10516900 DOI: 10.1038/s42003-023-05345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
USP47 is widely involved in tumor development, metastasis, and other processes while performing a more regulatory role in inflammatory responses, myocardial infarction, and neuronal development. In this study, we investigate the functional and biochemical properties of USP47, whereby depleting USP47 inhibited cancer cell growth in a p53-dependent manner-a phenomenon that enhances during the simultaneous knockdown of USP7. Full-length USP47 shows higher deubiquitinase activity than the catalytic domain. The crystal structures of the catalytic domain, in its free and ubiquitin-bound states, reveal that the misaligned catalytic triads, ultimately, become aligned upon ubiquitin-binding, similar to USP7, thereby becoming ready for catalysis. Yet, the composition and lengths of BL1, BL2, and BL3 of USP47 differ from those for USP7, and they contribute to the observed selectivity. Our study provides molecular details of USP47 regulation, substrate recognition, and the hotspots for drug discovery by targeting USP47.
Collapse
Affiliation(s)
- Sang Chul Shin
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Research Resources Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jinyoung Park
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio‑Medical Science and Technology, KIST‑School, University of Science and Technology (UST), Seoul, 02792, Korea
| | - Kyung Hee Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jung Min Yoon
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jinhong Cho
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Byung Hak Ha
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Yeonji Oh
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyunah Choo
- Division of Bio‑Medical Science and Technology, KIST‑School, University of Science and Technology (UST), Seoul, 02792, Korea
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
6
|
Gao H, Yin J, Ji C, Yu X, Xue J, Guan X, Zhang S, Liu X, Xing F. Targeting ubiquitin specific proteases (USPs) in cancer immunotherapy: from basic research to preclinical application. J Exp Clin Cancer Res 2023; 42:225. [PMID: 37658402 PMCID: PMC10472646 DOI: 10.1186/s13046-023-02805-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023] Open
Abstract
Tumors have evolved in various mechanisms to evade the immune system, hindering the antitumor immune response and facilitating tumor progression. Immunotherapy has become a potential treatment strategy specific to different cancer types by utilizing multifarious molecular mechanisms to enhance the immune response against tumors. Among these mechanisms, the ubiquitin-proteasome system (UPS) is a significant non-lysosomal pathway specific to protein degradation, regulated by deubiquitinating enzymes (DUBs) that counterbalance ubiquitin signaling. Ubiquitin-specific proteases (USPs), the largest DUB family with the strongest variety, play critical roles in modulating immune cell function, regulating immune response, and participating in antigen processing and presentation during tumor progression. According to recent studies, the expressions of some USP family members in tumor cells are involved in tumor immune escape and immune microenvironment. This review explores the potential of targeting USPs as a new approach for cancer immunotherapy, highlighting recent basic and preclinical studies investigating the applications of USP inhibitors. By providing insights into the structure and function of USPs in cancer immunity, this review aims at assisting in developing new therapeutic approaches for enhancing the immunotherapy efficacy.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jianqiao Yin
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ce Ji
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiaopeng Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shuang Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xun Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
7
|
Pei HZ, Peng Z, Zhuang X, Wang X, Lu B, Guo Y, Zhao Y, Zhang D, Xiao Y, Gao T, Yu L, He C, Wu S, Baek SH, Zhao ZJ, Xu X, Chen Y. miR-221/222 induce instability of p53 By downregulating deubiquitinase YOD1 in acute myeloid leukemia. Cell Death Discov 2023; 9:249. [PMID: 37454155 DOI: 10.1038/s41420-023-01537-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by the impaired differentiation and uncontrolled proliferation of myeloid blasts. Tumor suppressor p53 is often downregulated in AML cells via ubiquitination-mediated degradation. While the role of E3 ligase MDM2 in p53 ubiquitination is well-accepted, little is known about the involvement of deubiquitinases (DUBs). Herein, we found that the expression of YOD1, among several DUBs, is substantially reduced in blood cells from AML patients. We identified that YOD1 deubiqutinated and stabilized p53 through interaction via N-terminus of p53 and OTU domain of YOD1. In addition, expression levels of YOD1 were suppressed by elevated miR-221/222 in AML cells through binding to the 3' untranslated region of YOD1, as verified by reporter gene assays. Treatment of cells with miR-221/222 mimics and inhibitors yielded the expected effects on YOD1 expressions, in agreement with the negative correlation observed between the expression levels of miR-221/222 and YOD1 in AML cells. Finally, overexpression of YOD1 stabilized p53, upregulated pro-apoptotic p53 downstream genes, and increased the sensitivity of AML cells to FLT3 inhibitors remarkably. Collectively, our study identified a pathway connecting miR-221/222, YOD1, and p53 in AML. Targeting miR-221/222 and stimulating YOD1 activity may improve the therapeutic effects of FLT3 inhibitors in patients with AML.
Collapse
Affiliation(s)
- Han Zhong Pei
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Zhiyong Peng
- Nanfang-Chunfu Children's Institute of Hematology, Taixin Hospital, Dongguan, Guangdong, China
| | - Xiaomei Zhuang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Xiaobo Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Bo Lu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Yao Guo
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Yuming Zhao
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Dengyang Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Yunjun Xiao
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Tianshun Gao
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Liuting Yu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Chunxiao He
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Shunjie Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Suk-Hwan Baek
- Department of Biochemistry & Molecular Biology, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, South Korea.
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 451, Oklahoma City, OK, 73104, USA.
| | - Xiaojun Xu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Yun Chen
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
8
|
Li X, Yang S, Zhang H, Liu X, Gao Y, Chen Y, Liu L, Wang D, Liang Z, Liu S, Dai L, Xu Q, Yuan H, Chen C, Sun H, Wen X. Discovery of Orally Bioavailable N-Benzylpiperidinol Derivatives as Potent and Selective USP7 Inhibitors with In Vivo Antitumor Immunity Activity against Colon Cancer. J Med Chem 2022; 65:16622-16639. [PMID: 36454192 DOI: 10.1021/acs.jmedchem.2c01444] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
USP7 emerges as a potential therapeutic target for cancers, as it plays an important role in the development of tumorigenesis by stabilizing multiple cancer-relevant proteins. Nevertheless, the discovery of drug-like USP7 inhibitors remains challenging. Herein, we report a series of N-benzylpiperidinol derivatives as potent and selective USP7 inhibitors (e.g., X20 and X26: IC50 = 7.6 and 8.2 nM), whose binding modes were revealed by crystallographic studies to be distinct from the known N-acylpiperidinol USP7 inhibitors. Among them, X36 with good oral PK profiles (rat: F = 40.8% and T1/2 = 3.5 h) exhibited significant antitumor efficacy in the MC38 colon cancer syngeneic mouse model, at least partly through upregulating the tumor infiltration of CD8+ T, NK, and NKT cells and downregulating that of Tregs and MDSCs. These findings may further pave the way for the development of USP7 inhibitors as novel cancer immunotherapy drugs.
Collapse
Affiliation(s)
- Xing Li
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shanlin Yang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Honghan Zhang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xipeng Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuchen Gao
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuqi Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Liu Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Dalin Wang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zijiang Liang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shengjie Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Dai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Qinglong Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Caiping Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, China.,Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, China.,Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| |
Collapse
|
9
|
USP7 Inhibitors in Cancer Immunotherapy: Current Status and Perspective. Cancers (Basel) 2022; 14:cancers14225539. [PMID: 36428632 PMCID: PMC9688046 DOI: 10.3390/cancers14225539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Ubiquitin-specific protease 7 (USP7) regulates the stability of a plethora of intracellular proteins involved in the suppression of anti-tumor immune responses and its overexpression is associated with poor survival in many cancers. USP7 impairs the balance of the p53/MDM2 axis resulting in the proteasomal degradation of the p53 tumor suppressor, a process that can be reversed by small-molecule inhibitors of USP7. USP7 was shown to regulate the anti-tumor immune responses in several cases. Its inhibition impedes the function of regulatory T cells, promotes polarization of tumor-associated macrophages, and reduces programmed death-ligand 1 (PD-L1) expression in tumor cells. The efficacy of small-molecule USP7 inhibitors was demonstrated in vivo. The synergistic effect of combining USP7 inhibition with cancer immunotherapy is a promising therapeutic approach, though its clinical efficacy is yet to be proven. In this review, we focus on the recent developments in understanding the intrinsic role of USP7, its interplay with other molecular pathways, and the therapeutic potential of targeting USP7 functions.
Collapse
|
10
|
Xu X, Wang M, Xu H, Liu N, Chen K, Luo C, Chen S, Chen H. Design, synthesis and biological evaluation of 2-aminopyridine derivatives as USP7 inhibitors. Bioorg Chem 2022; 129:106128. [PMID: 36113266 DOI: 10.1016/j.bioorg.2022.106128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 11/02/2022]
Abstract
A series of novel 2-aminopyridine derivatives 1-26 have been designed and synthesized by structural modifications on a lead USP7 inhibitor, GNE6640. All the compounds were evaluated for their USP7 inhibitory activities. The results showed that most of the compounds have good USP7 inhibitory activities at the concentration of 50 μM. Among them, compounds 7, 14 and 21 are the most potential ones from each category with the IC50 values of 7.6 ± 0.1 μM, 17.0 ± 0.2 μM and 11.6 ± 0.5 μM, respectively. Compounds 7 and 21 expressed significant binding interactions with USP7 by surface plasmon resonance (SPR)-based binding assay, but both of them presented moderate antiproliferative activities against HCT116 cells. They could effectively promote MDM2 degradation, p53 stabilization and p21 gene expression in the western blot analysis.
Collapse
Affiliation(s)
- Xiaoming Xu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Mingchen Wang
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailong Xu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Na Liu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Kaixian Chen
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Luo
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Shijie Chen
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hua Chen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
11
|
Pei Y, Fu J, Shi Y, Zhang M, Luo G, Luo X, Song N, Mi T, Yang Y, Li J, Zhou Y, Zhou B. Discovery of a Potent and Selective Degrader for USP7. Angew Chem Int Ed Engl 2022; 61:e202204395. [PMID: 35691827 DOI: 10.1002/anie.202204395] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 01/31/2023]
Abstract
The tumor suppressor p53 is the most frequently mutated gene in human cancer and more than half of cancers contain p53 mutations. The development of novel and effective therapeutic strategies for p53 mutant cancer therapy is a big challenge and highly desirable. Ubiquitin-specific protease 7 (USP7), also known as HAUSP, is a deubiquitinating enzyme and proposed to stabilize the oncogenic E3 ubiquitin ligase MDM2 that promotes the proteosomal degradation of p53. Herein, we report the design and characterization of U7D-1 as the first selective USP7-degrading Proteolysis Targeting Chimera (PROTAC). U7D-1 showed selective and effective USP7 degradation, and maintained potent cell growth inhibition in p53 mutant cancer cells, with USP7 inhibitor showing no activity. These data clearly demonstrated the practicality and importance of PROTAC as a preliminary chemical tool for investigating USP7 protein functions and a promising method for potential p53 mutant cancer therapy.
Collapse
Affiliation(s)
- Yuan Pei
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Jingfeng Fu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yunkai Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Mengmeng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Guanghao Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Xiaomin Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ning Song
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Tian Mi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yaxi Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong, 528400, P.R. China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong, 528400, P.R. China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bing Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| |
Collapse
|
12
|
Niu H, Zhu Y, Wang J, Wang T, Wang X, Yan L. Effects of USP7 on radiation sensitivity through p53 pathway in laryngeal squamous cell carcinoma. Transl Oncol 2022; 22:101466. [PMID: 35696794 PMCID: PMC9194850 DOI: 10.1016/j.tranon.2022.101466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/29/2022] [Accepted: 06/05/2022] [Indexed: 11/29/2022] Open
Abstract
The relationship between ubiquitin specific protease 7 (USP7) and radio-sensitivity in laryngeal squamous cell carcinoma (LSCC) has not been reported yet. Using gene chip and Label-Free mass spectrometry, we found that USP7 was significantly increased both in radioresistant LSCC patients and LSCC cells receiving irradiation. Since p53 is the most important downstream gene of USP7 and is frequently mutated in LSCC, we investigated the effects of USP7 on radioresistance of LSCC cells with or without p53 mutation. We found that knockdown of USP7 increased the radio-sensitivity in p53-mutated LSCC cells, while inhibiting the radio-sensitivity in p53-wild type cells. Knockdown of USP7 significantly inhibited the expression of the p53 and p53 pathway. Overexpressing endogenous p53 by CRISPR/dCas9 could reverse the effects of USP7 on radiosensitivity both in vitro and in vivo. Our results demonstrated the irradiation-induced USP7 led to radioresistance in p53-mutated LSCC cells but radio-sensitivity in p53-wild type cells. Therefore, the clinical application of USP7 inhibitors may improve the effects of radiotherapy in LSCC with p53 mutations and reduce the side effects on surrounding normal tissues without p53 mutation.
Collapse
Affiliation(s)
- Hao Niu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Yi Zhu
- Department of Radiation Oncology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Jie Wang
- Department of Radiation Oncology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Tian Wang
- Department of Radiation Oncology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Xiaosheng Wang
- Department of Radiation Oncology, Eye and ENT Hospital, Fudan University, Shanghai, China.
| | - Li Yan
- Department of Radiation Oncology, Eye and ENT Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Pei Y, Fu J, Shi Y, Zhang M, Luo G, Luo X, Song N, Mi T, Yang Y, Li J, Zhou Y, Zhou B. Discovery of a Potent and Selective Degrader for USP7. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuan Pei
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Department of Medicinal Chemistry CHINA
| | - Jingfeng Fu
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Department of Medicinal Chemistry CHINA
| | - Yunkai Shi
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Department of Medicinal Chemistry CHINA
| | - Mengmeng Zhang
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Department of Medicinal Chemistry CHINA
| | - Guanghao Luo
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Department of Medicinal Chemistry CHINA
| | - Xiaomin Luo
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Department of Medicinal Chemistry CHINA
| | - Ning Song
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Department of Medicinal Chemistry CHINA
| | - Tian Mi
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Department of Medicinal Chemistry CHINA
| | - Yaxi Yang
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Department of Medicinal Chemistry CHINA
| | - Jia Li
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Department of Medicinal Chemistry CHINA
| | - Yubo Zhou
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Department of Medicinal Chemistry CHINA
| | - Bing Zhou
- Shanghai Institute of Materia Medica Department of Medicinal Chemistry 555 Road Zu Chong Zhi 201203 Shanghai CHINA
| |
Collapse
|
14
|
Depleted Long Noncoding RNA GAS5 Relieves Intervertebral Disc Degeneration via microRNA-17-3p/Ang-2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1792412. [PMID: 35340210 PMCID: PMC8941580 DOI: 10.1155/2022/1792412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
Intervertebral disc degeneration (IVDD) remains a clinical challenge and requires more effective therapeutic targets. Long noncoding RNAs (lncRNAs) have emerged as critical modulators of multiple biological processes, such as cell proliferation and extracellular matrix (ECM) remodeling. Accordingly, the current study sets out to explore the influence of the lncRNA growth arrest-specific 5 (GAS5) on IVDD and investigate the possible involvement of microRNA-17-3p (miR-17-3p)/Angiopoietin-2 (Ang-2) axis. Firstly, the expression patterns of GAS5, miR-17-3p, and Ang-2 were characterized by RNA quantification from the isolated human degenerative nucleus pulposus (NP) tissues. miR-17-3p was found to express at an abnormal low level while GAS5 and Ang-2 expressed at aberrant high level in the human degenerative NP tissues. Utilizing dual-luciferase reporter, RNA immunoprecipitation, and pull-down assays, GAS5 was found to competitively bound to miR-17-3p and further upregulate the expression of Ang-2, a target gene of miR-17-3p. Employing gain- and loss-of-function approaches, their expressions were altered in human degenerative nucleus pulposus cells (NPCs), followed by IL-1β treatment, in order to identify their roles in NP cell proliferation, apoptosis, and ECM metabolism. Silencing of GAS5 expression restrained the levels of cleaved caspase-3, cleaved caspase-7, cleaved caspase-9, MMP3, MMP13, ADAMTS4, and ADAMTS5 and increased collagen II and aggrecan levels. In vitro experiments also revealed that GAS5 depletion inhibited apoptosis and ECM degradation in HDNPCs, while elevating the proliferation through downregulation of Ang-2 by increasing miR-17-3p. Furthermore, in vivo data further validated that either GAS5 silencing or miR-17-3p reexpression alleviated IVDD degree with the help of IVDD mouse models. Altogether, our findings substantiated that downregulation of GAS5 reduced NPC apoptosis and promoted ECM remodeling, ultimately ameliorating the IVDD via miR-17-3p-dependent inhibition of Ang-2. We hope our discoveries offer a fresh molecular insight that can aid the development of novel therapies against IVDD.
Collapse
|
15
|
Zhou L, Ouyang T, Li M, Hong T, Mhs A, Meng W, Zhang N. Ubiquitin-Specific Peptidase 7: A Novel Deubiquitinase That Regulates Protein Homeostasis and Cancers. Front Oncol 2021; 11:784672. [PMID: 34869041 PMCID: PMC8640129 DOI: 10.3389/fonc.2021.784672] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
Ubiquitin-Specific Peptidase 7 (USP7), or herpes virus-associated protease (HAUSP), is the largest family of the deubiquitinating enzymes (DUBs). Recent studies have shown that USP7 plays a vital role in regulating various physiological and pathological processes. Dysregulation of these processes mediated by USP7 may contribute to many diseases, such as cancers. Moreover, USP7 with aberrant expression levels and abnormal activity are found in cancers. Therefore, given the association between USP7 and cancers, targeting USP7 could be considered as an attractive and potential therapeutic approach in cancer treatment. This review describes the functions of USP7 and the regulatory mechanisms of its expression and activity, aiming to emphasize the necessity of research on USP7, and provide a better understanding of USP7-related biological processes and cancer.
Collapse
Affiliation(s)
- Lin Zhou
- First Clinical Medical College, Nanchang University, Nanchang, China
| | - Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Alriashy Mhs
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Hong P, Yu M, Tian W. Diverse RNAs in adipose-derived extracellular vesicles and their therapeutic potential. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:665-677. [PMID: 34703651 PMCID: PMC8516999 DOI: 10.1016/j.omtn.2021.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adipose tissue, which is considered an energy storage and active endocrine organ, produces and secretes a large amount of adipokines to regulate distant targets through blood circulation, especially extracellular vesicles (EVs). As cell-derived, membranous nanoparticles, EVs have recently garnered great attention as novel mediators in establishing intercellular communications as well as in accelerating interorgan crosstalk. Studies have revealed that the RNAs, including coding RNAs (messenger RNAs) and noncoding RNAs (long noncoding RNAs, microRNAs, and circular RNAs) are key bioactive cargoes of EV functions in various pathophysiological processes, such as cell differentiation, metabolic homeostasis, immune signal transduction, and cancer. Moreover, certain EV-contained RNAs have gradually been recognized as novel biomarkers, prognostic indicators, or even therapeutic nanodrugs of diseases. Therefore, in this review, we comprehensively summarize different classes of RNAs presented in adipose-derived EVs and discuss their therapeutic potential according to the latest research progress to provide valuable knowledge in this area.
Collapse
Affiliation(s)
- Pengyu Hong
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases West China School of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei Yu
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases West China School of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases West China School of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Redox manipulation of enzyme activity through physiologically active molecule. iScience 2021; 24:102977. [PMID: 34485859 PMCID: PMC8405983 DOI: 10.1016/j.isci.2021.102977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
The effective utility of physiologically active molecules is crucial in numerous biological processes. However, the regulation of enzyme functions through active substances remains challenging at present. Here, glutathione (GSH), produced in cells, was used to modulate the catalytic activity of thrombin without external stimulus. It was found that high concentrations of GSH was more conducive to initiate the cleavage of compound AzoDiTAB in the range of concentration used to mimic the difference between cancer and normal cells, which has practical implications for targeting cancel cells since GSH is overexpressed in cancer cells. Importantly, GSH treatment caused the deformation of G4 structure by cleaving AzoDiTAB and thus triggered the transition of thrombin from being free to be inhibited in complex biological systems. This work would open up a new route for the specific manipulation of enzyme-catalyzed systems in cancer cells. The transition of telomere DNA structures based on redox switch Achieving redox manipulation of thrombin activity through active substance This switch can be specifically used for enzyme regulation in cancer cells
Collapse
|
18
|
Harakandi C, Nininahazwe L, Xu H, Liu B, He C, Zheng YC, Zhang H. Recent advances on the intervention sites targeting USP7-MDM2-p53 in cancer therapy. Bioorg Chem 2021; 116:105273. [PMID: 34474304 DOI: 10.1016/j.bioorg.2021.105273] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 01/29/2023]
Abstract
The ubiquitin-specific protease 7 (USP7)-murine double minute 2 (MDM2)-p53 network plays an important role in the regulation of p53, a tumor suppressor which plays critical roles in regulating cell growth, proliferation, cell cycle progression, apoptosis and immune response. The overexpression of USP7 and MDM2 in human cancers contributes to cancer initiation and progression, and their inhibition reactivates p53 signalings and causes cell cycle arrest and apoptosis. Herein, the current state of pharmacological characterization, potential applications in cancer treatment and mechanism of action of small molecules used to target and inhibit MDM2 and USP7 proteins are highlighted, along with the outcomes in clinical and preclinical settings. Moreover, challenges and advantages of these strategies, as well as perspectives in USP7-MDM2-p53 field are analyzed in detail. The investigation and application of MDM2 and USP7 inhibitors will deepen our understanding of the function of USP7-MDM2-p53 network, and feed in the development of effective and safe cancer therapies where USP7-MDM2-p53 network is implicated.
Collapse
Affiliation(s)
- Chrisanta Harakandi
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lauraine Nininahazwe
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Bingrui Liu
- College of Public Health, North China University of Science and Technology, Tangshan 063503, China
| | - Chenghua He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
19
|
Zhang F, Zhang B, Tang R, Jiang H, Ji Z, Chen Y, Feng H. The occurrence of lupus nephritis is regulated by USP7-mediated JMJD3 stabilization. Immunol Lett 2021; 235:41-50. [PMID: 33895173 DOI: 10.1016/j.imlet.2021.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022]
Abstract
Ubiquitin-specific peptidases7 (USP7) participates in the regulation of various metabolic and immune disorders. However, the role of USP7 in lupus nephritis (LN) remains unknown. The current study set out to elucidate the regulatory role of USP7 in LN together with JMJD3 and NF-κB. SLE MRL/LPR mice and mouse glomerular mesangial cells SV40 MES 13 cells were employed for in vivo or vitro experiments. USP7, JMJD3 and NF-κB expression in MRL/LPR mice were detected, followed by investigation of their functions in the proliferation of mesangial cells and mesangial matrix. Subsequently, the interaction among USP7, JMJD3 and NF-κB was determined by means of ChIP and co-immunoprecipitation assay. The results indicated that USP7, JMJD3, p-NF-κB p65 were all highly-expressed in MRL/LPR mice. USP7 promoted the proliferation of mesangial cells and mesangial matrix, and stabilized the JMJD3 protein via deubiquitination in SV40 MES 13 cells. Meanwhile, silencing of JMJD3 inhibited the promotive effect of USP7 on the proliferation of mesangial cells and mesangial matrix. Furthermore, JMJD3 increased the expression of NF-κB p65 through demethylation, whereas silencing JMJD3 alleviated the proliferation of mesangial cells and mesangial matrix. Lastly, NF-κB p65 was proved to aggravate LN pathogenesis. Altogether, our findings highlighted that USP7 promoted the occurrence of LN by regulating the NF-κB p65 signaling pathway via stabilization of JMJD3.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Nephrotoxicity, Yongzhou Central Hospital (North Hospital), Yongzhou 425000, P.R. China
| | - Baoguo Zhang
- Department of Nephrotoxicity, Yongzhou Central Hospital (North Hospital), Yongzhou 425000, P.R. China
| | - Rong Tang
- Department of Nephrotoxicity, Yongzhou Central Hospital (North Hospital), Yongzhou 425000, P.R. China
| | - Haiping Jiang
- Department of Nephrotoxicity, Yongzhou Central Hospital (North Hospital), Yongzhou 425000, P.R. China
| | - Zhimin Ji
- Department of Nephrotoxicity, Yongzhou Central Hospital (North Hospital), Yongzhou 425000, P.R. China
| | - Yongjian Chen
- Department of Dermatology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410000, P.R. China
| | - Hao Feng
- Department of Dermatology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410000, P.R. China.
| |
Collapse
|
20
|
Sun J, Lin L, Zhang J, Hu C, Wang J. The prognostic value of USP7 and p53 in advanced hypopharyngeal carcinoma. Ann Diagn Pathol 2021; 51:151695. [PMID: 33460997 DOI: 10.1016/j.anndiagpath.2020.151695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Hypopharyngeal squamous cell carcinoma (HPSCC) is a rare malignancy of poor prognosis in head and neck. The aim of the study is to assess the expression and prognostic value of USP7 and p53 in advanced HPSCC. METHODS A retrospective study was performed on a cohort of 103 patients with advanced HPSCC. The immunohistochemical expression of USP7 and p53 was evaluated in all the patients, and the prognostic value of USP7 and p53 was further evaluated. Overall survival (OS), disease-free survival (DFS), distant metastasis-free survival (DMFS), and local-regional recurrence-free survival (LRFS) were assessed using the Kaplan-Meier method and multivariate Cox regression analysis. RESULTS In our study, 78 patients (75.7%) showed low expression of USP7, and the other 25 patients (24.3%) had high expression of USP7; additionally, high USP7 expression was associated with advanced T stage. Low expression of p53 was found in 52 patients (50.5%), while the other 51 patients (49.5%) had a high expression of p53. Our data revealed that low expression of p53 was associated with the advanced N stage (p=0.028). Kaplan-Meier analysis revealed that high expression of USP7 was significantly correlated with the inferior OS, DFS, DMFS, and LRFS, respectively (all p<0.05); additionally, high expression of p53 was correlated with superior OS (p=0.023). The Cox proportional multivariate hazard model revealed that high expression of USP7 was an independent predictor of poor OS, DFS, and LRFS, respectively (all p<0.05). CONCLUSIONS Our findings suggest that USP7 combined with p53 are reliable prognostic factors in patients with advanced HPSCC.
Collapse
Affiliation(s)
- Ji Sun
- Department of Pathology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Lan Lin
- Department of Pathology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Jiahao Zhang
- Department of Pathology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Chunyan Hu
- Department of Pathology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China.
| | - Jie Wang
- Department of Radiation Oncology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
The emerging nature of Ubiquitin-specific protease 7 (USP7): a new target in cancer therapy. Drug Discov Today 2020; 26:490-502. [PMID: 33157193 DOI: 10.1016/j.drudis.2020.10.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022]
Abstract
Human ubiquitin-specific protease 7 (USP7) is a deubiquitinating enzyme that removes the ubiquitin (Ub) protein and spares substrates from degradation. Given its regulation of proteins involved in several cellular processes, abnormal expression and activity of USP7 are associated with several types of disease, including cancer. In this review, we summarize the developments in our understanding of USP7 over the past 5 years, focusing on its role in related cancers. Furthermore, we discuss clinical studies of USP7, including in vivo and pharmacological studies, as well as the development of USP7 inhibitors. A comprehensive understanding of USP7 will expand our knowledge of the structure and function of USP7-mediated signaling and shed light on drug discovery for different diseases in which USP7 is implicated.
Collapse
|
22
|
Ohol YM, Sun MT, Cutler G, Leger PR, Hu DX, Biannic B, Rana P, Cho C, Jacobson S, Wong ST, Sanchez J, Shah N, Pookot D, Abraham B, Young K, Suthram S, Marshall LA, Bradford D, Kozon N, Han X, Okano A, Maung J, Colas C, Schwarz J, Wustrow D, Brockstedt DG, Kassner PD. Novel, Selective Inhibitors of USP7 Uncover Multiple Mechanisms of Antitumor Activity In Vitro and In Vivo. Mol Cancer Ther 2020; 19:1970-1980. [DOI: 10.1158/1535-7163.mct-20-0184] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/18/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022]
|
23
|
Leger PR, Hu DX, Biannic B, Bui M, Han X, Karbarz E, Maung J, Okano A, Osipov M, Shibuya GM, Young K, Higgs C, Abraham B, Bradford D, Cho C, Colas C, Jacobson S, Ohol YM, Pookot D, Rana P, Sanchez J, Shah N, Sun M, Wong S, Brockstedt DG, Kassner PD, Schwarz JB, Wustrow DJ. Discovery of Potent, Selective, and Orally Bioavailable Inhibitors of USP7 with In Vivo Antitumor Activity. J Med Chem 2020; 63:5398-5420. [DOI: 10.1021/acs.jmedchem.0c00245] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paul R. Leger
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Dennis X. Hu
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Berenger Biannic
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Minna Bui
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Xinping Han
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Emily Karbarz
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Jack Maung
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Akinori Okano
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Maksim Osipov
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Grant M. Shibuya
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Kyle Young
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Christopher Higgs
- Schrödinger, 120 West 45th Street, New York, New York 10036, United States
| | - Betty Abraham
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Delia Bradford
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Cynthia Cho
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Christophe Colas
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Scott Jacobson
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Yamini M. Ohol
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Deepa Pookot
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Payal Rana
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Jerick Sanchez
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Niket Shah
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Michael Sun
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Steve Wong
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Dirk G. Brockstedt
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Paul D. Kassner
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Jacob B. Schwarz
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - David J. Wustrow
- RAPT Therapeutics, Inc., 561 Eccles Avenue, South San Francisco, California 94080, United States
| |
Collapse
|
24
|
Qi SM, Cheng G, Cheng XD, Xu Z, Xu B, Zhang WD, Qin JJ. Targeting USP7-Mediated Deubiquitination of MDM2/MDMX-p53 Pathway for Cancer Therapy: Are We There Yet? Front Cell Dev Biol 2020; 8:233. [PMID: 32300595 PMCID: PMC7142254 DOI: 10.3389/fcell.2020.00233] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/19/2020] [Indexed: 01/13/2023] Open
Abstract
The p53 tumor suppressor protein and its major negative regulators MDM2 and MDMX oncoproteins form the MDM2/MDMX-p53 circuitry, which plays critical roles in regulating cancer cell growth, proliferation, cell cycle progression, apoptosis, senescence, angiogenesis, and immune response. Recent studies have shown that the stabilities of p53, MDM2, and MDMX are tightly controlled by the ubiquitin-proteasome system. Ubiquitin specific protease 7 (USP7), one of the most studied deubiquitinating enzymes plays a crucial role in protecting MDM2 and MDMX from ubiquitination-mediated proteasomal degradation. USP7 is overexpressed in human cancers and contributes to cancer initiation and progression. USP7 inhibition promotes the degradation of MDM2 and MDMX, activates the p53 signaling, and causes cell cycle arrest and apoptosis, making USP7 a potential target for cancer therapy. Several small-molecule inhibitors of USP7 have been developed and shown promising efficacy in preclinical settings. In the present review, we focus on recent advances in the understanding of the USP7-MDM2/MDMX-p53 network in human cancers as well as the discovery and development of USP7 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Si-Min Qi
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhiyuan Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Beihua Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Dong Zhang
- School of Pharmacy, Naval Medical University, Shanghai, China.,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
25
|
Li X, Kong L, Yang Q, Duan A, Ju X, Cai B, Chen L, An T, Li Y. Parthenolide inhibits ubiquitin-specific peptidase 7 (USP7), Wnt signaling, and colorectal cancer cell growth. J Biol Chem 2020; 295:3576-3589. [PMID: 32029476 DOI: 10.1074/jbc.ra119.011396] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
It has been well-established that the deubiquitinating enzyme ubiquitin-specific peptidase 7 (USP7) supports cancer growth by up-regulating multiple cellular pathways, including Wnt/β-catenin signaling. Therefore, considerable efforts are directed at identifying and developing USP7 inhibitors. Here, we report that sesquiterpene lactone parthenolide (PTL) inhibits USP7 activity, assessed with deubiquitinating enzyme activity assays, including fluorogenic Ub-AMC/Ub-Rho110, Ub-VME/PA labeling, and Di-Ub hydrolysis assays. Further investigations using cellular thermal shift (CETSA), surface plasmon resonance (SPR), and mass spectrum (MS) assays revealed that PTL directly interacts with USP7. Consistent with the role of USP7 in stimulating Wnt signaling and carcinogenesis, PTL treatment inhibited the activity of Wnt signaling partly by destabilizing β-catenin. Moreover, using cell viability assays, we found that PTL suppresses the proliferation of colorectal cancer cells and induces apoptosis in these cells. Additionally, we examined the effects of two other sesquiterpene lactones (costunolide and α-santonin) on USP7 and Wnt signaling and found that α-methylene-γ-butyrolactone may provide a scaffold for future USP7 inhibitors. In summary, our findings reveal that PTL inhibits USP7 activity, identifying a potential mechanism by which PTL suppresses Wnt/β-catenin signaling. We further suggest that sesquiterpene lactones might represent a suitable scaffold for developing USP7 inhibitors and indicate that PTL holds promise as an anticancer agent targeting aberrant USP7/Wnt signaling.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingmei Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Qihong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aizhu Duan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoman Ju
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bicheng Cai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lin Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao An
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
26
|
Wang Z, Wang X, Kang Y, Zhong H, Shen C, Yao X, Cao D, Hou T. Binding affinity and dissociation pathway predictions for a series of USP7 inhibitors with pyrimidinone scaffold by multiple computational methods. Phys Chem Chem Phys 2020; 22:5487-5499. [DOI: 10.1039/d0cp00370k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ubiquitin specific protease 7 (USP7) has attracted increasing attention because of its multifaceted roles in different tumor types.
Collapse
Affiliation(s)
- Zhe Wang
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- Zhejiang 310058
- China
| | - Xuwen Wang
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- Zhejiang 310058
- China
| | - Yu Kang
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- Zhejiang 310058
- China
| | - Haiyang Zhong
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- Zhejiang 310058
- China
| | - Chao Shen
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- Zhejiang 310058
- China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine
- Macau Institute for Applied Research in Medicine and Health
- Macau University of Science and Technology
- Taipa
- China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- P. R. China
| | - Tingjun Hou
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- Zhejiang 310058
- China
| |
Collapse
|
27
|
Yuan Y, Miao Y, Zeng C, Liu J, Chen X, Qian L, Wang X, Qian F, Yu Z, Wang J, Qian G, Fu Q, Lv H, Zheng H. Small-molecule inhibitors of ubiquitin-specific protease 7 enhance type-I interferon antiviral efficacy by destabilizing SOCS1. Immunology 2019; 159:309-321. [PMID: 31691271 DOI: 10.1111/imm.13147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/13/2019] [Accepted: 11/03/2019] [Indexed: 12/20/2022] Open
Abstract
Type-I interferons (IFN-I) are used as common antiviral drugs for a range of viral diseases in clinic. However, the antiviral efficacy of IFN-I is largely restricted by negative regulators of IFN-I signaling in cells. Therefore, identification of intracellular inhibitors of IFN-I signaling is important for developing novel targets to improve IFN-I antiviral therapy. In this study, we report that the deubiquitinase ubiquitin-specific protease 7 (USP7) negatively regulates IFN-I-mediated antiviral activity. USP7 physically interacts with suppressor of cytokine signaling 1 (SOCS1) and enhances SOCS1 protein stability by deubiquitination effects, which in turn restricts IFN-I-induced activation of Janus kinase-signal transducer and activator of transcription 1 signaling. Interestingly, viral infection up-regulates USP7 and therefore facilitates viral immune evasion. Importantly, the USP7 small-molecule inhibitors P5091 and P22077 inhibit SOCS1 expression and enhance IFN-I antiviral efficacy. Our findings identify a novel regulator of IFN-I antiviral activity and reveal that USP7 inhibitors could be potential enhancement agents for improving IFN-I antiviral therapy.
Collapse
Affiliation(s)
- Yukang Yuan
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Ying Miao
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Chenhua Zeng
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Jin Liu
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China.,The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Xiangjie Chen
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Liping Qian
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Xiaofang Wang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Feng Qian
- The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Zhengyuan Yu
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Wang
- Department of Intensive Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Qian Fu
- Soochow University Library, Suzhou, China
| | - Haitao Lv
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Hui Zheng
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| |
Collapse
|
28
|
Inactivity of YGL082W in vitro due to impairment of conformational change in the catalytic center loop. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9623-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Zachariah S, Gray DA. Deubiquitinating Enzymes in Model Systems and Therapy: Redundancy and Compensation Have Implications. Bioessays 2019; 41:e1900112. [DOI: 10.1002/bies.201900112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/06/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Sarah Zachariah
- Centre for Cancer TherapeuticsOttawa Hospital Research Institute 501 Smyth Box 926 Ottawa ON K1H 8L6 Canada
- Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa 451 Smyth Rd Ottawa ON K1H 8M5 Canada
| | - Douglas A. Gray
- Centre for Cancer TherapeuticsOttawa Hospital Research Institute 501 Smyth Box 926 Ottawa ON K1H 8L6 Canada
- Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa 451 Smyth Rd Ottawa ON K1H 8M5 Canada
| |
Collapse
|
30
|
Gao Y, Wang Y, Zhou C, Kong S, Lu J, Wang H, Yang J. Ubiquitin-specific protease 7 (USP7) is essential for endometrial stromal cell decidualization in mice. Dev Growth Differ 2019; 61:176-185. [PMID: 30628051 DOI: 10.1111/dgd.12594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022]
Abstract
Ubiquitin-specific protease 7 (USP7), a member of the deubiquitinating (DUB) enzyme family, regulates protein stability and has a well-characterized function in tumorigenesis. Given its critical role in growth and development, it was speculated to be involved in modulating processes in the female reproductive system but its exact role has not been elucidated. Decidualization is one of the key processes in pregnancy and aberrant decidualization is a cause of pregnancy failure. The uterine endometrium layer undergoes significant structural and functional changes during decidualization in preparation for and after embryo implantation. Here, we hypothesized that USP7 could be involved in mediating endometrial stromal cell (ESC) decidualization and set out to determine its function with a primary stromal cell culture. Using in situ hybridization and immunohistochemical techniques, we observed increased USP7 expression during uterine decidualization and found that it was predominantly localized to the decidual zone in the post-implantation uterus. Since the ovarian hormones, progesterone (P4) and estrogen (E2), function in promoting stroma decidualization, we investigated their relationship with USP7 expression and found that they exert minimal influence. Moreover, increased USP7 expression observed during deciduoma development was found to be independent of blastocyst attachment. Using a specific USP7 inhibitor, HBX19818, we demonstrated an additional novel role for USP7 in endometrial stroma decidualization in mice during early pregnancy. Our findings could potentially be applied towards future research and development in female infertility.
Collapse
Affiliation(s)
- Yue Gao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Yaqin Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Chan Zhou
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Shuangbo Kong
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Jinhua Lu
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Haibin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| |
Collapse
|
31
|
|
32
|
Vishnoi M, Marchetti D. Targeting melanoma residual disease by USP7. Oncotarget 2018; 9:37464-37465. [PMID: 30680060 PMCID: PMC6331028 DOI: 10.18632/oncotarget.26497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 11/25/2022] Open
Affiliation(s)
- Monika Vishnoi
- Dario Marchetti: Biomarker Research Program Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Dario Marchetti
- Dario Marchetti: Biomarker Research Program Center, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
33
|
Ullah K, Zubia E, Narayan M, Yang J, Xu G. Diverse roles of the E2/E3 hybrid enzyme
UBE
2O in the regulation of protein ubiquitination, cellular functions, and disease onset. FEBS J 2018; 286:2018-2034. [DOI: 10.1111/febs.14708] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/18/2018] [Accepted: 11/19/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Kifayat Ullah
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Emmanuel Zubia
- Department of Chemistry and Biochemistry The University of Texas at El Paso TX USA
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry The University of Texas at El Paso TX USA
| | - Jing Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| |
Collapse
|
34
|
O’Dowd CR, Helm MD, Rountree JSS, Flasz JT, Arkoudis E, Miel H, Hewitt PR, Jordan L, Barker O, Hughes C, Rozycka E, Cassidy E, McClelland K, Odrzywol E, Page N, Feutren-Burton S, Dvorkin S, Gavory G, Harrison T. Identification and Structure-Guided Development of Pyrimidinone Based USP7 Inhibitors. ACS Med Chem Lett 2018. [PMID: 29541367 DOI: 10.1021/acsmedchemlett.7b00512] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ubiquitin specific protease 7 (USP7, HAUSP) has become an attractive target in drug discovery due to the role it plays in modulating Mdm2 levels and consequently p53. Increasing interest in USP7 is emerging due to its potential involvement in oncogenic pathways as well as possible roles in both metabolic and immune disorders in addition to viral infections. Potent, novel, and selective inhibitors of USP7 have been developed using both rational and structure-guided design enabled by high-resolution cocrystallography. Initial hits were identified via fragment-based screening, scaffold-hopping, and hybridization exercises. Two distinct subseries are described along with associated structure-activity relationship trends, as are initial efforts aimed at developing compounds suitable for in vivo experiments. Overall, these discoveries will enable further research into the wider biological role of USP7.
Collapse
Affiliation(s)
- Colin R. O’Dowd
- Almac Discovery Ltd., Centre for Precision Therapeutics, 97 Lisburn Road, Belfast, Northern Ireland BT9 7AE, United Kingdom
| | - Matthew D. Helm
- Almac Discovery Ltd., Centre for Precision Therapeutics, 97 Lisburn Road, Belfast, Northern Ireland BT9 7AE, United Kingdom
| | - J. S. Shane Rountree
- Almac Discovery Ltd., Centre for Precision Therapeutics, 97 Lisburn Road, Belfast, Northern Ireland BT9 7AE, United Kingdom
| | - Jakub T. Flasz
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Northern Ireland BT9 7AE, United Kingdom
| | - Elias Arkoudis
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Northern Ireland BT9 7AE, United Kingdom
| | - Hugues Miel
- Almac Discovery Ltd., Centre for Precision Therapeutics, 97 Lisburn Road, Belfast, Northern Ireland BT9 7AE, United Kingdom
| | - Peter R. Hewitt
- Almac Discovery Ltd., Centre for Precision Therapeutics, 97 Lisburn Road, Belfast, Northern Ireland BT9 7AE, United Kingdom
| | - Linda Jordan
- Almac Discovery Ltd., Centre for Precision Therapeutics, 97 Lisburn Road, Belfast, Northern Ireland BT9 7AE, United Kingdom
| | - Oliver Barker
- Almac Discovery Ltd., Centre for Precision Therapeutics, 97 Lisburn Road, Belfast, Northern Ireland BT9 7AE, United Kingdom
| | - Caroline Hughes
- Almac Discovery Ltd., Centre for Precision Therapeutics, 97 Lisburn Road, Belfast, Northern Ireland BT9 7AE, United Kingdom
| | - Ewelina Rozycka
- Almac Discovery Ltd., Centre for Precision Therapeutics, 97 Lisburn Road, Belfast, Northern Ireland BT9 7AE, United Kingdom
| | - Eamon Cassidy
- Almac Discovery Ltd., Centre for Precision Therapeutics, 97 Lisburn Road, Belfast, Northern Ireland BT9 7AE, United Kingdom
| | - Keeva McClelland
- Almac Discovery Ltd., Centre for Precision Therapeutics, 97 Lisburn Road, Belfast, Northern Ireland BT9 7AE, United Kingdom
| | - Ewa Odrzywol
- Almac Discovery Ltd., Centre for Precision Therapeutics, 97 Lisburn Road, Belfast, Northern Ireland BT9 7AE, United Kingdom
| | - Natalie Page
- Almac Discovery Ltd., Centre for Precision Therapeutics, 97 Lisburn Road, Belfast, Northern Ireland BT9 7AE, United Kingdom
| | - Stephanie Feutren-Burton
- Almac Discovery Ltd., Centre for Precision Therapeutics, 97 Lisburn Road, Belfast, Northern Ireland BT9 7AE, United Kingdom
| | - Scarlett Dvorkin
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Northern Ireland BT9 7AE, United Kingdom
| | - Gerald Gavory
- Almac Discovery Ltd., Centre for Precision Therapeutics, 97 Lisburn Road, Belfast, Northern Ireland BT9 7AE, United Kingdom
| | - Timothy Harrison
- Almac Discovery Ltd., Centre for Precision Therapeutics, 97 Lisburn Road, Belfast, Northern Ireland BT9 7AE, United Kingdom
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Northern Ireland BT9 7AE, United Kingdom
| |
Collapse
|
35
|
Gavory G, O'Dowd CR, Helm MD, Flasz J, Arkoudis E, Dossang A, Hughes C, Cassidy E, McClelland K, Odrzywol E, Page N, Barker O, Miel H, Harrison T. Discovery and characterization of highly potent and selective allosteric USP7 inhibitors. Nat Chem Biol 2017; 14:118-125. [PMID: 29200206 DOI: 10.1038/nchembio.2528] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 10/18/2017] [Indexed: 12/26/2022]
Abstract
Given the importance of ubiquitin-specific protease 7 (USP7) in oncogenic pathways, identification of USP7 inhibitors has attracted considerable interest. Despite substantial efforts, however, the development of validated deubiquitinase (DUB) inhibitors that exhibit drug-like properties and a well-defined mechanism of action has proven particularly challenging. In this article, we describe the identification, optimization and detailed characterization of highly potent (IC50 < 10 nM), selective USP7 inhibitors together with their less active, enantiomeric counterparts. We also disclose, for the first time, co-crystal structures of a human DUB enzyme complexed with small-molecule inhibitors, which reveal a previously undisclosed allosteric binding site. Finally, we report the identification of cancer cell lines hypersensitive to USP7 inhibition (EC50 < 30 nM) and demonstrate equal or superior activity in these cell models compared to clinically relevant MDM2 antagonists. Overall, these findings demonstrate the tractability and druggability of DUBs, and provide important tools for additional target validation studies.
Collapse
Affiliation(s)
- Gerald Gavory
- Almac Discovery Ltd, Centre for Precision Therapeutics, Belfast, Northern Ireland, UK
| | - Colin R O'Dowd
- Almac Discovery Ltd, Centre for Precision Therapeutics, Belfast, Northern Ireland, UK
| | - Matthew D Helm
- Almac Discovery Ltd, Centre for Precision Therapeutics, Belfast, Northern Ireland, UK
| | - Jakub Flasz
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, Northern Ireland, UK
| | - Elias Arkoudis
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, Northern Ireland, UK
| | - Anthony Dossang
- Almac Discovery Ltd, Centre for Precision Therapeutics, Belfast, Northern Ireland, UK
| | - Caroline Hughes
- Almac Discovery Ltd, Centre for Precision Therapeutics, Belfast, Northern Ireland, UK
| | - Eamon Cassidy
- Almac Discovery Ltd, Centre for Precision Therapeutics, Belfast, Northern Ireland, UK
| | - Keeva McClelland
- Almac Discovery Ltd, Centre for Precision Therapeutics, Belfast, Northern Ireland, UK
| | - Ewa Odrzywol
- Almac Discovery Ltd, Centre for Precision Therapeutics, Belfast, Northern Ireland, UK
| | - Natalie Page
- Almac Discovery Ltd, Centre for Precision Therapeutics, Belfast, Northern Ireland, UK
| | - Oliver Barker
- Almac Discovery Ltd, Centre for Precision Therapeutics, Belfast, Northern Ireland, UK
| | - Hugues Miel
- Almac Discovery Ltd, Centre for Precision Therapeutics, Belfast, Northern Ireland, UK
| | - Timothy Harrison
- Almac Discovery Ltd, Centre for Precision Therapeutics, Belfast, Northern Ireland, UK.,Centre for Cancer Research and Cell Biology, Queen's University, Belfast, Northern Ireland, UK
| |
Collapse
|