1
|
Gomha SM, El-Sayed AAAA, Zaki MEA, Alrehaily A, Elbadawy HM, Al-Shahri ABA, Alsenani SR, Abouzied AS. Synthesis, In vitro and In silico Studies of Novel Bis-triazolopyridopyrimidines from Curcumin Analogues as Potential Aromatase Agents. Chem Biodivers 2024; 21:e202400701. [PMID: 38829745 DOI: 10.1002/cbdv.202400701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Breast cancer remains a major global health issue, particularly affecting women and contributing significantly to mortality rates. Current treatments for estrogen receptor-positive breast cancers, such as aromatase inhibitors, are effective but often come with side effects and resistance issues. This study addresses these gaps by targeting aromatase, an enzyme crucial for estrogen synthesis, which plays a pivotal role in breast cancer progression. The innovative approach involves synthesizing novel bis-triazolopyridopyrimidines, designed to leverage the combined pharmacological benefits of pyridopyrimidine and 1,2,4-triazole structures, known for their potent aromatase inhibition and anti-cancer properties. These compounds were synthesized and characterized using 1H-NMR, 13C-NMR, and MS spectral analyses, and their anticancer efficacy was evaluated through MTT assays against MCF-7 breast cancer cell lines in vitro. Molecular docking analyses revealed strong binding energies with aromatase, particularly for compounds 5 b, 5 c, 10 a, and 10 b, indicating their potential as effective aromatase inhibitors. The study highlights these compounds as promising candidates for further development as therapeutic agents against breast cancer.
Collapse
Affiliation(s)
- Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Abdel-Aziz A A El-Sayed
- Biology Department, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammed Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Abdulwahed Alrehaily
- Biology Department, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Hossein M Elbadawy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah, 41477, Saudi Arabia
| | - Ahmad Bin Ali Al-Shahri
- Department of Jurisprudence of Sunnah and Its Sources, Faculty of the Noble Hadith, Islamic University of Madinah., Madinah, 41477, Saudi Arabia
| | - Saleh Rashed Alsenani
- Biology Department, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Amr S Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza, 12311, Egypt
| |
Collapse
|
2
|
Vahdati S, Lamprecht A. Membrane-Fusing Vehicles for Re-Sensitizing Transporter-Mediated Multiple-Drug Resistance in Cancer. Pharmaceutics 2024; 16:493. [PMID: 38675154 PMCID: PMC11053612 DOI: 10.3390/pharmaceutics16040493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Reversing the multiple drug resistance (MDR) arising from the overexpression of the efflux transporters often fails mainly due to the high toxicity or the poor water solubility of the inhibitors of these transporters. Here, we demonstrate the delivery of an inhibitor targeting three ABC transporters (ABCB1, ABCC1 and ABCG2) directly to the cell membrane using membrane-fusing vehicles (MFVs). Three different transfected MDCK II cell lines, along with parental cells, were used to investigate the inhibitory effect of cyclosporine A (CsA) in solution versus direct delivery to the cell membrane. CsA-loaded MFVs successfully reversed MDR for all three investigated efflux transporters at significantly lower concentrations compared with CsA in solution. Results showed a 15-fold decrease in the IC50 value for ABCB1, a 7-fold decrease for ABCC1 and an 11-fold decrease for ABCG2. We observed binding site specificity for ABCB1 and ABCG2 transporters. Lower concentrations of empty MFVs along with CsA contribute to the inhibition of Hoechst 33342 efflux. However, higher concentrations of CsA along with the high amount of MFVs activated transport via the H-binding site. This supports the conclusion that MFVs can be useful beyond their role as delivery systems and also help to elucidate differences between these transporters and their binding sites.
Collapse
Affiliation(s)
- Sahel Vahdati
- Departments of Pharmaceutics, Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany;
- Pharmaceutical and Cell Biological Chemistry, Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany
| | - Alf Lamprecht
- Departments of Pharmaceutics, Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany;
| |
Collapse
|
3
|
Rastogi SK, Ciliberto VC, Trevino MZ, Campbell BA, Brittain WJ. Green Approach Toward Triazole Forming Reactions for Developing Anticancer Drugs. Curr Org Synth 2024; 21:380-420. [PMID: 37157212 DOI: 10.2174/1570179420666230508125144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 05/10/2023]
Abstract
Compounds containing triazole have many significant applications in the dye and ink industry, corrosion inhibitors, polymers, and pharmaceutical industries. These compounds possess many antimicrobial, antioxidant, anticancer, antiviral, anti-HIV, antitubercular, and anticancer activities. Several synthetic methods have been reported for reducing time, minimizing synthetic steps, and utilizing less hazardous and toxic solvents and reagents to improve the yield of triazoles and their analogues synthesis. Among the improvement in methods, green approaches towards triazole forming biologically active compounds, especially anticancer compounds, would be very important for pharmaceutical industries as well as global research community. In this article, we have reviewed the last five years of green chemistry approaches on click reaction between alkyl azide and alkynes to install 1,2,3-triazole moiety in natural products and synthetic drug-like molecules, such as in colchicine, flavanone cardanol, bisphosphonates, thiabendazoles, piperazine, prostanoid, flavonoid, quinoxalines, C-azanucleoside, dibenzylamine, and aryl-azotriazole. The cytotoxicity of triazole hybrid analogues was evaluated against a panel of cancer cell lines, including multidrug-resistant cell lines.
Collapse
Affiliation(s)
- Shiva K Rastogi
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Veronica C Ciliberto
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Monica Z Trevino
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Brooke A Campbell
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - William J Brittain
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| |
Collapse
|
4
|
Li H, Zhang SL, Jia YH, Li Q, Feng ZW, Zhang SD, Zheng W, Zhou YL, Li LL, Liu XC, Chen YQ, Peng H, You QD, Xu XL. Imidazo[1,2- a]Pyridine Derivatives as Novel Dual-Target Inhibitors of ABCB1 and ABCG2 for Reversing Multidrug Resistance. J Med Chem 2023; 66:2804-2831. [PMID: 36780419 DOI: 10.1021/acs.jmedchem.2c01862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
ABCB1 and ABCG2 are the important ATP-binding cassette (ABC) transporters associated with multidrug resistance (MDR). Herein, we designed a series of imidazo[1,2-a]pyridine derivatives as dual-target inhibitors of ABCB1 and ABCG2 through the scaffold hopping strategy. Compound Y22 displayed potential efflux function inhibitory toward both ABCB1 and ABCG2 (reversal fold: ABCB1 = 8.35 and ABCG2 = 2.71) without obvious cytotoxicity. Y22 also enhanced the potency of antiproliferative drugs in vitro. Mechanistic studies demonstrated that Y22 slightly suppressed ATPase activity but did not affect the protein expression of ABCB1 or ABCG2. Notably, Y22 exhibited negligible CYP3A4 inhibition and enhanced the antiproliferative activity of adriamycin in vivo by restoring the sensitivity of resistant cells. Thus, Y22 may be effective clinically in combination with common chemotherapy agents. In summary, Y22 is a potential dual-target inhibitor that reverses MDR by blocking the efflux function of ABCB1 and ABCG2.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng-Lie Zhang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yan-Han Jia
- Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Qian Li
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zi-Wen Feng
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shi-Duo Zhang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Zheng
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ye-Ling Zhou
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lin-Lin Li
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xue-Chun Liu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ya-Qiong Chen
- Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Hui Peng
- Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Li Xu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
5
|
In Silico Identification and In Vitro Evaluation of New ABCG2 Transporter Inhibitors as Potential Anticancer Agents. Int J Mol Sci 2022; 24:ijms24010725. [PMID: 36614168 PMCID: PMC9820944 DOI: 10.3390/ijms24010725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Different molecular mechanisms contribute to the development of multidrug resistance in cancer, including increased drug efflux, enhanced cellular repair mechanisms and alterations of drug metabolism or drug targets. ABCG2 is a member of the ATP-binding cassette superfamily transporters that promotes drug efflux, inducing chemotherapeutic resistance in malignant cells. In this context, the development of selective ABCG2 inhibitors might be a suitable strategy to improve chemotherapy efficacy. Thus, through a multidisciplinary approach, we identified a new ABCG2 selective inhibitor (8), highlighting its ability to increase mitoxantrone cytotoxicity in both hepatocellular carcinoma (EC50from 8.67 ± 2.65 to 1.25 ± 0.80 μM) and transfected breast cancer cell lines (EC50from 9.92 ± 2.32 to 2.45 ± 1.40 μM). Moreover, mitoxantrone co-administration in both transfected and non-transfected HEK293 revealed that compound 8 notably lowered the mitoxantrone EC50, demonstrating its efficacy along with the importance of the ABCG2 extrusion pump overexpression in MDR reversion. These results were corroborated by evaluating the effect of inhibitor 8 on mitoxantrone cell uptake in multicellular tumor spheroids and via proteomic experiments.
Collapse
|
6
|
Jayabal K, Elumalai D, Leelakrishnan S, Bhattacharya S, Rengarajan V, Kannan T, Chuang SC. Green and Regioselective Approach for the Synthesis of 3-Substituted Indole Based 1,2-Dihydropyridine and Azaxanthone Derivatives as a Potential Lead for SARS-CoV-2 and Delta Plus Mutant Virus: DFT and Docking Studies. ACS OMEGA 2022; 7:43856-43876. [PMID: 36506171 PMCID: PMC9730777 DOI: 10.1021/acsomega.2c04990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
Great attempts have been done for the development of novel antiviral compounds against SAR-CoV-2 to end this pandemic situation and save human society. Herewith, we have synthesized 3-substituted indole/2-substituted pyrrole 1,2-dihydropyridine and azaxanthone scaffolds using simple, commercially available starting materials in a one-pot, green, and regioselective manner. Further, the regioselectivity of product formation was confirmed by various studies such as controlled experiments, density functional theory (DFT), Mulliken atomic charge, and electrostatic potential (ESP) surface. In addition, 3-substituted indole 1,2-dihydropyridine was successfully converted into a biologically enriched pharmacophore scaffold, viz., indolylimidazopyridinylbenzofuran scaffold, in excellent yield. Moreover, the synthesized 3-substituted indole 1,2-dihydropyridine/2-substituted pyrroles were analyzed in docking studies for anti-SARS-CoV-2 properties against their main protease (Mpro) and anti-Delta plus properties against their protein of the Delta plus K417N mutant. Further, the drug-likeness prediction was analyzed by the Lipinski rule and other pharmacokinetic properties like absorption, distribution, metabolism, excretion, and toxicity using preADMET prediction. Interestingly, the docking results show that out of 20 synthesized compounds, 5 of them for Mpro of SAR-CoV-2 and 9 of them for 7NX7 spike glycoprotein's A chain of Delta plus K417N show greater binding affinity when compared with remdesivir that is the first to receive FDA approval and is currently used as a potent drug for the treatment of COVID-19. These results suggest that indole/pyrrole substituted 1,2-dihydropyridine derivatives are capable of combating SARS-CoV-2 and its Delta plus mutant.
Collapse
Affiliation(s)
- Kamalraja Jayabal
- Department
of Chemistry, Pondicherry University, Puducherry 605014, India
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 30010, Taiwan R.O.C
| | | | - Saraswathi Leelakrishnan
- Department
of Chemistry, Pondicherry University, Puducherry 605014, India
- Department
of Chemistry, Nirmala College for Women, Coimbatore 641018, India
| | - Suman Bhattacharya
- Department
of Physics, University of Limerick, Castletroy, Limerick V94
T9PX , Republic of Ireland
| | | | | | - Shih-Ching Chuang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 30010, Taiwan R.O.C
| |
Collapse
|
7
|
Chong TC, Wong ILK, Cui J, Law MC, Zhu X, Hu X, Kan JWY, Yan CSW, Chan TH, Chow LMC. Characterization of a Potent, Selective, and Safe Inhibitor, Ac15(Az8) 2, in Reversing Multidrug Resistance Mediated by Breast Cancer Resistance Protein (BCRP/ABCG2). Int J Mol Sci 2022; 23:13261. [PMID: 36362047 PMCID: PMC9653733 DOI: 10.3390/ijms232113261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2023] Open
Abstract
Overexpression of breast cancer resistance transporter (BCRP/ABCG2) in cancers has been explained for the failure of chemotherapy in clinic. Inhibition of the transport activity of BCRP during chemotherapy should reverse multidrug resistance. In this study, a triazole-bridged flavonoid dimer Ac15(Az8)2 was identified as a potent, nontoxic, and selective BCRP inhibitor. Using BCRP-overexpressing cell lines, its EC50 for reversing BCRP-mediated topotecan resistance was 3 nM in MCF7/MX100 and 72 nM in S1M180 in vitro. Mechanistic studies revealed that Ac15(Az8)2 restored intracellular drug accumulation by inhibiting BCRP-ATPase activity and drug efflux. It did not down-regulate the cell surface BCRP level to enhance drug retention. It was not a transport substrate of BCRP and showed a non-competitive relationship with DOX in binding to BCRP. A pharmacokinetic study revealed that I.P. administration of 45 mg/kg of Ac15(Az8)2 resulted in plasma concentration above its EC50 (72 nM) for longer than 24 h. It increased the AUC of topotecan by 2-fold. In an in vivo model of BCRP-overexpressing S1M180 xenograft in Balb/c nude mice, it significantly reversed BCRP-mediated topotecan resistance and inhibited tumor growth by 40% with no serious body weight loss or death incidence. Moreover, it also increased the topotecan level in the S1M180 xenograft by 2-fold. Our results suggest that Ac15(Az8)2 is a promising candidate for further investigation into combination therapy for treating BCRP-overexpressing cancers.
Collapse
Affiliation(s)
- Tsz Cheung Chong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Iris L. K. Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Jiahua Cui
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Man Chun Law
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Xuezhen Zhu
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Xuesen Hu
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Jason W. Y. Kan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Clare S. W. Yan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Tak Hang Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
- Department of Chemistry, McGill University, Montreal, QC H3A 2K6, Canada
| | - Larry M. C. Chow
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
8
|
Ahmad S, Hassan MI, Gupta D, Dwivedi N, Islam A. Design and evaluation of pyrimidine derivatives as potent inhibitors of ABCG2, a breast cancer resistance protein. 3 Biotech 2022; 12:182. [PMID: 35875174 PMCID: PMC9296744 DOI: 10.1007/s13205-022-03231-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/18/2022] [Indexed: 11/25/2022] Open
Abstract
The protein ATP-binding cassette subfamily G member 2 (ABCG2) is one of the major factors behind multidrug resistance (MDR) in breast cancer. We performed three-dimensional quantitative structure-activity relationship (3D-QSAR) modelling, docking, and molecular dynamics (MD) simulation to design pyrimidine-based ABCG2 antagonists. The developed QSAR model (r 2 = 0.92, q 2 = 0.82, and good cross-validated r 2 = 0.73) dictate requirement of electrostatic, and hydrophobic fields for modulating bioactivity. Based on this rationale, we designed and screened 1010 new compounds, among them 2 (ND-510 and ND-500) exhibit excellent drug-like features. Comparative molecular docking, MM/GBSA and ADMET profiles were determined to understand the interactive poses, affinity, and drug-likeness of the designed compounds. Furthermore, MD simulations were performed with the ABCG2 receptor, and the results were compared with the two earlier synthesized active compounds. The outcomes of the study will help researchers to develop new antagonists for treatment of MDR breast cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03231-1.
Collapse
Affiliation(s)
- Shahnawaz Ahmad
- School of Biotechnology, College of Engineering and Technology, IFTM University, Lodhipur-Rajput, Delhi Road (NH-24), Moradabad, Uttar Pradesh 244102 India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Neeraj Dwivedi
- School of Biotechnology, College of Engineering and Technology, IFTM University, Lodhipur-Rajput, Delhi Road (NH-24), Moradabad, Uttar Pradesh 244102 India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| |
Collapse
|
9
|
Becker T, Krome AK, Vahdati S, Schiefer A, Pfarr K, Ehrens A, Aden T, Grosse M, Jansen R, Alt S, Hesterkamp T, Stadler M, Hübner MP, Kehraus S, König GM, Hoerauf A, Wagner KG. In Vitro-In Vivo Relationship in Mini-Scale-Enabling Formulations of Corallopyronin A. Pharmaceutics 2022; 14:1657. [PMID: 36015283 PMCID: PMC9414514 DOI: 10.3390/pharmaceutics14081657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
In vivo studies in mice provide a valuable model to test novel active pharmaceutical ingredients due to their low material need and the fact that mice are frequently used as a species for early efficacy models. However, preclinical in vitro evaluations of formulation principles in mice are still lacking. The development of novel in vitro and in silico models supported the preclinical formulation evaluation for the anti-infective corallopyronin A (CorA). To this end, CorA and solubility-enhanced amorphous solid dispersion formulations, comprising povidone or copovidone, were evaluated regarding biorelevant solubilities and dissolution in mouse-specific media. As an acidic compound, CorA and CorA-ASD formulations showed decreased solubilities in mice when compared with human-specific media. In biorelevant biphasic dissolution experiments CorA-povidone showed a three-fold higher fraction partitioned into the organic phase of the biphasic dissolution, when compared with CorA-copovidone. Bioavailabilities determined by pharmacokinetic studies in BALB/c mice correlated with the biphasic dissolution prediction and resulted in a Level C in vitro-in vivo correlation. In vitro cell experiments excluded intestinal efflux by P-glycoprotein or breast cancer resistance protein. By incorporating in vitro results into a physiologically based pharmacokinetic model, the plasma concentrations of CorA-ASD formulations were predicted and identified dissolution as the limiting factor for bioavailability.
Collapse
Affiliation(s)
- Tim Becker
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Anna K. Krome
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Sahel Vahdati
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Andrea Schiefer
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Kenneth Pfarr
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Alexandra Ehrens
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Tilman Aden
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Miriam Grosse
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Jansen
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Silke Alt
- Translational Project Management Office (TPMO), German Center for Infection Research (DZIF), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Thomas Hesterkamp
- Translational Project Management Office (TPMO), German Center for Infection Research (DZIF), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Marc P. Hübner
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Stefan Kehraus
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Pharmaceutical Biology, University of Bonn, Nußallee 6, 53115 Bonn, Germany
| | - Gabriele M. König
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Pharmaceutical Biology, University of Bonn, Nußallee 6, 53115 Bonn, Germany
| | - Achim Hoerauf
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Karl G. Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| |
Collapse
|
10
|
Updated chemical scaffolds of ABCG2 inhibitors and their structure-inhibition relationships for future development. Eur J Med Chem 2022; 241:114628. [DOI: 10.1016/j.ejmech.2022.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022]
|
11
|
Ma Y, Guo Z, Fan C, Chen J, Xu S, Liu Z. Rationally Screened and Designed ABCG2-Binding Aptamers for Targeting Cancer Stem Cells and Reversing Multidrug Resistance. Anal Chem 2022; 94:7375-7382. [PMID: 35544739 DOI: 10.1021/acs.analchem.2c00863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ATP-binding cassette, subfamily G, isoform 2 protein (ABCG2), as an important member of ABC transporters, plays a key role in multidrug resistance (MDR) in cancer and has been widely considered as a marker of cancer stem cells (CSC). Reagents capable of simultaneously targeting ABCG2 and reversing MDR have great clinical application values, but their development is highly challenging. Herein, ABCG2 glycosylated extracellular region-binding aptamers were efficiently screened by a cladded molecularly imprinted polymer (cMIP)-based in vitro screening method and further rationally engineered into cyclic bivalent aptamers. Experiments showed that both the monovalent and cyclic bivalent aptamers could specifically bind ABCG2 and thereby specially target CSC of human colorectal carcinomas (CoCSC), while the latter could effectively reverse MDR in drug-resistant liver cancer cells (HepG2/ADR). Different from currently predominant small molecule inhibitors, the reversal of MDR relied on a different mechanism; the cyclic bivalent aptamers bound the two monomers of ABCG2 dimers simultaneously and thereby blocked the ABCG2-mediated drug-pumping channel, resulting in increased intracellular accumulation of substrate drugs. This study opened a new access to the development of affinity reagents for targeting CSC and reversing MDR, holding great prospects in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yanyan Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhanchen Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chuanwen Fan
- Medical Center of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingran Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuxin Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Chow LM, Chan TH. ATP-binding cassette (ABC) transporter proteins, multidrug resistance, and novel flavonoid dimers as potent, nontoxic, and selective inhibitors. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multidrug resistance (MDR) is often a major impediment to successful chemotherapy in the treatment of cancer. A common mechanism for MDR is the overexpression of an active ATP-binding cassette (ABC) transporter protein, P-glycoprotein (P-gp/ABCB1, also known as MDR1), multidrug resistance protein 1 (MRP1/ABCC1), or breast cancer resistant protein (BCRP/ABCG2), on the plasma membrane of cancer cells. These transporters can pump many structurally diverse anticancer drugs out of the cancer cells and render these drugs ineffective at a therapeutic dosage, i.e., multidrug resistance. Coadministration of a potent ABC transporter inhibitor with an anticancer drug has been evaluated in several clinical trials to overcome MDR but has led to a disappointing outcome. By taking advantage of the pseudo-dimeric structure of ABC transporters, we demonstrated that some flavonoid dimers, using polyvalent interactions, can be potent inhibitors of ABC transporters. Selective inhibition of the three different transporters with flavonoid dimers can be achieved by placing the two flavonoid moieties at an optimal distance apart specific for each transporter. In addition to being potent and selective inhibitors of the transporters, flavonoid dimers are found to be nontoxic to normal cells at their corresponding effective concentrations. The in vivo efficacy of flavonoid dimers was demonstrated. Further investigation of these flavonoid dimers as clinical candidates to overcome MDR in cancer chemotherapy is warranted.
Collapse
Affiliation(s)
- Larry M.C. Chow
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tak Hang Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Chemistry, McGill University, Montreal, QC H3A 2K6, Canada
| |
Collapse
|
13
|
Zattoni IF, Kronenberger T, Kita DH, Guanaes LD, Guimarães MM, de Oliveira Prado L, Ziasch M, Vesga LC, Gomes de Moraes Rego F, Picheth G, Gonçalves MB, Noseda MD, Ducatti DRB, Poso A, Robey RW, Ambudkar SV, Moure VR, Gonçalves AG, Valdameri G. A new porphyrin as selective substrate-based inhibitor of breast cancer resistance protein (BCRP/ABCG2). Chem Biol Interact 2021; 351:109718. [PMID: 34717915 DOI: 10.1016/j.cbi.2021.109718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/25/2022]
Abstract
The ABCG2 transporter plays a pivotal role in multidrug resistance, however, no clinical trial using specific ABCG2 inhibitors have been successful. Although ABC transporters actively extrude a wide variety of substrates, photodynamic therapeutic agents with porphyrinic scaffolds are exclusively transported by ABCG2. In this work, we describe for the first time a porphyrin derivative (4B) inhibitor of ABCG2 and capable to overcome multidrug resistance in vitro. The inhibition was time-dependent and 4B was not itself transported by ABCG2. Independently of the substrate, the porphyrin 4B showed an IC50 value of 1.6 μM and a mixed type of inhibition. This compound inhibited the ATPase activity and increased the binding of the conformational-sensitive antibody 5D3. A thermostability assay confirmed allosteric protein changes triggered by the porphyrin. Long-timescale molecular dynamics simulations revealed a different behavior between the ABCG2 porphyrinic substrate pheophorbide a and the porphyrin 4B. Pheophorbide a was able to bind in three different protein sites but 4B showed one binding conformation with a strong ionic interaction with GLU446. The inhibition was selective toward ABCG2, since no inhibition was observed for P-glycoprotein and MRP1. Finally, this compound successfully chemosensitized cells that overexpress ABCG2. These findings reinforce that substrates may be a privileged source of chemical scaffolds for identification of new inhibitors of multidrug resistance-linked ABC transporters.
Collapse
Affiliation(s)
- Ingrid Fatima Zattoni
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, Brazil
| | - Thales Kronenberger
- School of Pharmacy, University of Eastern Finland, Faculty of Health Sciences, Kuopio, 70211, Finland; Department of Medical Oncology and Pneumology, Internal Medicine VIII, University Hospital of Tübingen, Otfried-Müller-Strasse 14, 72076, Tübingen, Germany
| | - Diogo Henrique Kita
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, Brazil; Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Melanie Ziasch
- Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, Brazil
| | - Luis C Vesga
- School of Pharmacy, University of Eastern Finland, Faculty of Health Sciences, Kuopio, 70211, Finland; Research Group in Biochemistry and Microbiology (GIBIM), School of Chemistry, Industrial University of Santander, A.A. 678, Bucaramanga, Colombia; Research Group on Organic Compounds of Medicinal Interest (CODEIM), Technological Park of Guatiguara, Industrial University of Santander, A. A. 678, Piedecuesta, Colombia
| | | | - Geraldo Picheth
- Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, Brazil
| | - Marcos Brown Gonçalves
- Department of Physics, Federal Technological University of Paraná, 80230-901 Curitiba, Parana, Brazil
| | - Miguel D Noseda
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Diogo R B Ducatti
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, Faculty of Health Sciences, Kuopio, 70211, Finland; Department of Medical Oncology and Pneumology, Internal Medicine VIII, University Hospital of Tübingen, Otfried-Müller-Strasse 14, 72076, Tübingen, Germany
| | - Robert W Robey
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivian Rotuno Moure
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, Brazil; Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Glaucio Valdameri
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, Brazil; Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, Brazil.
| |
Collapse
|
14
|
Wong ILK, Zhu X, Chan KF, Liu Z, Chan CF, Chow TS, Chong TC, Law MC, Cui J, Chow LMC, Chan TH. Flavonoid Monomers as Potent, Nontoxic, and Selective Modulators of the Breast Cancer Resistance Protein (ABCG2). J Med Chem 2021; 64:14311-14331. [PMID: 34606270 DOI: 10.1021/acs.jmedchem.1c00779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We synthesize various substituted triazole-containing flavonoids and identify potent, nontoxic, and highly selective BCRP inhibitors. Ac18Az8, Ac32Az19, and Ac36Az9 possess m-methoxycarbonylbenzyloxy substitution at C-3 of the flavone moiety and substituted triazole at C-4' of the B-ring. They show low toxicity (IC50 toward L929 > 100 μM), potent BCRP-inhibitory activity (EC50 = 1-15 nM), and high BCRP selectivity (BCRP selectivity over MRP1 and P-gp > 67-714). They inhibit the efflux activity of BCRP, elevate the intracellular drug accumulation, and restore the drug sensitivity of BCRP-overexpressing cells. Like Ko143, Ac32Az19 remarkably exhibits a 100% 5D3 shift, indicating that it can bind and cause a conformational change of BCRP. Moreover, it significantly reduces the abundance of functional BCRP dimers/oligomers by half to retain more mitoxantrone in the BCRP-overexpressing cell line and that may account for its inhibitory activity. They are promising candidates to be developed into combination therapy to overcome MDR cancers with BCRP overexpression.
Collapse
Affiliation(s)
- Iris L K Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Xuezhen Zhu
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Kin-Fai Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Zhen Liu
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Chin-Fung Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Tsun Sing Chow
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Tsz Cheung Chong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Man Chun Law
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Jiahua Cui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Larry M C Chow
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Tak Hang Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China.,Department of Chemistry, McGill University, Montreal, Quebec H3A 2K6, Canada
| |
Collapse
|
15
|
Dakhlaoui I, Vahdati S, Maalej E, Chabchoub F, Wiese M, Marco-Contelles J, Ismaili L. Synthesis and biological assessment of new pyrimidopyrimidines as inhibitors of breast cancer resistance protein (ABCG2). Bioorg Chem 2021; 116:105326. [PMID: 34536930 DOI: 10.1016/j.bioorg.2021.105326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/26/2022]
Abstract
Multidrug resistance constitutes a serious obstacle of the treatment success of cancer by chemotherapy. Mostly it is driven by expression of ABC transport proteins that actively efflux the anticancer agents out of the cell. This work describes the design and synthesis of 12 new pyrimidopyrimidines, as well as their inhibition of ABCG2 a transporter referred also to as breast cancer resistance protein, the selectivity versus ABCB1 (P-glycoprotein/P-gp) and ABCC1 as well as the investigation of their accumulation in single cells. From these results, N-(3,5-dimethoxyphenyl)-2-methyl-7-phenyl-5-(p-tolyl)pyrimido[4,5-d]pyrimidin-4-amine 7 h was identified as promising hit that deserves further investigation showing a selective and effective inhibition of ABCG2 with IC50 equal to 0.493 µM only 2-fold less active than Ko143.
Collapse
Affiliation(s)
- Imen Dakhlaoui
- Laboratoire de Chimie Appliquée: Hetérocycles, Corps Gras et Polymères, Faculté des Sciences de Sfax, Université de Sfax, B. P 802, 3000 Sfax, Tunisia; Laboratoire de Chimie Organique et Thérapeutique, Neurosciences intégratives et cliniques EA 481, Univ. Bourgogne Franche-Comté, UFR Santé, 19, rue Ambroise Paré, F-25000 Besançon, France
| | - Sahel Vahdati
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4 53121, Bonn, Germany
| | - Emna Maalej
- Laboratoire de Chimie Appliquée: Hetérocycles, Corps Gras et Polymères, Faculté des Sciences de Sfax, Université de Sfax, B. P 802, 3000 Sfax, Tunisia; Laboratoire Matériaux, Traitement et Analyse (LMTA), Institut National de Recherche et d'Analyse Physico-chimique Technopole, Ariana, Tunisia
| | - Fakher Chabchoub
- Laboratoire de Chimie Appliquée: Hetérocycles, Corps Gras et Polymères, Faculté des Sciences de Sfax, Université de Sfax, B. P 802, 3000 Sfax, Tunisia.
| | - Michael Wiese
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4 53121, Bonn, Germany.
| | - Jose Marco-Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Lhassane Ismaili
- Laboratoire de Chimie Organique et Thérapeutique, Neurosciences intégratives et cliniques EA 481, Univ. Bourgogne Franche-Comté, UFR Santé, 19, rue Ambroise Paré, F-25000 Besançon, France.
| |
Collapse
|
16
|
Synthesis, crystal structure and DFT study of a novel compound N-(4-(2,4-dimorpholinopyrido[2,3-d]pyrimidin-6-yl)phenyl)pyrrolidine-1-carboxamide. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Structure-Based Discovery of ABCG2 Inhibitors: A Homology Protein-Based Pharmacophore Modeling and Molecular Docking Approach. Molecules 2021; 26:molecules26113115. [PMID: 34071039 PMCID: PMC8197086 DOI: 10.3390/molecules26113115] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
ABCG2 is an ABC membrane protein reverse transport pump, which removes toxic substances such as medicines out of cells. As a result, drug bioavailability is an unexpected change and negatively influences the ADMET (absorption, distribution, metabolism, excretion, and toxicity), leading to multi-drug resistance (MDR). Currently, in spite of promising studies, screening for ABCG2 inhibitors showed modest results. The aim of this study was to search for small molecules that could inhibit the ABCG2 pump. We first used the WISS MODEL automatic server to build up ABCG2 homology protein from 655 amino acids. Pharmacophore models, which were con-structed based on strong ABCG2 inhibitors (IC50 < 1 μM), consist of two hydrophobic (Hyd) groups, two hydrogen bonding acceptors (Acc2), and an aromatic or conjugated ring (Aro|PiR). Using molecular docking method, 714 substances from the DrugBank and 837 substances from the TCM with potential to inhibit the ABCG2 were obtained. These chemicals maybe favor synthesized or extracted and bioactivity testing.
Collapse
|
18
|
Ni W, Fan H, Zheng X, Xu F, Wu Y, Li X, Wang A, Huang S, Chen W, Wang S, Lu Y. Cryptotanshinone Inhibits ERα-Dependent and -Independent BCRP Oligomer Formation to Reverse Multidrug Resistance in Breast Cancer. Front Oncol 2021; 11:624811. [PMID: 33968724 PMCID: PMC8100513 DOI: 10.3389/fonc.2021.624811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Both long-term anti-estrogen therapy and estrogen receptor-negative breast cancer contribute to drug resistance, causing poor prognosis in breast cancer patients. Breast cancer resistance protein (BCRP) plays an important role in multidrug resistance. Here, we show that cryptotanshinone (CPT), an anti-estrogen compound, inhibited the oligomer formation of BCRP on the cell membrane, thus blocking its efflux function. The inhibitory effect of CPT on BCRP was dependent on the expression level of estrogen receptor α (ERα) in ERα-positive breast cancer cells. Furthermore, ERα-negative breast cancer cells with high expression of BCRP were also sensitive to CPT because CPT was able to bind to BCRP and inhibit its oligomer formation on the cell membrane, suggesting that the high level of BCRP expression is crucial for CPT to reverse drug resistance. The combination of CPT and chemotherapeutic agents displayed enhanced anticancer effects. The results suggest that CPT is a novel BCRP inhibitor via blocking the oligomer formation of BCRP on the cell membrane. CPT is able to inhibit the activity of BCRP in an ERα-dependent and -independent manner, sensitizing breast cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Wenting Ni
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Fan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiuqin Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fangming Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Shijun Wang
- Shandong Co-Innovation Center of Traditional Chinese Medicine (TCM) Formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| |
Collapse
|
19
|
El-Mahdy KM, Farouk O. Convenient Methodology for Some Heterocyclization Reactions with Thioxopyrimidine Derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428020110172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Yadav P, Shah K. An overview on synthetic and pharmaceutical prospective of pyrido[2,3-d]pyrimidines scaffold. Chem Biol Drug Des 2020; 97:633-648. [PMID: 32946161 DOI: 10.1111/cbdd.13800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022]
Abstract
Pyrido[2,3-d]pyrimidine, a fused hetero-bicyclic nucleus containing pyridine and pyrimidine rings has attained the momentary attention in the sphere of multicomponent synthetic protocol and medicinal chemist. Pyrido[2,3-d]pyrimidine derived drugs have manifested diverse pharmacological activities, particularly, anti-inflammatory, cytotoxic, antimicrobial, phosphodiesterase inhibitors and cytokine inhibitors etc. The present review illustrates various modern synthetic strategies adopted, the structure-activity relationship (SAR) aspects and discloses the extensive crucial biological properties (anticancer, anti-infectious, anti-diabetics and CNS agents) of pyrido[2,3-d]pyrimidines.
Collapse
Affiliation(s)
- Pratibha Yadav
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| |
Collapse
|
21
|
Silbermann K, Li J, Namasivayam V, Baltes F, Bendas G, Stefan SM, Wiese M. Superior Pyrimidine Derivatives as Selective ABCG2 Inhibitors and Broad-Spectrum ABCB1, ABCC1, and ABCG2 Antagonists. J Med Chem 2020; 63:10412-10432. [PMID: 32787102 DOI: 10.1021/acs.jmedchem.0c00961] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the search for highly effective modulators addressing ABCG2-mediated MDR, 23 pyrimidines were synthesized and biologically assessed. Seven derivatives with (a) nitrogen- and/or halogen-containing residue(s) had extraordinary potencies against ABCG2 (IC50 < 150 nM). The compounds competitively inhibited ABCG2-mediated Hoechst 33342 transport but were not substrates of ABCG2. The most potent MDR reverser, compound 19, concentration-dependently increased SN-38-mediated cancer cell death at 11 nM (EC50), time-dependently doubled SN-38 toxicity in a period of 7 days at 10 nM, and half-maximally accelerated cell death combined with SN-38 at 17 nM. No induction of ABCG2 was observed. Furthermore, 11 pyrimidines were revealed as triple ABCB1/ABCC1/ABCG2 inhibitors. Five possessed IC50 values below 10 μM against each transporter, classifying them as some of the 50 most potent multitarget ABC transporter inhibitors. The most promising representative, compound 37, reversed ABCB1-, ABCC1-, and ABCG2-mediated MDR, making it one of the three most potent ABC transporter inhibitors and reversers of ABC transporters-mediated MDR.
Collapse
Affiliation(s)
- Katja Silbermann
- Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Jiyang Li
- Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Vigneshwaran Namasivayam
- Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Fabian Baltes
- Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Gerd Bendas
- Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Sven Marcel Stefan
- Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Michael Wiese
- Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
22
|
Shmoylova YU, Kovygin YA, Vandyshev DY, Ledenyova IV, Kosheleva EA, Shikhaliev KS. Efficient Synthesis of Pyrido[2,3-d]pyrimidines by Recyclization of N-Arylitaconimides with Aminopyrimidinones. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s107042802009002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Ebrahimzadeh E, Tabatabai SA, Vahabpour R, Hajimahdi Z, Zarghi A. Design, Synthesis, Molecular Modeling Study and Biological Evaluation of New N'-Arylidene-pyrido [2,3- d]pyrimidine-5-carbohydrazide Derivatives as Anti-HIV-1 Agents. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:237-248. [PMID: 32802103 PMCID: PMC7393058 DOI: 10.22037/ijpr.2019.112198.13597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In an attempt to identify potential new agents that are active against HIV-1, a series of novel pyridopyrimidine-5-carbohydrazide derivatives featuring a substituted benzylidene fragment were designed and synthesized based on the general pharmacophore of HIV-1 integrase inhibitors. The cytotoxicity profiles of these compounds showed no significant toxicity to human cells and they exhibited anti-HIV-1 activity with EC50 values ranging from 90 to 155 µM. Compound 5j bearing 4-methylbenzylidene group was found to be the most active compound with EC50 = 90 µM and selectivity index, CC50/EC50 = 6.4. Molecular modeling studies indicated the capacity of compound 5j to interact with two Mg2+ cations and several residues that are important in HIV-1 integrase inhibition. These findings suggested that pyridopyrimidine-5-carbohydrazide scaffold might become a promising template for development of novel anti-HIV-1 agents.
Collapse
Affiliation(s)
- Elnaz Ebrahimzadeh
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Abbas Tabatabai
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rouhollah Vahabpour
- Medical Lab Technology Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Hajimahdi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
He ZX, Zhao TQ, Gong YP, Zhang X, Ma LY, Liu HM. Pyrimidine: A promising scaffold for optimization to develop the inhibitors of ABC transporters. Eur J Med Chem 2020; 200:112458. [PMID: 32497962 DOI: 10.1016/j.ejmech.2020.112458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
The multidrug resistance (MDR) phenomenon in cancer cells is the major obstacle leading to failure of chemotherapy accompanied by the feature of intractable and recurrence of cancers. As significant contributors that cause MDR, ABC superfamily proteins can transport the chemotherapeutic drugs out of the tumor cells by the energy of adenosine triphosphate (ATP) hydrolysis, thereby reducing their intracellular accumulation. The ABC transports like ABCB1, ABCC1 and ABCG2 have been extensively studied to develop modulators for overcoming MDR. To date, no reversal agents have been successfully marketed for clinical application, and little information about the ABC proteins bound to specific inhibitors is known, which make the design of MDR inhibitors with potency, selectivity and low toxicity a major challenge. In recent years, it has been increasingly recognized that pyrimidine-based derivatives have the potential for reversing ABC-mediated MDR. In this review, we summarized the pyrimidine-based inhibitors of ABC transporters, and mainly focused on their structure optimizations, development strategies and structure-activity relationship studies in hope of providing a reference for medicinal chemists to develop new modulators of MDR with highly potency and fewer side effects.
Collapse
Affiliation(s)
- Zhang-Xu He
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Tao-Qian Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yun-Peng Gong
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xin Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
25
|
Jiang D, Lei T, Wang Z, Shen C, Cao D, Hou T. ADMET evaluation in drug discovery. 20. Prediction of breast cancer resistance protein inhibition through machine learning. J Cheminform 2020; 12:16. [PMID: 33430990 PMCID: PMC7059329 DOI: 10.1186/s13321-020-00421-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer resistance protein (BCRP/ABCG2), an ATP-binding cassette (ABC) efflux transporter, plays a critical role in multi-drug resistance (MDR) to anti-cancer drugs and drug–drug interactions. The prediction of BCRP inhibition can facilitate evaluating potential drug resistance and drug–drug interactions in early stage of drug discovery. Here we reported a structurally diverse dataset consisting of 1098 BCRP inhibitors and 1701 non-inhibitors. Analysis of various physicochemical properties illustrates that BCRP inhibitors are more hydrophobic and aromatic than non-inhibitors. We then developed a series of quantitative structure–activity relationship (QSAR) models to discriminate between BCRP inhibitors and non-inhibitors. The optimal feature subset was determined by a wrapper feature selection method named rfSA (simulated annealing algorithm coupled with random forest), and the classification models were established by using seven machine learning approaches based on the optimal feature subset, including a deep learning method, two ensemble learning methods, and four classical machine learning methods. The statistical results demonstrated that three methods, including support vector machine (SVM), deep neural networks (DNN) and extreme gradient boosting (XGBoost), outperformed the others, and the SVM classifier yielded the best predictions (MCC = 0.812 and AUC = 0.958 for the test set). Then, a perturbation-based model-agnostic method was used to interpret our models and analyze the representative features for different models. The application domain analysis demonstrated the prediction reliability of our models. Moreover, the important structural fragments related to BCRP inhibition were identified by the information gain (IG) method along with the frequency analysis. In conclusion, we believe that the classification models developed in this study can be regarded as simple and accurate tools to distinguish BCRP inhibitors from non-inhibitors in drug design and discovery pipelines.![]()
Collapse
Affiliation(s)
- Dejun Jiang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Tailong Lei
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Zhe Wang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Chao Shen
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410004, Hunan, People's Republic of China.
| | - Tingjun Hou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
26
|
The Pyrazolo[3,4-d]pyrimidine Derivative, SCO-201, Reverses Multidrug Resistance Mediated by ABCG2/BCRP. Cells 2020; 9:cells9030613. [PMID: 32143347 PMCID: PMC7140522 DOI: 10.3390/cells9030613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 01/29/2023] Open
Abstract
ATP-binding cassette (ABC) transporters, such as breast cancer resistance protein (BCRP), are key players in resistance to multiple anti-cancer drugs, leading to cancer treatment failure and cancer-related death. Currently, there are no clinically approved drugs for reversal of cancer drug resistance caused by ABC transporters. This study investigated if a novel drug candidate, SCO-201, could inhibit BCRP and reverse BCRP-mediated drug resistance. We applied in vitro cell viability assays in SN-38 (7-Ethyl-10-hydroxycamptothecin)-resistant colon cancer cells and in non-cancer cells with ectopic expression of BCRP. SCO-201 reversed resistance to SN-38 (active metabolite of irinotecan) in both model systems. Dye efflux assays, bidirectional transport assays, and ATPase assays demonstrated that SCO-201 inhibits BCRP. In silico interaction analyses supported the ATPase assay data and suggest that SCO-201 competes with SN-38 for the BCRP drug-binding site. To analyze for inhibition of other transporters or cytochrome P450 (CYP) enzymes, we performed enzyme and transporter assays by in vitro drug metabolism and pharmacokinetics studies, which demonstrated that SCO-201 selectively inhibited BCRP and neither inhibited nor induced CYPs. We conclude that SCO-201 is a specific, potent, and potentially non-toxic drug candidate for the reversal of BCRP-mediated resistance in cancer cells.
Collapse
|
27
|
Zhu X, Wong ILK, Chan KF, Cui J, Law MC, Chong TC, Hu X, Chow LMC, Chan TH. Triazole Bridged Flavonoid Dimers as Potent, Nontoxic, and Highly Selective Breast Cancer Resistance Protein (BCRP/ABCG2) Inhibitors. J Med Chem 2019; 62:8578-8608. [PMID: 31465686 DOI: 10.1021/acs.jmedchem.9b00963] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present work describes the syntheses of diverse triazole bridged flavonoid dimers and identifies potent, nontoxic, and highly selective BCRP inhibitors. A homodimer, Ac22(Az8)2, with m-methoxycarbonylbenzyloxy substitution at C-3 of the flavone moieties and a bis-triazole-containing linker (21 atoms between the two flavones) showed low toxicity (IC50 toward L929, 3T3, and HFF-1 > 100 μM), potent BCRP-inhibitory activity (EC50 = 1-2 nM), and high BCRP selectivity (BCRP selectivity over MRP1 and P-gp > 455-909). Ac22(Az8)2 inhibits BCRP-ATPase activity, blocks the drug efflux activity of BCRP, elevates the intracellular drug accumulation, and finally restores the drug sensitivity of BCRP-overexpressing cells. It does not down-regulate the surface BCRP protein expression to enhance the drug retention. Therefore, Ac22(Az8)2 and similar flavonoid dimers appear to be promising candidates for further development into combination therapy to overcome MDR cancers with BCRP overexpression.
Collapse
Affiliation(s)
- Xuezhen Zhu
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery , Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Iris L K Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery , Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Kin-Fai Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery , Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Jiahua Cui
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Man Chun Law
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery , Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Tsz Cheung Chong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery , Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Xuesen Hu
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery , Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Larry M C Chow
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery , Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Tak Hang Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery , Hong Kong Polytechnic University , Hong Kong SAR, China.,Department of Chemistry , McGill University , Montreal , Quebec H3A 2K6 , Canada
| |
Collapse
|
28
|
Tadayon M, Garkani-Nejad Z. In silico study combining QSAR, docking and molecular dynamics simulation on 2,4-disubstituted pyridopyrimidine derivatives. J Recept Signal Transduct Res 2019; 39:167-174. [PMID: 31354087 DOI: 10.1080/10799893.2019.1641821] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
2,4-Disubstituted pyridopyrimidine derivatives were studied against ABCG2 enzyme. The modeling of pyridopyrimidine derivatives were done using two methods of multiple linear regression and support vector regression and four molecular descriptors of BIC4, log p, VRA2, and binding energy were selected for modeling. The statistical results were satisfactory. The interactions of ABCG2 enzyme with pyridopyrimidine derivatives were investigated using molecular docking method. Based on the results, increasing of binding energy and hydrophobicity of the compounds increase their inhibitory activity. Protein stability in complex with pharmaceutical derivatives was discussed using molecular dynamics simulation method.
Collapse
Affiliation(s)
- Maryam Tadayon
- a Faculty of Science, Chemistry Department, Shahid Bahonar University of Kerman , Kerman , Iran
| | - Zahra Garkani-Nejad
- a Faculty of Science, Chemistry Department, Shahid Bahonar University of Kerman , Kerman , Iran
| |
Collapse
|
29
|
Silbermann K, Shah CP, Sahu NU, Juvale K, Stefan SM, Kharkar PS, Wiese M. Novel chalcone and flavone derivatives as selective and dual inhibitors of the transport proteins ABCB1 and ABCG2. Eur J Med Chem 2019; 164:193-213. [PMID: 30594677 DOI: 10.1016/j.ejmech.2018.12.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/25/2018] [Accepted: 12/09/2018] [Indexed: 02/05/2023]
Abstract
During cancer chemotherapy, certain cancers may become cross-resistant to structurally diverse antineoplastic agents. This so-called multidrug resistance (MDR) is highly associated with the overexpression of ATP-binding cassette (ABC) transport proteins. These membrane-bound efflux pumps export a broad range of structurally diverse endo- and xenobiotics, including chemically unrelated anticancer agents. This translocation of drugs from the inside to the outside of cancer cells is mediated at the expense of ATP. In the last 40 years, three ABC transporters - ABCB1 (P-gp), ABCC1 (MRP1), and ABCG2 (BCRP) - have mainly been attributed to the occurrence of MDR in cancer cells. One of the strategies to overcome MDR is to inhibit the efflux transporter function by small-molecule inhibitors. In this work, we investigated new chalcone- and flavone-based compounds for selective as well as broad-spectrum inhibition of the stated transport proteins. These include substituted chalcones with variations at rings A and B, and flavones with acetamido linker at position 3. The synthesized molecules were evaluated for their inhibitory potential against ABCB1, ABCC1, and ABCG2 in calcein AM and pheophorbide A assays. In further investigations with the most promising candidates from each class, we proved that ABCB1- and ABCG2-mediated MDR could be reversed by the compounds. Moreover, their intrinsic toxicity was found to be negligible in most cases. Altogether, our findings contribute to the understanding of ABC transport proteins and reveal new compounds for ongoing evaluation in the field of ABC transporter-mediated MDR.
Collapse
Affiliation(s)
- Katja Silbermann
- Pharmaceutical Chemistry II, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Chetan P Shah
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Niteshkumar U Sahu
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Kapil Juvale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Sven Marcel Stefan
- Pharmaceutical Chemistry II, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Prashant S Kharkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| | - Michael Wiese
- Pharmaceutical Chemistry II, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.
| |
Collapse
|
30
|
Krapf MK, Gallus J, Spindler A, Wiese M. Synthesis and biological evaluation of quinazoline derivatives - A SAR study of novel inhibitors of ABCG2. Eur J Med Chem 2018; 161:506-525. [PMID: 30390439 DOI: 10.1016/j.ejmech.2018.10.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 11/16/2022]
Abstract
Multidrug resistance (MDR) is a major obstacle for effective chemotherapeutic treatment of cancer frequently leading to failure of the therapy. MDR is often associated with the overexpression of ABC transport proteins like ABCB1 or ABCG2 which efflux harmful substances out of cells at the cost of ATP hydrolysis. One way to overcome MDR is to apply potent inhibitors of ABC transporters to restore the sensitivity of the cells toward cytostatic agents. This study focusses on the synthesis and evaluation of novel 2,4-disubstituted quinazoline derivatives regarding the structure-activity-relationship (SAR), their ability to reverse MDR and their mode of interaction with ABCG2. Hence, the inhibitory potency and selectivity toward ABCG2 was determined. Moreover, the intrinsic cytotoxicity and the reversal of MDR were investigated. Interaction type studies with the substrate Hoechst 33342 and conformational analyses of ABCG2 with 5D3 monoclonal antibody were performed for a better understanding of the underlying mechanisms. In our study we could further enhance the inhibitory effect against ABCG2 (compound 31, IC50: 55 nM) and identify the structural features that are crucial for inhibitory potency, the impact on transport activity and binding to the protein.
Collapse
Affiliation(s)
- Michael K Krapf
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Jennifer Gallus
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Anna Spindler
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Michael Wiese
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| |
Collapse
|