1
|
Chowdhary S, Pelzer T, Saathoff M, Quaas E, Pendl J, Fulde M, Koksch B. Fine‐tuning the antimicrobial activity of β‐hairpin peptides with fluorinated amino acids. Pept Sci (Hoboken) 2023. [DOI: 10.1002/pep2.24306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Suvrat Chowdhary
- Institute of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| | - Tim Pelzer
- Institute of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| | - Mareike Saathoff
- Institute of Microbiology and Epizootics, Centre of Infection Medicine Freie Universität Berlin Berlin Germany
| | - Elisa Quaas
- Institute of Chemistry and Biochemistry, Core Facility SupraFAB Freie Universität Berlin Berlin Germany
| | - Johanna Pendl
- Institute of Veterinary Anatomy Freie Universität Berlin Berlin Germany
| | - Marcus Fulde
- Institute of Microbiology and Epizootics, Centre of Infection Medicine Freie Universität Berlin Berlin Germany
- Veterinary Centre for Resistance Research (TZR) Freie Universität Berlin Berlin Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| |
Collapse
|
2
|
Wang S, Krummenacher K, Landrum GA, Sellers BD, Di Lello P, Robinson SJ, Martin B, Holden JK, Tom JYK, Murthy AC, Popovych N, Riniker S. Incorporating NOE-Derived Distances in Conformer Generation of Cyclic Peptides with Distance Geometry. J Chem Inf Model 2022; 62:472-485. [PMID: 35029985 DOI: 10.1021/acs.jcim.1c01165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nuclear magnetic resonance (NMR) data from NOESY (nuclear Overhauser enhancement spectroscopy) and ROESY (rotating frame Overhauser enhancement spectroscopy) experiments can easily be combined with distance geometry (DG) based conformer generators by modifying the molecular distance bounds matrix. In this work, we extend the modern DG based conformer generator ETKDG, which has been shown to reproduce experimental crystal structures from small molecules to large macrocycles well, to include NOE-derived interproton distances. In noeETKDG, the experimentally derived interproton distances are incorporated into the distance bounds matrix as loose upper (or lower) bounds to generate large conformer sets. Various subselection techniques can subsequently be applied to yield a conformer bundle that best reproduces the NOE data. The approach is benchmarked using a set of 24 (mostly) cyclic peptides for which NOE-derived distances as well as reference solution structures obtained by other software are available. With respect to other packages currently available, the advantages of noeETKDG are its speed and that no prior force-field parametrization is required, which is especially useful for peptides with unnatural amino acids. The resulting conformer bundles can be further processed with the use of structural refinement techniques to improve the modeling of the intramolecular nonbonded interactions. The noeETKDG code is released as a fully open-source software package available at www.github.com/rinikerlab/customETKDG.
Collapse
Affiliation(s)
- Shuzhe Wang
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Kajo Krummenacher
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Gregory A Landrum
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Benjamin D Sellers
- Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Paola Di Lello
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sarah J Robinson
- Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Bryan Martin
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jeffrey K Holden
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, California 94080, United States
| | - Jeffrey Y K Tom
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, California 94080, United States
| | - Anastasia C Murthy
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, California 94080, United States
| | - Nataliya Popovych
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, California 94080, United States
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
3
|
Just‐Baringo X, Yeste‐Vázquez A, Moreno‐Morales J, Ballesté‐Delpierre C, Vila J, Giralt E. Controlling Antibacterial Activity Exclusively with Visible Light: Introducing a Tetra-ortho-Chloro-Azobenzene Amino Acid. Chemistry 2021; 27:12987-12991. [PMID: 34227716 PMCID: PMC8518743 DOI: 10.1002/chem.202102370] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Indexed: 11/30/2022]
Abstract
The introduction of a novel tetra-ortho-chloroazobenzene amino acid (CEBA) has enabled photoswitching of the antimicrobial activity of tyrocidine A analogues by using exclusively visible light, granting spatiotemporal control under benign conditions. Compounds bearing this photoswitchable amino acid become active upon irradiation with red light, but quickly turn-off upon exposure to other visible light wavelengths. Critically, sunlight quickly triggers isomerisation of the red light-activated compounds into their original trans form, offering an ideal platform for self-deactivation upon release into the environment. Linear analogues of tyrocidine A were found to provide the best photocontrol of their antimicrobial activity, leading to compounds active against Acinetobacter baumannii upon isomerisation. Exploration of their N- and C-termini has provided insights into key elements of their structure and has allowed obtaining new antimicrobials displaying excellent strain selectivity and photocontrol.
Collapse
Affiliation(s)
- Xavier Just‐Baringo
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri Reixac 1008028BarcelonaSpain
- Laboratori de Química OrgànicaFacultat de FarmàciaIBUBUniversitat de Barcelona08028BarcelonaSpain
| | - Alejandro Yeste‐Vázquez
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri Reixac 1008028BarcelonaSpain
| | - Javier Moreno‐Morales
- Institute for Global Health (ISGlobal)Hospital Clínic - Universitat de BarcelonaBarcelonaSpain
| | | | - Jordi Vila
- Institute for Global Health (ISGlobal)Hospital Clínic - Universitat de BarcelonaBarcelonaSpain
- Department of Clinical Microbiology – CDBHospital Clínic - University of BarcelonaBarcelonaSpain
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri Reixac 1008028BarcelonaSpain
| |
Collapse
|
4
|
Zhu J, Hu C, Zeng Z, Deng X, Zeng L, Xie S, Fang Y, Jin Y, Alezra V, Wan Y. Polymyxin B-inspired non-hemolytic tyrocidine A analogues with significantly enhanced activity against gram-negative bacteria: How cationicity impacts cell specificity and antibacterial mechanism. Eur J Med Chem 2021; 221:113488. [PMID: 33991963 DOI: 10.1016/j.ejmech.2021.113488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/31/2021] [Accepted: 04/18/2021] [Indexed: 11/25/2022]
Abstract
Naturally occurring cyclic antimicrobial peptides (AMPs) such as tyrocidine A (Tyrc A) and gramicidin S (GS) are appealing targets for the development of novel antibiotics. However, their therapeutic potentials are limited by undesired hemolytic activity and relatively poor activity against Gram-negative bacteria. Inspired by polycationic lipopeptide polymyxin B (PMB), the so called 'last-resort' antibiotic for the treatment of infections caused by multidrug-resistant Gram-negative bacteria, we synthesized and biologically evaluated a series of polycationic analogues derived from Tyrc A. We were able to obtain peptide 8 that possesses 5 positive charges exhibiting potent activities against both Gram-negative and Gram-positive bacteria along with totally diminished hemolytic activity. Intriguingly, antibacterial mechanism studies revealed that, rather than the 'pore forming' model that possessed by Tyrc A, peptide 8 likely diffuses membrane in a 'detergent-like' manner. Furthermore, when treating mice with peritonitis-sepsis, peptide 8 showed excellent antibacterial and anti-inflammatory activities in vivo.
Collapse
Affiliation(s)
- Jibao Zhu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Chengfei Hu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Zizhen Zeng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Xiaoyu Deng
- Minist Educ, Key Lab Modern Preparat TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Lingbing Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Donghu, Nanchang, 330006, PR China
| | - Saisai Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Yuanying Fang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Valérie Alezra
- Laboratoire de Méthodologie, Synthèse et Molécules Thérapeutiques (ICMMO), UMR 8182, CNRS, Université Paris-Saclay, Bât 410, Facultédes Sciences D'Orsay, Orsay, 291405, France
| | - Yang Wan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China; Laboratoire de Méthodologie, Synthèse et Molécules Thérapeutiques (ICMMO), UMR 8182, CNRS, Université Paris-Saclay, Bât 410, Facultédes Sciences D'Orsay, Orsay, 291405, France; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yuchai Road, Guilin, 541004, PR China.
| |
Collapse
|
5
|
Varnava KG, Edwards PJB, Cameron AJ, Harjes E, Sarojini V. Cyclic peptides bearing the d-Phe-2-Abz turn motif: Structural characterization and antimicrobial potential. J Pept Sci 2020; 27:e3291. [PMID: 33283398 DOI: 10.1002/psc.3291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 11/10/2022]
Abstract
The effect on secondary structure and antimicrobial activity of introducing different cyclic constraints in linear β-hairpin antimicrobial peptides has been investigated with the intention of generating cyclic β sheets as promising antimicrobials with improved therapeutic potential. The linear peptides were cyclized head to tail either directly or after the addition of either a second turn motif or a disulfide bridge. The propensity of these peptides to adopt a cyclic β-sheet structure has been correlated to their antibacterial activity. All cyclic peptides showed enhanced activity, compared with their linear counterparts against methicillin-resistant Staphylococcus aureus. Scanning electron microscopy and transmission electron microscopy studies showed that this family kills bacteria through membrane lysis. The peptide that showed the best efficacy against all strains (exhibiting nanomolar activity), while retaining low haemolysis, bears two symmetrical, homochiral d-phe-2-Abz-d-ala turns and adopted a flexible structure. Its twin peptide that bears heterochiral turns (one with d-ala and one with L-Ala) showed reduced antibacterial activity and higher percentage of haemolysis. Circular dichroism and nuclear magnetic resonance spectroscopy indicate that heterochirality in the two turns leads to oligomerization of the peptide at higher concentrations, stabilizing the β-sheet secondary structure. More rigid secondary structure is associated with lower activity against bacteria and loss of selectivity.
Collapse
Affiliation(s)
- Kyriakos G Varnava
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Patrick J B Edwards
- School of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand.,Maurice Wilkins Centre for Molecular BioDiscovery, Auckland, 1142, New Zealand
| | - Alan J Cameron
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand.,Maurice Wilkins Centre for Molecular BioDiscovery, Auckland, 1142, New Zealand
| | - Elena Harjes
- School of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand.,Maurice Wilkins Centre for Molecular BioDiscovery, Auckland, 1142, New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| |
Collapse
|
6
|
Huan Y, Kong Q, Mou H, Yi H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front Microbiol 2020; 11:582779. [PMID: 33178164 PMCID: PMC7596191 DOI: 10.3389/fmicb.2020.582779] [Citation(s) in RCA: 636] [Impact Index Per Article: 159.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a class of small peptides that widely exist in nature and they are an important part of the innate immune system of different organisms. AMPs have a wide range of inhibitory effects against bacteria, fungi, parasites and viruses. The emergence of antibiotic-resistant microorganisms and the increasing of concerns about the use of antibiotics resulted in the development of AMPs, which have a good application prospect in medicine, food, animal husbandry, agriculture and aquaculture. This review introduces the progress of research on AMPs comprehensively and systematically, including their classification, mechanism of action, design methods, environmental factors affecting their activity, application status, prospects in various fields and problems to be solved. The research progress on antivirus peptides, especially anti-coronavirus (COVID-19) peptides, has been introduced given the COVID-19 pandemic worldwide in 2020.
Collapse
Affiliation(s)
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | | | | |
Collapse
|
7
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
8
|
Cameron AJ, Squire CJ, Gérenton A, Stubbing LA, Harris PWR, Brimble MA. Investigations of the key macrolactamisation step in the synthesis of cyclic tetrapeptide pseudoxylallemycin A. Org Biomol Chem 2020; 17:3902-3913. [PMID: 30941386 DOI: 10.1039/c9ob00227h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The total synthesis and structural confirmation of naturally occurring all l-cyclic tetrapeptide pseudoxylallemycin A is reported. X-ray crystallography revealed that the linear precursor adopted an all-trans (ttt) extended linear conformation, while its cyclic derivative adopts a trans,cis,trans,cis (tctc) conformation. Two kinetically favoured cyclic conformers prone to hydrolysis initially formed rapidly during cyclisation, with subsequent conversion to the thermodynamically stable tctc macrocycle taking place slowly. We postulate the initial unstable cyclic product undergoes an unprecedented nucleophilic ring opening with either the T3P or PyAOP by-products to give the linear ttt structure as a reactivated species and through a series of equilibria is slowly consumed by cyclisation to the thermodynamic product pseudoxylallemycin A. Consumption of the reactivated species by formation of pseudoxylallemycin A requires a trans-cis isomerism to occur and necessitates moderately increased reaction temperatures. Cyclisation with T3P was found to provide the greatest stereoretention. Synthesis and X-ray crystallography of the C-terminal epimer demonstrated its cyclisation to be kinetically favoured and to proceed without epimerisation despite also bearing an all-trans backbone.
Collapse
Affiliation(s)
- Alan J Cameron
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1010, New Zealand.
| | | | | | | | | | | |
Collapse
|
9
|
Asano A, Matsuoka S, Minami C, Kato T, Doi M. [Leu 2]Gramicidin S preserves the structural properties of its parent peptide and forms helically aligned β-sheets. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2019; 75:1336-1343. [PMID: 31589149 DOI: 10.1107/s2053229619011872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/28/2019] [Indexed: 11/11/2022]
Abstract
For crystallographic analysis, Leu was substituted for Orn in Gramicidin S (LGS) to suppress interactions with hydrophilic solvent molecules, which increased the flexibility of the Orn side chains, leading to disorder within the crystals. The asymmetric unit (C62H94N10O10·1.296C3H8O·1.403H2O) contains three LGS molecules (A, B and C) forming β-turn and intramolecular β-sheet structures. With the exception of one motif in molecule C, D-Phe-Pro turn motifs (Phe is phenylalanine and Pro is proline) were classed as type II' β-turns. The peptide backbones twist slightly to the right along the long axis of the molecule. The puckering of Pro is in a Cγ-endo or twisted Cγ-endo-Cβ-exo form. Flanking molecules are arranged such that the angles (A...B = 104°, B...C = 139° and C...A = 117°) form helical β-sheets. Solvent molecules interact with the peptide backbones supporting the β-sheets. The forms of the replacement Leu side chains are consistent with the e-form of the Orn side chain in GS analogues. No hydrophilic region composed of solvent molecules, such as that observed in Gramicidin S hydrochloride (GS·HCl) crystals, was found. The perturbation of αH chemical shifts and coupling constants of CONH showed that the structural properties of GS·HCl and LGS are similar to each other in solution. CD spectra also supported the structural similarity. With the sequence cyclo(-Val-Leu-Leu-D-Phe-Pro-)2 (Val is valine and Leu is leucine), LGS lacks the amphiphilicity and antimicrobial activity of parental Gramicidin S (GS). However, the structure of LGS reflects the structural characteristics of GS and no disordering inconvenient for structural analysis was found. Thus, LGS could be a novel scaffold useful for studying β-turn and sheet structures.
Collapse
Affiliation(s)
- Akiko Asano
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shiori Matsuoka
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Chisato Minami
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Takuma Kato
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Mitsinobu Doi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
10
|
Varnava KG, Mohid SA, Calligari P, Stella L, Reynison J, Bhunia A, Sarojini V. Design, Synthesis, Antibacterial Potential, and Structural Characterization of N-Acylated Derivatives of the Human Autophagy 16 Polypeptide. Bioconjug Chem 2019; 30:1998-2010. [PMID: 31145591 DOI: 10.1021/acs.bioconjchem.9b00290] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A synthetic antimicrobial peptide library based on the human autophagy 16 polypeptide has been developed. Designed acetylated peptides bearing lipids of different chain lengths resulted in peptides with enhanced potency compared to the parent Atg16. A 21-residue fragment of Atg16 conjugated to 4-methylhexanoic acid (K30) emerged as the most potent antibacterial, with negligible hemolysis. Several studies, including microscopy, dye leakage, and ITC, were conducted to gain insight into the antibacterial mechanism of action of the peptide. Visual inspection using both SEM and TEM revealed the membranolytic effect of the peptide on bacterial cells. The selectivity of the peptide against bacterial cell membranes was also proven using dye leakage assays. ITC analysis revealed the exothermic nature of the binding interaction of the peptide to D8PG micelles. The three-dimensional solution NMR structure of K30 in complex with dioctanoylphosphatidylglycerol (D8PG) micelles revealed that the peptide adopts a helix-loop-helix structure in the presence of anionic membrane lipids mimicking bacterial membranes. Intermolecular NOEs between the peptide and lipid deciphered the location of the peptide in the bound state, which was subsequently supported by the paramagnetic relaxation enhancement (PRE) NMR experiment. Collectively, these results describe the structure-function relationship of the peptide in the bacterial membrane.
Collapse
Affiliation(s)
- Kyriakos Gabriel Varnava
- School of Chemical Sciences , The University of Auckland , Private Bag 92019 , Auckland , New Zealand
| | - Sk Abdul Mohid
- Department of Biophysics , Bose Institute , P-1/12 CIT Scheme VII (M) , Kolkata 700054 , India
| | - Paolo Calligari
- Department of Chemical Science and Technologies , University of Rome Tor Vergata , 00133 Rome , Italy
| | - Lorenzo Stella
- Department of Chemical Science and Technologies , University of Rome Tor Vergata , 00133 Rome , Italy
| | - Jóhannes Reynison
- School of Chemical Sciences , The University of Auckland , Private Bag 92019 , Auckland , New Zealand.,School of Pharmacy, Hornbeam Building , Keele University , Staffordshire ST5 5BG , United Kingdom
| | - Anirban Bhunia
- Department of Biophysics , Bose Institute , P-1/12 CIT Scheme VII (M) , Kolkata 700054 , India
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences , The University of Auckland , Private Bag 92019 , Auckland , New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology , Wellington 6140 , New Zealand
| |
Collapse
|
11
|
Cameron AJ, Varnava KG, Edwards PJB, Harjes E, Sarojini V. Acyclic peptides incorporating the d-Phe-2-Abz turn motif: Investigations on antimicrobial activity and propensity to adopt β-hairpin conformations. J Pept Sci 2018; 24:e3094. [PMID: 29900628 DOI: 10.1002/psc.3094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 02/01/2023]
Abstract
Three linear peptides incorporating d-Phe-2-Abz as the turn motif are reported. Peptide 1, a hydrophobic β-hairpin, served as a proof of principle for the design strategy with both NMR and CD spectra strongly suggesting a β-hairpin conformation. Peptides 2 and 3, designed as amphipathic antimicrobials, exhibited broad spectrum antimicrobial activity, with potency in the nanomolar range against Staphylococcus aureus. Both compounds possess a high degree of selectivity, proving non-haemolytic at concentrations 500 to 800 times higher than their respective minimal inhibitory concentrations (MICs) against S. aureus. Peptide 2 induced cell membrane and cell wall disintegration in both S. aureus and Pseudomonas aeruginosa as observed by transmission electron microscopy. Peptide 2 also demonstrated moderate antifungal activity against Candida albicans with an MIC of 50 μM. Synergism was observed with sub-MIC levels of amphotericin B (AmB), leading to nanomolar MICs against C. albicans for peptide 2. Based on circular dichroism spectra, both peptides 2 and 3 appear to exist as a mixture of conformers with the β-hairpin as a minor conformer in aqueous solution, and a slight increase in hairpin population in 50% trifluoroethanol, which was more pronounced for peptide 3. NMR spectra of peptide 2 in a 1:1 CD3 CN/H2 O mixture and 30 mM deuterated sodium dodecyl sulfate showed evidence of an extended backbone conformation of the β-strand residues. However, inter-strand rotating frame Overhauser effects (ROE) could not be detected and a loosely defined divergent hairpin structure resulted from ROE structure calculation in CD3 CN/H2 O. The loosely defined hairpin conformation is most likely a result of the electrostatic repulsions between cationic strand residues which also probably contribute towards maintaining low haemolytic activity.
Collapse
Affiliation(s)
- Alan J Cameron
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Kyriakos G Varnava
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Patrick J B Edwards
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - Elena Harjes
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| | | |
Collapse
|
12
|
Varnava KG, Reynisson J, Raghothama S, Sarojini V. Synthesis, antibacterial, and antibiofilm potential of human autophagy 16 polypeptide and analogues. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Jóhannes Reynisson
- School of Chemical SciencesThe University of AucklandAuckland New Zealand
| | | | | |
Collapse
|