1
|
Chakraborty A, Kamat SS. Lysophosphatidylserine: A Signaling Lipid with Implications in Human Diseases. Chem Rev 2024; 124:5470-5504. [PMID: 38607675 DOI: 10.1021/acs.chemrev.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Lysophosphatidylserine (lyso-PS) has emerged as yet another important signaling lysophospholipid in mammals, and deregulation in its metabolism has been directly linked to an array of human autoimmune and neurological disorders. It has an indispensable role in several biological processes in humans, and therefore, cellular concentrations of lyso-PS are tightly regulated to ensure optimal signaling and functioning in physiological settings. Given its biological importance, the past two decades have seen an explosion in the available literature toward our understanding of diverse aspects of lyso-PS metabolism and signaling and its association with human diseases. In this Review, we aim to comprehensively summarize different aspects of lyso-PS, such as its structure, biodistribution, chemical synthesis, and SAR studies with some synthetic analogs. From a biochemical perspective, we provide an exhaustive coverage of the diverse biological activities modulated by lyso-PSs, such as its metabolism and the receptors that respond to them in humans. We also briefly discuss the human diseases associated with aberrant lyso-PS metabolism and signaling and posit some future directions that may advance our understanding of lyso-PS-mediated mammalian physiology.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
2
|
Izume T, Kawahara R, Uwamizu A, Chen L, Yaginuma S, Omi J, Kawana H, Hou F, Sano FK, Tanaka T, Kobayashi K, Okamoto HH, Kise Y, Ohwada T, Aoki J, Shihoya W, Nureki O. Structural basis for lysophosphatidylserine recognition by GPR34. Nat Commun 2024; 15:902. [PMID: 38326347 PMCID: PMC10850092 DOI: 10.1038/s41467-024-45046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
GPR34 is a recently identified G-protein coupled receptor, which has an immunomodulatory role and recognizes lysophosphatidylserine (LysoPS) as a putative ligand. Here, we report cryo-electron microscopy structures of human GPR34-Gi complex bound with one of two ligands bound: either the LysoPS analogue S3E-LysoPS, or M1, a derivative of S3E-LysoPS in which oleic acid is substituted with a metabolically stable aromatic fatty acid surrogate. The ligand-binding pocket is laterally open toward the membrane, allowing lateral entry of lipidic agonists into the cavity. The amine and carboxylate groups of the serine moiety are recognized by the charged residue cluster. The acyl chain of S3E-LysoPS is bent and fits into the L-shaped hydrophobic pocket in TM4-5 gap, and the aromatic fatty acid surrogate of M1 fits more appropriately. Molecular dynamics simulations further account for the LysoPS-regioselectivity of GPR34. Thus, using a series of structural and physiological experiments, we provide evidence that chemically unstable 2-acyl LysoPS is the physiological ligand for GPR34. Overall, we anticipate the present structures will pave the way for development of novel anticancer drugs that specifically target GPR34.
Collapse
Affiliation(s)
- Tamaki Izume
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryo Kawahara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akiharu Uwamizu
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Luying Chen
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shun Yaginuma
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Fengjue Hou
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tatsuki Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuhiro Kobayashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroyuki H Okamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshiaki Kise
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomohiko Ohwada
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
3
|
Gerokonstantis DT, Mantzourani C, Gkikas D, Wu KC, Hoang HN, Triandafillidi I, Barbayianni I, Kanellopoulou P, Kokotos AC, Moutevelis-Minakakis P, Aidinis V, Politis PK, Fairlie DP, Kokotos G. N-(2-Aminophenyl)-benzamide Inhibitors of Class I HDAC Enzymes with Antiproliferative and Antifibrotic Activity. J Med Chem 2023; 66:14357-14376. [PMID: 37795958 DOI: 10.1021/acs.jmedchem.3c01422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Inhibitors of histone deacetylases (HDACs) have received special attention as novel anticancer agents. Among various types of synthetic inhibitors, benzamides constitute an important class, and one is an approved drug (chidamide). Here, we present a novel class of HDAC inhibitors containing the N-(2-aminophenyl)-benzamide functionality as the zinc-binding group linked to various cap groups, including the amino acids pyroglutamic acid and proline. We have identified benzamides that inhibit HADC1 and HDAC2 at nanomolar concentrations, with antiproliferative activity at micromolar concentrations against A549 and SF268 cancer cell lines. Docking studies shed light on the mode of binding of benzamide inhibitors to HDAC1, whereas cellular analysis revealed downregulated expression of EGFR mRNA and protein. Two benzamides were investigated in a mouse model of bleomycin-induced pulmonary fibrosis, and both showed efficacy on a preventative dosing schedule. N-(2-Aminophenyl)-benzamide inhibitors of class I HDACs might lead to new approaches for treating fibrotic disorders.
Collapse
Affiliation(s)
- Dimitrios Triantafyllos Gerokonstantis
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - Christiana Mantzourani
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - Dimitrios Gkikas
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Kai-Chen Wu
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Huy N Hoang
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ierasia Triandafillidi
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - Ilianna Barbayianni
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Athens 16672, Greece
| | - Paraskevi Kanellopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Athens 16672, Greece
| | - Alexandros C Kokotos
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Panagiota Moutevelis-Minakakis
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Athens 16672, Greece
| | - Panagiotis K Politis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
- School of Medicine, European University Cyprus, Nicosia 1516, Cyprus
| | - David P Fairlie
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
| |
Collapse
|
4
|
Xia A, Yong X, Zhang C, Lin G, Jia G, Zhao C, Wang X, Hao Y, Wang Y, Zhou P, Yang X, Deng Y, Wu C, Chen Y, Zhu J, Tang X, Liu J, Zhang S, Zhang J, Xu Z, Hu Q, Zhao J, Yue Y, Yan W, Su Z, Wei Y, Zhou R, Dong H, Shao Z, Yang S. Cryo-EM structures of human GPR34 enable the identification of selective antagonists. Proc Natl Acad Sci U S A 2023; 120:e2308435120. [PMID: 37733739 PMCID: PMC10523607 DOI: 10.1073/pnas.2308435120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/04/2023] [Indexed: 09/23/2023] Open
Abstract
GPR34 is a functional G-protein-coupled receptor of Lysophosphatidylserine (LysoPS), and has pathogenic roles in numerous diseases, yet remains poorly targeted. We herein report a cryo-electron microscopy (cryo-EM) structure of GPR34 bound with LysoPS (18:1) and Gi protein, revealing a unique ligand recognition mode with the negatively charged head group of LysoPS occupying a polar cavity formed by TM3, 6 and 7, and the hydrophobic tail of LysoPS residing in a lateral open hydrophobic groove formed by TM3-5. Virtual screening and subsequent structural optimization led to the identification of a highly potent and selective antagonist (YL-365). Design of fusion proteins allowed successful determination of the challenging cryo-EM structure of the inactive GPR34 complexed with YL-365, which revealed the competitive binding of YL-365 in a portion of the orthosteric binding pocket of GPR34 and the antagonist-binding-induced allostery in the receptor, implicating the inhibition mechanism of YL-365. Moreover, YL-365 displayed excellent activity in a neuropathic pain model without obvious toxicity. Collectively, this study offers mechanistic insights into the endogenous agonist recognition and antagonist inhibition of GPR34, and provides proof of concept that targeting GPR34 represents a promising strategy for disease treatment.
Collapse
Affiliation(s)
- Anjie Xia
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
- Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Xihao Yong
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Changbin Zhang
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Guifeng Lin
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Guowen Jia
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Chang Zhao
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Xin Wang
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Yize Hao
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230027, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui230601, China
| | - Yifei Wang
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Pei Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan610041, China
| | - Xin Yang
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Yue Deng
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Chao Wu
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Yujiao Chen
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Jiawei Zhu
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Xiaodi Tang
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Jingming Liu
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Shiyu Zhang
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Jiahao Zhang
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Zheng Xu
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Qian Hu
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Jinlong Zhao
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Yuting Yue
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230027, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui230601, China
| | - Wei Yan
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Zhaoming Su
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Yuquan Wei
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Rongbin Zhou
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230027, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui230601, China
| | - Haohao Dong
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Zhenhua Shao
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
- Frontier Medical Center Tianfu Jincheng Laboratory, Chengdu, Sichuan610212, China
| | - Shengyong Yang
- Department of Biotherapy, Cancer Center and Kidney Research Institute, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
- Frontier Medical Center Tianfu Jincheng Laboratory, Chengdu, Sichuan610212, China
| |
Collapse
|
5
|
Chen L, Uwamizu A, Sayama M, Kano K, Otani Y, Kondo S, Inoue A, Aoki J, Ohwada T. Exploration of LPS 2 agonist binding modes using the combination of a new hydrophobic scaffold and homology modeling. Eur J Med Chem 2023; 252:115271. [PMID: 36965226 DOI: 10.1016/j.ejmech.2023.115271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/11/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
Lysophosphatidylserine (LysoPS) is an endogenous pan-agonist of three G-protein coupled receptors (GPCRs): LPS1/GPR34, LPS2/P2Y10, and LPS3/GPR174, and we previously reported a series of LysoPS-based agonists of these receptors. Interestingly, we found that LPS1 agonist activity was very sensitive to structural change at the hydrophobic fatty acid moiety, whereas LPS2 agonist activity was not. Here, to probe the molecular basis of LPS2 agonist binding, we developed a new class of hydrophobic fatty acid surrogates having a biphenyl-ether scaffold. The LPS2 agonist activity of these compounds proved sensitive to molecular modification of the hydrophobic skeleton. Thus, we next constructed an LPS2 model by homology modeling and docking/molecular dynamics (MD) simulation, and validated it by means of SAR studies together with point mutations of selected receptor amino-acid residues. The putative ligand-binding site of LPS2 is Γ-shaped, with a hydrophilic site horizontally embedded in the receptor transmembrane helix bundles and a perpendicular hydrophobic groove adjoining transmembrane domains 4 and 5 that is open to the membrane bilayer. The binding poses of LPS2 agonists to this site are consistent with easy incorporation of various kinds of fatty acid surrogates. Structural development based on this model afforded a series of potent and selective LPS2 full agonists, which showed enhanced in vitro actin stress fiber formation effect.
Collapse
Affiliation(s)
- Luying Chen
- Laboratory of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akiharu Uwamizu
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Misa Sayama
- Laboratory of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuko Otani
- Laboratory of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Sho Kondo
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Tomohiko Ohwada
- Laboratory of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
6
|
Deng H, Xu Q, Guo HY, Huang X, Chen F, Jin L, Quan ZS, Shen QK. Application of cinnamic acid in the structural modification of natural products: A review. PHYTOCHEMISTRY 2023; 206:113532. [PMID: 36470328 DOI: 10.1016/j.phytochem.2022.113532] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Natural products can generally exhibit a variety of biological activities, but most show mediocre performance in preliminary activity evaluation. Natural products often require structural modification to obtain promising lead compounds. Cinnamic acid (CA) is readily available and has diverse biological activities and low cytotoxicity. Introducing CA into natural products may improve their performance, enhance biological activity, and reduce toxic side effect. Herein, we aimed to discuss related applications of CA in the structural modification of natural products and provide a theoretical basis for future derivatization and drug development of natural products. Published articles, web databases (PubMed, Science Direct, SCI Finder, and CNKI), and clinical trial websites (https://clinicaltrials.gov/) related to natural products and CA derivatives were included in the discussion. Based on the inclusion criteria, 128 studies were selected and discussed herein. Screening natural products of CA derivatives allowed for classification by their biological activities. The full text is organized according to the biological activities of the derivatives, with the following categories: anti-tumor, neuroprotective, anti-diabetic, anti-microbial, anti-parasitic, anti-oxidative, anti-inflammatory, and other activities. The biological activity of each CA derivative is discussed in detail. Notably, most derivatives exhibited enhanced biological activity and reduced cytotoxicity compared with the lead compound. CA has various advantages and can be widely used in the synthesis of natural product derivatives to enhance the properties of drug candidates or lead compounds.
Collapse
Affiliation(s)
- Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Qian Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Fener Chen
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Lili Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
7
|
Ikubo M, Uwamizu A, Chen L, Nakamura S, Sayama M, Kawana H, Otani Y, Kano K, Inoue A, Aoki J, Ohwada T. Isosteric Replacement of Ester Linkage of Lysophospholipids with Heteroaromatic Rings Retains Potency and Subtype Selectivity. Chem Pharm Bull (Tokyo) 2023; 71:584-615. [PMID: 37394607 DOI: 10.1248/cpb.c23-00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Our group has reported various derivatives of lysophosphatidylserine (LysoPS) as potent and subtype-selective agonists for G-protein-coupled receptors (GPCRs). However, the ester linkage between the glycerol moiety and fatty acid or fatty acid surrogate is present in all of them. In order to develop these LysoPS analogs as drug candidates, appropriate pharmacokinetic consideration is essential. Here, we found that the ester bond of LysoPS is highly susceptible to metabolic degradation in mouse blood. Accordingly, we examined isosteric replacement of the ester linkage with heteroaromatic rings. The resulting compounds showed excellent retention of potency and receptor subtype selectivity, as well as increased metabolic stability in vitro.
Collapse
Affiliation(s)
- Masaya Ikubo
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Akiharu Uwamizu
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Luying Chen
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Sho Nakamura
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Misa Sayama
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Yuko Otani
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
- AMED-PRIME, Japan Science and Technology Corporation
- AMED-LEAP, Japan Science and Technology Corporation
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
- AMED-LEAP, Japan Science and Technology Corporation
- AMED-CREST, Japan Science and Technology Corporation
| | - Tomohiko Ohwada
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
8
|
Gu L, Li B, Ming D. A multilayer dynamic perturbation analysis method for predicting ligand-protein interactions. BMC Bioinformatics 2022; 23:456. [PMID: 36324073 PMCID: PMC9628359 DOI: 10.1186/s12859-022-04995-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Ligand-protein interactions play a key role in defining protein function, and detecting natural ligands for a given protein is thus a very important bioengineering task. In particular, with the rapid development of AI-based structure prediction algorithms, batch structural models with high reliability and accuracy can be obtained at low cost, giving rise to the urgent requirement for the prediction of natural ligands based on protein structures. In recent years, although several structure-based methods have been developed to predict ligand-binding pockets and ligand-binding sites, accurate and rapid methods are still lacking, especially for the prediction of ligand-binding regions and the spatial extension of ligands in the pockets. RESULTS In this paper, we proposed a multilayer dynamics perturbation analysis (MDPA) method for predicting ligand-binding regions based solely on protein structure, which is an extended version of our previously developed fast dynamic perturbation analysis (FDPA) method. In MDPA/FDPA, ligand binding tends to occur in regions that cause large changes in protein conformational dynamics. MDPA, examined using a standard validation dataset of ligand-protein complexes, yielded an averaged ligand-binding site prediction Matthews coefficient of 0.40, with a prediction precision of at least 50% for 71% of the cases. In particular, for 80% of the cases, the predicted ligand-binding region overlaps the natural ligand by at least 50%. The method was also compared with other state-of-the-art structure-based methods. CONCLUSIONS MDPA is a structure-based method to detect ligand-binding regions on protein surface. Our calculations suggested that a range of spaces inside the protein pockets has subtle interactions with the protein, which can significantly impact on the overall dynamics of the protein. This work provides a valuable tool as a starting point upon which further docking and analysis methods can be used for natural ligand detection in protein functional annotation. The source code of MDPA method is freely available at: https://github.com/mingdengming/mdpa .
Collapse
Affiliation(s)
- Lin Gu
- grid.412022.70000 0000 9389 5210College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Biotech Building Room B1-404, 30 South Puzhu Road, Jiangbei New District, Nanjing City, 211816 Jiangsu People’s Republic of China
| | - Bin Li
- grid.412022.70000 0000 9389 5210College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Biotech Building Room B1-404, 30 South Puzhu Road, Jiangbei New District, Nanjing City, 211816 Jiangsu People’s Republic of China
| | - Dengming Ming
- grid.412022.70000 0000 9389 5210College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Biotech Building Room B1-404, 30 South Puzhu Road, Jiangbei New District, Nanjing City, 211816 Jiangsu People’s Republic of China
| |
Collapse
|
9
|
Chen L, Yan G, Ohwada T. Building on endogenous lipid mediators to design synthetic receptor ligands. Eur J Med Chem 2022; 231:114154. [DOI: 10.1016/j.ejmech.2022.114154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 01/05/2023]
|
10
|
Omi J, Kano K, Aoki J. Current Knowledge on the Biology of Lysophosphatidylserine as an Emerging Bioactive Lipid. Cell Biochem Biophys 2021; 79:497-508. [PMID: 34129148 PMCID: PMC8551102 DOI: 10.1007/s12013-021-00988-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2021] [Indexed: 01/22/2023]
Abstract
Lysophosphatidylserine (LysoPS) is an emerging lysophospholipid (LPL) mediator, which acts through G protein-coupled receptors, like lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P). LysoPS is detected in various tissues and cells and thought to be produced mainly by the deacylation of phosphatidylserine. LysoPS has been known to stimulate degranulation of mast cells. Recently, four LysoPS-specific G protein-coupled receptors (GPCRs) were identified. These GPCRs belong to the P2Y family which covers receptors for nucleotides and LPLs and are predominantly expressed in immune cells such as lymphocytes and macrophages. Studies on knockout mice of these GPCRs have revealed that LysoPS has immune-modulatory functions. Up-regulation of a LysoPS-producing enzyme, PS-specific phospholipase A1, was frequently observed in situations where the immune system is activated including autoimmune diseases and organ transplantations. Therefore, modulation of LysoPS signaling appears to be a promising method for providing therapies for the treatment of immune diseases. In this review, we summarize the biology of LysoPS-producing enzymes and receptors, recent developments in LysoPS signal modulators, and prospects for future therapeutic applications.
Collapse
Affiliation(s)
- Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
- AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Tokyo, Japan.
| |
Collapse
|
11
|
Sayama M, Uwamizu A, Ikubo M, Chen L, Yan G, Otani Y, Inoue A, Aoki J, Ohwada T. Switching Lysophosphatidylserine G Protein-Coupled Receptor Agonists to Antagonists by Acylation of the Hydrophilic Serine Amine. J Med Chem 2021; 64:10059-10101. [PMID: 34233115 DOI: 10.1021/acs.jmedchem.1c00347] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Three human G protein-coupled receptors (GPCRs)-GPR34/LPS1, P2Y10/LPS2, and GPR174/LPS3-are activated specifically by lysophosphatidylserine (LysoPS), an endogenous hydrolysis product of a cell membrane component, phosphatidylserine (PS). LysoPS consists of l-serine, glycerol, and fatty acid moieties connected by phosphodiester and ester linkages. We previously generated potent and selective GPCR agonists by modification of the three modules and the ester linkage. Here, we show that a novel modification of the hydrophilic serine moiety, that is, N-acylations of the serine amine, converted a GPR174 agonist to potent GPR174 antagonists. Structural exploration of the amide functionality provided access to a range of activities from agonist to partial agonist to antagonist. The present study would provide a new strategy for the development of lysophospholipid receptor antagonists.
Collapse
Affiliation(s)
- Misa Sayama
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akiharu Uwamizu
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
| | - Masaya Ikubo
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Luying Chen
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ge Yan
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuko Otani
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Asuka Inoue
- AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan.,Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,AMED-PRIME, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
| | - Tomohiko Ohwada
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Nakamura S, Sayama M, Uwamizu A, Jung S, Ikubo M, Otani Y, Kano K, Omi J, Inoue A, Aoki J, Ohwada T. Non-naturally Occurring Regio Isomer of Lysophosphatidylserine Exhibits Potent Agonistic Activity toward G Protein-Coupled Receptors. J Med Chem 2020; 63:9990-10029. [PMID: 32787112 DOI: 10.1021/acs.jmedchem.0c01126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lysophosphatidylserine (LysoPS), an endogenous ligand of G protein-coupled receptors, consists of l-serine, glycerol, and fatty acid moieties connected by phosphodiester and ester linkages, respectively. An ester linkage of phosphatidylserine can be hydrolyzed at the 1-position or at the 2-position to give 2-acyl lysophospholipid or 1-acyl lysophospholipid, respectively. 2-Acyl lysophospholipid is in nonenzymatic equilibrium with 1-acyl lysophospholipid in vivo. On the other hand, 3-acyl lysophospholipid is not found, at least in mammals, raising the question of whether the reason for this might be that the 3-acyl isomer lacks the biological activities of the other isomers. Here, to test this idea, we designed and synthesized a series of new 3-acyl lysophospholipids. Structure-activity relationship studies of more than 100 "glycol surrogate" derivatives led to the identification of potent and selective agonists for LysoPS receptors GPR34 and P2Y10. Thus, the non-natural 3-acyl compounds are indeed active and appear to be biologically orthogonal with respect to the physiologically relevant 1- and 2-acyl lysophospholipids.
Collapse
Affiliation(s)
- Sho Nakamura
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Misa Sayama
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akiharu Uwamizu
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
| | - Sejin Jung
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaya Ikubo
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuko Otani
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,AMED-PRIME, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan.,AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan.,AMED-CREST, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
| | - Tomohiko Ohwada
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
The Lysophosphatidylserines-An Emerging Class of Signalling Lysophospholipids. J Membr Biol 2020; 253:381-397. [PMID: 32767057 DOI: 10.1007/s00232-020-00133-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/24/2020] [Indexed: 12/30/2022]
Abstract
Lysophospholipids are potent hormone-like signalling biological lipids that regulate many important biological processes in mammals (including humans). Lysophosphatidic acid and sphingosine-1-phosphate represent the best studied examples for this lipid class, and their metabolic enzymes and/or cognate receptors are currently under clinical investigation for treatment of various neurological and autoimmune diseases in humans. Over the past two decades, the lysophsophatidylserines (lyso-PSs) have emerged as yet another biologically important lysophospholipid, and deregulation in its metabolism has been linked to various human pathophysiological conditions. Despite its recent emergence, an exhaustive review summarizing recent advances on lyso-PSs and the biological pathways that this bioactive lysophospholipid regulates has been lacking. To address this, here, we summarize studies that led to the discovery of lyso-PS as a potent signalling biomolecule, and discuss the structure, its detection in biological systems, and the biodistribution of this lysophospholipid in various mammalian systems. Further, we describe in detail the enzymatic pathways that are involved in the biosynthesis and degradation of this lipid and the putative lyso-PS receptors reported in the literature. Finally, we discuss the various biological pathways directly regulated by lyso-PSs in mammals and prospect new questions for this still emerging biomedically important signalling lysophospholipid.
Collapse
|
14
|
Sayama M, Uwamizu A, Otani Y, Inoue A, Aoki J, Sekijima M, Ohwada T. Membrane Phospholipid Analogues as Molecular Rulers to Probe the Position of the Hydrophobic Contact Point of Lysophospholipid Ligands on the Surface of G-Protein-Coupled Receptor during Membrane Approach. Biochemistry 2020; 59:1173-1201. [PMID: 32124599 DOI: 10.1021/acs.biochem.0c00061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
When lipid mediators bind to G-protein-coupled receptors (GPCRs), the ligand first enters the lipid bilayer, then diffuses laterally in the cell membrane to make hydrophobic contact with the receptor protein, and finally enters the receptor's binding pocket. In this process, the location of the hydrophobic contact point on the surface of the receptor has been little discussed even in cases in which the crystal structure has been determined, because the ligand binding pocket is buried inside the transmembrane (TM) domains. Here, we coupled an activator ligand to a series of membrane phospholipid surrogates, which constrain the depth of entry of the ligand into the lipid bilayer. Consequently, via measurement of the receptor-activating activity as a function of the depth of entry into the membrane, these surrogates can be used as molecular rulers to estimate the location of the hydrophobic contact point on the surface of GPCR. We focused on lysophosphatidylserine (LysoPS) receptor GPR34 and prepared a series of simplified membrane-lipid-surrogate-conjugated lysophospholipid analogues by attaching alkoxy amine chains of varying lengths to the hydrophobic tail of a potent GPR34 agonist. As expected, the activity of these lipid-conjugated LysoPS analogues was dependent on chain length. The predicted contact position matches the position of the terminal benzene ring of a nonlipidic ligand that protrudes between TMs 4 and 5 of the receptor. We further found that the nature of the terminal hydrophilic functional group of the conjugated membrane lipid surrogate strongly influences the activity, suggesting that lateral hydrophilic contact of LysoPS analogues with the receptor's surface is also crucial for ligand-GPCR binding.
Collapse
Affiliation(s)
- Misa Sayama
- Laboratory of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akiharu Uwamizu
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yuko Otani
- Laboratory of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,AMED-PRIME, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan.,AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan.,AMED-CREST, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
| | - Masakazu Sekijima
- Department of Computer Science, Tokyo Institute of Technology, 4259-J3-23, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.,Advanced Computational Drug Discovery Unit, Tokyo Institute of Technology, 4259-J3-23, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Tomohiko Ohwada
- Laboratory of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
15
|
Li N, Xu M, Wang B, Shi Z, Zhao Z, Tang Y, Wang X, Sun J, Chen L. Discovery of Novel Celastrol Derivatives as Hsp90–Cdc37 Interaction Disruptors with Antitumor Activity. J Med Chem 2019; 62:10798-10815. [DOI: 10.1021/acs.jmedchem.9b01290] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Na Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Manyi Xu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Bing Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Zhixian Shi
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Zihao Zhao
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Yunqing Tang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Xinyue Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Jianbo Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Li Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| |
Collapse
|
16
|
Ogasawara D, Ichu TA, Jing H, Hulce JJ, Reed A, Ulanovskaya OA, Cravatt BF. Discovery and Optimization of Selective and in Vivo Active Inhibitors of the Lysophosphatidylserine Lipase α/β-Hydrolase Domain-Containing 12 (ABHD12). J Med Chem 2019; 62:1643-1656. [PMID: 30720278 DOI: 10.1021/acs.jmedchem.8b01958] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ABHD12 is a membrane-bound hydrolytic enzyme that acts on the lysophosphatidylserine (lyso-PS) and lysophosphatidylinositol (lyso-PI) classes of immunomodulatory lipids. Human and mouse genetic studies point to a key role for the ABHD12-(lyso)-PS/PI pathway in regulating (neuro)immunological functions in both the central nervous system and periphery. Selective inhibitors of ABHD12 would offer valuable pharmacological probes to complement genetic models of ABHD12-regulated (lyso)-PS/PI metabolism and signaling. Here, we provide a detailed description of the discovery and activity-based protein profiling (ABPP) guided optimization of reversible thiourea inhibitors of ABHD12 that culminated in the identification of DO264 as a potent, selective, and in vivo active ABHD12 inhibitor. We also show that DO264, but not a structurally related inactive control probe (S)-DO271, augments inflammatory cytokine production from human THP-1 macrophage cells. The in vitro and in vivo properties of DO264 designate this compound as a suitable chemical probe for studying the biological functions of ABHD12-(lyso)-PS/PI pathways.
Collapse
Affiliation(s)
- Daisuke Ogasawara
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Taka-Aki Ichu
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Hui Jing
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Jonathan J Hulce
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Alex Reed
- Abide Therapeutics , 10835 Road to the Cure , San Diego , California 92121 , United States
| | - Olesya A Ulanovskaya
- Abide Therapeutics , 10835 Road to the Cure , San Diego , California 92121 , United States
| | - Benjamin F Cravatt
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
17
|
Schöneberg T, Meister J, Knierim AB, Schulz A. The G protein-coupled receptor GPR34 - The past 20 years of a grownup. Pharmacol Ther 2018; 189:71-88. [PMID: 29684466 DOI: 10.1016/j.pharmthera.2018.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Research on GPR34, which was discovered in 1999 as an orphan G protein-coupled receptor of the rhodopsin-like class, disclosed its physiologic relevance only piece by piece. Being present in all recent vertebrate genomes analyzed so far it seems to improve the fitness of species although it is not essential for life and reproduction as GPR34-deficient mice demonstrate. However, closer inspection of macrophages and microglia, where it is mainly expressed, revealed its relevance in immune cell function. Recent data clearly demonstrate that GPR34 function is required to arrest microglia in the M0 homeostatic non-phagocytic phenotype. Herein, we summarize the current knowledge on its evolution, genomic and structural organization, physiology, pharmacology and relevance in human diseases including neurodegenerative diseases and cancer, which accumulated over the last 20 years.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany.
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Alexander Bernd Knierim
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; Leipzig University Medical Center, IFB AdiposityDiseases, 04103 Leipzig, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|