1
|
Ding J, Zhu MZ, Liu SM, Liu RC, Xu S, Shehzadi K, Ma HL, Yu MJ, Zhu XH, Liang JH. Discovery of Orally Active Phenylquinoline-Based Soluble Epoxide Hydrolase Inhibitors with Anti-Inflammatory and Analgesic Activity. J Med Chem 2024; 67:18412-18447. [PMID: 39361006 DOI: 10.1021/acs.jmedchem.4c01766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Currently, there are no specific drugs for treating acute pancreatitis. Soluble epoxide hydrolase (sEH) inhibitors show promise, but face challenges like low blood drug concentrations and potential adverse effects on CYP enzymes and the human ether-a-go-go-related gene (hERG). In this study, an approach involving scaffold hopping and structure-activity guided optimization was employed to design a series of phenylquinoline-based sEH inhibitors. Among these compounds, DJ-53 exhibited potent in vitro and in vivo effects in alleviating pain and reducing inflammation. The in vivo mechanism of action involved inhibiting sEH enzyme activity, thereby increasing levels of anti-inflammatory epoxyeicosatrienoic acids (EETs) and decreasing levels of proinflammatory dihydroxyeicosatrienoic acids (DHETs). Importantly, DJ-53 showed exceptional oral bioavailability and pharmacokinetics, while avoiding inhibition of CYP enzymes or the hERG channel. These results highlight DJ-53's potential as a new lead compound for anti-inflammatory and analgesic applications and provide a safe and effective scaffold for developing sEH inhibitors.
Collapse
Affiliation(s)
- Jing Ding
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Min-Zhen Zhu
- Research Center for Brain Health, PazhouLab, Guangzhou 510330, China
| | - Si-Meng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Rui-Chen Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Shuo Xu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Kiran Shehzadi
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Hong-Le Ma
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Ming-Jia Yu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Xin-Hong Zhu
- Research Center for Brain Health, PazhouLab, Guangzhou 510330, China
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
2
|
Feng ZQ, Ding J, Zhu MZ, Xie WS, Liu RC, Liu SS, Liu SM, Yu MJ, Zhu XH, Liang JH. Discovery of a novel lead characterized by a stilbene-extended scaffold against sepsis as soluble epoxide hydrolase inhibitors. Eur J Med Chem 2024; 266:116113. [PMID: 38215588 DOI: 10.1016/j.ejmech.2023.116113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
Recently, some inhibitors of soluble epoxide hydrolase (sEH) showed limited potential in treating sepsis by increasing survival time, but they have unfortunately failed to improve survival rates. In this study, we initially identified a new hit 11D, belonging to a natural skeleton known as stilbene and having an IC50 of 644 nM on inhibiting murine sEH. Natural scaffold-based sEH inhibitors are paid less attention. A combination of structure-activity relationships (SARs)-guided structural optimization and computer-aided skeleton growth led to a highly effective lead compound 70P (IC50: 4.0 nM). The dose-response study indicated that 70P (at doses of 0.5-5 mg/kg, ip.) significantly increased survival rates and survival time by reducing the levels of the inflammatory factors TNF-α and IL-6 in the liver. Interestingly, 70P exhibited much higher accumulation in the liver than in plasma (AUC ratio: 175). In addition, 70P exhibits equal IC50 value (1.5 nM) on inhibiting human sEH as EC5026 (1.7 nM). In conclusion, the natural scaffold-extended sEH inhibitor 70P has the potential to become a new promising lead for addressing the unmet medical need in sepsis treatment, which highlighted the importance of natural skeleton in developing sEH inhibitors.
Collapse
Affiliation(s)
- Zi-Qiang Feng
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jing Ding
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Min-Zhen Zhu
- Research Center for Brain Health, PazhouLab, Guangzhou, 510330, China
| | - Wei-Song Xie
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Rui-Chen Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Si-Si Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Si-Meng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Ming-Jia Yu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Xin-Hong Zhu
- Research Center for Brain Health, PazhouLab, Guangzhou, 510330, China.
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| |
Collapse
|
3
|
Du B, Luo M, Ren C, Zhang J. PDE4 inhibitors for disease therapy: advances and future perspective. Future Med Chem 2023; 15:1185-1207. [PMID: 37470147 DOI: 10.4155/fmc-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
The PDE4 enzyme family is specifically responsible for hydrolyzing cAMP and plays a vital role in regulating the balance of second messengers. As a crucial regulator in signal transduction, PDE4 has displayed promising pharmacological targets in a variety of diseases, for which its inhibitors have been used as a therapeutic strategy. This review provides a comprehensive summary of the development of PDE4 inhibitors in the past few years, along with the structure, clinical and research progress of multiple inhibitors of PDE4, focusing on the research and development strategies of PDE4 inhibitors. We hope our analysis will provide a significant reference for the future development of new PDE4 inhibitors.
Collapse
Affiliation(s)
- Baochan Du
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Min Luo
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
4
|
Megat S, Hugel S, Journée SH, Bohren Y, Lacaud A, Lelièvre V, Doridot S, Villa P, Bourguignon JJ, Salvat E, Schlichter R, Freund-Mercier MJ, Yalcin I, Barrot M. Antiallodynic action of phosphodiesterase inhibitors in a mouse model of peripheral nerve injury. Neuropharmacology 2021; 205:108909. [PMID: 34875284 DOI: 10.1016/j.neuropharm.2021.108909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/01/2021] [Accepted: 11/28/2021] [Indexed: 11/30/2022]
Abstract
Neuropathic pain arises as a consequence of a lesion or disease affecting the somatosensory nervous system. It is accompanied by neuronal and non-neuronal alterations, including alterations in intracellular second messenger pathways. Cellular levels of 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) are regulated by phosphodiesterase (PDE) enzymes. Here, we studied the impact of PDE inhibitors (PDEi) in a mouse model of peripheral nerve injury induced by placing a cuff around the main branch of the sciatic nerve. Mechanical hypersensitivity, evaluated using von Frey filaments, was relieved by sustained treatment with the non-selective PDEi theophylline and ibudilast (AV-411), with PDE4i rolipram, etazolate and YM-976, and with PDE5i sildenafil, zaprinast and MY-5445, but not by treatments with PDE1i vinpocetine, PDE2i EHNA or PDE3i milrinone. Using pharmacological and knock-out approaches, we show a preferential implication of delta opioid receptors in the action of the PDE4i rolipram and of both mu and delta opioid receptors in the action of the PDE5i sildenafil. Calcium imaging highlighted a preferential action of rolipram on dorsal root ganglia non-neuronal cells, through PDE4B and PDE4D inhibition. Rolipram had anti-neuroimmune action, as shown by its impact on levels of the pro-inflammatory cytokine tumor necrosis factor-α (TNFα) in the dorsal root ganglia of mice with peripheral nerve injury, as well as in human peripheral blood mononuclear cells (PBMCs) stimulated with lipopolysaccharides. This study suggests that PDEs, especially PDE4 and 5, may be targets of interest in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Salim Megat
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Sylvain Hugel
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Sarah H Journée
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Yohann Bohren
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Centre d'Evaluation et de Traitement de la Douleur, Strasbourg, France
| | - Adrien Lacaud
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Vincent Lelièvre
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Stéphane Doridot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Chronobiotron, Strasbourg, France
| | - Pascal Villa
- Université de Strasbourg, Centre National de la Recherche Scientifique, Plateforme de Chimie Biologique Intégrative de Strasbourg, UAR3286, Illkirch, France
| | - Jean-Jacques Bourguignon
- Université de Strasbourg, Centre National de la Recherche Scientifique, Laboratoire d'Innovation Thérapeutique, Illkirch, France
| | - Eric Salvat
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Centre d'Evaluation et de Traitement de la Douleur, Strasbourg, France
| | - Remy Schlichter
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Marie-José Freund-Mercier
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
5
|
Du F, Sun W, Morisseau C, Hammock BD, Bao X, Liu Q, Wang C, Zhang T, Yang H, Zhou J, Xiao W, Liu Z, Chen G. Discovery of memantyl urea derivatives as potent soluble epoxide hydrolase inhibitors against lipopolysaccharide-induced sepsis. Eur J Med Chem 2021; 223:113678. [PMID: 34218083 PMCID: PMC8877601 DOI: 10.1016/j.ejmech.2021.113678] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Sepsis, a systemic inflammatory response, caused by pathogenic factors including microorganisms, has high mortality and limited therapeutic approaches. Herein, a new soluble epoxide hydrolase (sEH) inhibitor series comprising a phenyl ring connected to a memantyl moiety via a urea or amide linkage has been designed. A preferential urea pharmacophore that improved the binding properties of the compounds was identified for those series via biochemical assay in vitro and in vivo studies. Molecular docking displayed that 3,5-dimethyl on the adamantyl group in B401 could make van der Waals interactions with residues at a hydrophobic pocket of sEH active site, which might indirectly explain the subnanomolar level activities of memantyl urea derivatives in vitro better than AR-9281. Among them, compound B401 significantly improved the inhibition potency with human and murine sEH IC50 values as 0.4 nM and 0.5 nM, respectively. Although the median survival time of C57BL/6 mice in LPS-induced sepsis model was slightly increased, the survival rate did not reach significant efficacy. Based on safety profile, metabolic stability, pharmacokinetic and in vivo efficacy, B401 demonstrated the proof of potential for this class of memantyl urea-based sEH inhibitors as therapeutic agents in sepsis.
Collapse
Affiliation(s)
- Fangyu Du
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Wenjiao Sun
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Christophe Morisseau
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Xuefei Bao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China; Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu, 222001, China
| | - Qiu Liu
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu, 222001, China
| | - Chao Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu, 222001, China
| | - Tan Zhang
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu, 222001, China
| | - Hao Yang
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu, 222001, China
| | - Jun Zhou
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu, 222001, China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu, 222001, China.
| | - Zhongbo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China.
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
6
|
Schröder S, Scheunemann M, Wenzel B, Brust P. Challenges on Cyclic Nucleotide Phosphodiesterases Imaging with Positron Emission Tomography: Novel Radioligands and (Pre-)Clinical Insights since 2016. Int J Mol Sci 2021; 22:ijms22083832. [PMID: 33917199 PMCID: PMC8068090 DOI: 10.3390/ijms22083832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) represent one of the key targets in the research field of intracellular signaling related to the second messenger molecules cyclic adenosine monophosphate (cAMP) and/or cyclic guanosine monophosphate (cGMP). Hence, non-invasive imaging of this enzyme class by positron emission tomography (PET) using appropriate isoform-selective PDE radioligands is gaining importance. This methodology enables the in vivo diagnosis and staging of numerous diseases associated with altered PDE density or activity in the periphery and the central nervous system as well as the translational evaluation of novel PDE inhibitors as therapeutics. In this follow-up review, we summarize the efforts in the development of novel PDE radioligands and highlight (pre-)clinical insights from PET studies using already known PDE radioligands since 2016.
Collapse
Affiliation(s)
- Susann Schröder
- Department of Research and Development, ROTOP Pharmaka Ltd., 01328 Dresden, Germany
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany; (M.S.); (B.W.); (P.B.)
- Correspondence: ; Tel.: +49-341-234-179-4631
| | - Matthias Scheunemann
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany; (M.S.); (B.W.); (P.B.)
| | - Barbara Wenzel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany; (M.S.); (B.W.); (P.B.)
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany; (M.S.); (B.W.); (P.B.)
| |
Collapse
|
7
|
Wang Y, Wagner KM, Morisseau C, Hammock BD. Inhibition of the Soluble Epoxide Hydrolase as an Analgesic Strategy: A Review of Preclinical Evidence. J Pain Res 2021; 14:61-72. [PMID: 33488116 PMCID: PMC7814236 DOI: 10.2147/jpr.s241893] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic pain is a complicated condition which causes substantial physical, emotional, and financial impacts on individuals and society. However, due to high cost, lack of efficacy and safety problems, current treatments are insufficient. There is a clear unmet medical need for safe, nonaddictive and effective therapies in the management of pain. Epoxy-fatty acids (EpFAs), which are natural signaling molecules, play key roles in mediation of both inflammatory and neuropathic pain sensation. However, their molecular mechanisms of action remain largely unknown. Soluble epoxide hydrolase (sEH) rapidly converts EpFAs into less bioactive fatty acid diols in vivo; therefore, inhibition of sEH is an emerging therapeutic target to enhance the beneficial effect of natural EpFAs. In this review, we will discuss sEH inhibition as an analgesic strategy for pain management and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Karen M Wagner
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
8
|
Das Mahapatra A, Choubey R, Datta B. Small Molecule Soluble Epoxide Hydrolase Inhibitors in Multitarget and Combination Therapies for Inflammation and Cancer. Molecules 2020; 25:molecules25235488. [PMID: 33255197 PMCID: PMC7727688 DOI: 10.3390/molecules25235488] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
The enzyme soluble epoxide hydrolase (sEH) plays a central role in metabolism of bioactive lipid signaling molecules. The substrate-specific hydrolase activity of sEH converts epoxyeicosatrienoic acids (EETs) to less bioactive dihydroxyeicosatrienoic acids. EETs exhibit anti-inflammatory, analgesic, antihypertensive, cardio-protective and organ-protective properties. Accordingly, sEH inhibition is a promising therapeutic strategy for addressing a variety of diseases. In this review, we describe small molecule architectures that have been commonly deployed as sEH inhibitors with respect to angiogenesis, inflammation and cancer. We juxtapose commonly used synthetic scaffolds and natural products within the paradigm of a multitarget approach for addressing inflammation and inflammation induced carcinogenesis. Structural insights from the inhibitor complexes and novel strategies for development of sEH-based multitarget inhibitors are also presented. While sEH inhibition is likely to suppress inflammation-induced carcinogenesis, it can also lead to enhanced angiogenesis via increased EET concentrations. In this regard, sEH inhibitors in combination chemotherapy are described. Urea and amide-based architectures feature prominently across multitarget inhibition and combination chemotherapy applications of sEH inhibitors.
Collapse
Affiliation(s)
- Amarjyoti Das Mahapatra
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India; (A.D.M.); (R.C.)
| | - Rinku Choubey
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India; (A.D.M.); (R.C.)
| | - Bhaskar Datta
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India; (A.D.M.); (R.C.)
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
- Correspondence: ; Tel.: +079-2395-2073; Fax: +079-2397-2622
| |
Collapse
|
9
|
Wan X, Fujita Y, Chang L, Wei Y, Ma L, Wuyun G, Pu Y, Hammock BD, Hashimoto K. Lack of rewarding effects of a soluble epoxide hydrolase inhibitor TPPU in mice: Comparison with morphine. Neuropsychopharmacol Rep 2020; 40:412-416. [PMID: 32896112 PMCID: PMC7722641 DOI: 10.1002/npr2.12136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/05/2020] [Accepted: 08/16/2020] [Indexed: 12/19/2022] Open
Abstract
AIM Although opioids have been used as treatment of neuropathic pain, opioids have abuse potential in humans. Since soluble epoxide hydrolase (sEH) in the metabolism of polyunsaturated fatty acids plays a key role in the pain, sEH inhibitors would be promising new therapeutic drugs for neuropathic pain. In this study, we examined the effect of the sEH inhibitor TPPU on rewarding effects in mice using the conditioned place preference (CPP) paradigm. METHODS The rewarding effects of morphine (10 mg/kg) and TPPU (3, 10, or 30 mg/kg) in mice were examined using CPP paradigm. Furthermore, the effect of TPPU (30 mg/kg) on morphine-induced rewarding effects was examined. RESULTS TPPU (3, 10, or 30 mg/kg) did not increase CPP scores in the mice whereas morphine significantly increased CPP scores in the mice. Furthermore, pretreatment with TPPU did not block the rewarding effects of morphine in the mice, suggesting that sEH does not play a role in the rewarding effect of morphine. CONCLUSION This study suggests that TPPU did not have rewarding effects in rodents. This would make sEH inhibitors potential therapeutic drugs without abuse potential for neuropathic pain.
Collapse
Affiliation(s)
- Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yan Wei
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Gerile Wuyun
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yaoyu Pu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| |
Collapse
|
10
|
Peng T, Qi B, He J, Ke H, Shi J. Advances in the Development of Phosphodiesterase-4 Inhibitors. J Med Chem 2020; 63:10594-10617. [PMID: 32255344 DOI: 10.1021/acs.jmedchem.9b02170] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cyclic nucleotide phosphodiesterase 4 (PDE4) specifically hydrolyzes cyclic adenosine monophosphate (cAMP) and plays vital roles in biological processes such as cancer development. To date, PDE4 inhibitors have been widely studied as therapeutics for the treatment of various diseases such as chronic obstructive pulmonary disease, and many of them have progressed to clinical trials or have been approved as drugs. Herein, we review the advances in the development of PDE4 inhibitors in the past decade and will focus on their pharmacophores, PDE4 subfamily selectivity, and therapeutic potential. Hopefully, this analysis will lead to a strategy for development of novel therapeutics targeting PDE4.
Collapse
Affiliation(s)
- Ting Peng
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Baowen Qi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jun He
- Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China
| | - Hengming Ke
- Department of Biochemistry and Biophysics, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
11
|
Wack G, Eaton P, Schmidtko A, Kallenborn-Gerhardt W. Redox regulation of soluble epoxide hydrolase does not affect pain behavior in mice. Neurosci Lett 2020; 721:134798. [PMID: 32006628 DOI: 10.1016/j.neulet.2020.134798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
Signaling mediated by soluble epoxide hydrolase (sEH) has been reported to play an important role in pain processing. Previous studies revealed that sEH activity is inhibited by specific binding of electrophiles to a redox-sensitive thiol (Cys521) adjacent to the catalytic center of the hydrolase. Here, we investigated if this redox-dependent modification of sEH is involved in pain processing using "redox-dead" knockin-mice (sEH-KI), in which the redox-sensitive cysteine is replaced by serine. However, behavioral characterization of sEH-KI mice in various animal models revealed that acute nociceptive, inflammatory, neuropathic, and visceral pain processing is not altered in sEH-KI mice. Thus, our results suggest that redox-dependent modifications of sEH are not critically involved in endogenous pain signaling in mice.
Collapse
Affiliation(s)
- Gesine Wack
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany
| | - Phillip Eaton
- The William Harvey Research Institute, Charterhouse Square, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany
| | | |
Collapse
|
12
|
McReynolds C, Morisseau C, Wagner K, Hammock B. Epoxy Fatty Acids Are Promising Targets for Treatment of Pain, Cardiovascular Disease and Other Indications Characterized by Mitochondrial Dysfunction, Endoplasmic Stress and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:71-99. [PMID: 32894508 PMCID: PMC7737916 DOI: 10.1007/978-3-030-50621-6_5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bioactive lipid mediators resulting from the metabolism of polyunsaturated fatty acids (PUFA) are controlled by many pathways that regulate the levels of these mediators and maintain homeostasis to prevent disease. PUFA metabolism is driven primarily through three pathways. Two pathways, the cyclooxygenase (COX) and lipoxygenase (LO) enzymatic pathways, form metabolites that are mostly inflammatory, while the third route of metabolism results from the oxidation by the cytochrome P450 enzymes to form hydroxylated PUFA and epoxide metabolites. These epoxygenated fatty acids (EpFA) demonstrate largely anti-inflammatory and beneficial properties, in contrast to the other metabolites formed from the degradation of PUFA. Dysregulation of these systems often leads to chronic disease. Pharmaceutical targets of disease focus on preventing the formation of inflammatory metabolites from the COX and LO pathways, while maintaining the EpFA and increasing their concentration in the body is seen as beneficial to treating and preventing disease. The soluble epoxide hydrolase (sEH) is the major route of metabolism of EpFA. Inhibiting its activity increases concentrations of beneficial EpFA, and often disease states correlate to mutations in the sEH enzyme that increase its activity and decrease the concentrations of EpFA in the body. Recent approaches to increasing EpFA include synthetic mimics that replicate biological activity of EpFA while preventing their metabolism, while other approaches focus on developing small molecule inhibitors to the sEH. Increasing EpFA concentrations in the body has demonstrated multiple beneficial effects in treating many diseases, including inflammatory and painful conditions, cardiovascular disease, neurological and disease of the central nervous system. Demonstration of efficacy in so many disease states can be explained by the fundamental mechanism that EpFA have of maintaining healthy microvasculature and preventing mitochondrial and endoplasmic reticulum stress. While there are no FDA approved methods that target the sEH or other enzymes responsible for metabolizing EpFA, current clinical efforts to test for efficacy by increasing EpFA that include inhibiting the sEH or administration of EpFA mimics that block metabolism are in progress.
Collapse
Affiliation(s)
- Cindy McReynolds
- Department of Entomology and Nematology, and U.C. Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
- EicOsis, Davis, CA, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, and U.C. Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Karen Wagner
- Department of Entomology and Nematology, and U.C. Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
- EicOsis, Davis, CA, USA
| | - Bruce Hammock
- Department of Entomology and Nematology, and U.C. Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
13
|
De Decker A, Vliegen G, Van Rompaey D, Peeraer A, Bracke A, Verckist L, Jansen K, Geiss-Friedlander R, Augustyns K, De Winter H, De Meester I, Lambeir AM, Van der Veken P. Novel Small Molecule-Derived, Highly Selective Substrates for Fibroblast Activation Protein (FAP). ACS Med Chem Lett 2019; 10:1173-1179. [PMID: 31413802 DOI: 10.1021/acsmedchemlett.9b00191] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/09/2019] [Indexed: 01/04/2023] Open
Abstract
Fibroblast activation protein (FAP) is a proline-selective serine protease. It is hardly expressed in healthy adult tissue but upregulated in tissue remodeling sites associated with several diseases including epithelial cancer types, atherosclerosis, arthritis and fibrosis. Ongoing research aims at clinical implementation of FAP as a biomarker for these diseases. Several immunochemical methods that quantify FAP expression have been reported. An alternative/complementary approach focuses on quantification of FAP's enzymatic activity. Developing an activity-based assay for FAP has nonetheless proven challenging because of selectivity issues with respect to prolyl oligopeptidase (PREP). Here, we present substrate-type FAP probes that are structurally derived from a FAP-inhibitor (UAMC1110) that we published earlier. Both cleavage efficiency and FAP-selectivity of the best compounds in the series equal or surpass the most advanced peptide-based FAP substrates reported to date. Finally, proof-of-concept is provided that 4-aminonaphthol containing probes can spatially localize FAP activity in biological samples.
Collapse
Affiliation(s)
- An De Decker
- Laboratory of Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Antwerp), Belgium
| | - Gwendolyn Vliegen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Antwerp), Belgium
| | - Dries Van Rompaey
- Laboratory of Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Antwerp), Belgium
| | - Anke Peeraer
- Laboratory of Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Antwerp), Belgium
| | - An Bracke
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Antwerp), Belgium
| | - Line Verckist
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Antwerp), Belgium
| | - Koen Jansen
- Laboratory of Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Antwerp), Belgium
| | - Ruth Geiss-Friedlander
- Institut für Molekularbiologie, Universitätsmedizin Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Antwerp), Belgium
| | - Hans De Winter
- Laboratory of Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Antwerp), Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Antwerp), Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Antwerp), Belgium
| | - Pieter Van der Veken
- Laboratory of Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Antwerp), Belgium
| |
Collapse
|
14
|
Jia L, Miao C, Dong F, Li W, Wang M, Zheng QH, Xu Z. Facile synthesis of carbon-11-labeled sEH/PDE4 dual inhibitors as new potential PET agents for imaging of sEH/PDE4 enzymes in neuroinflammation. Bioorg Med Chem Lett 2019; 29:1654-1659. [PMID: 31047754 DOI: 10.1016/j.bmcl.2019.04.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 02/05/2023]
Abstract
To develop PET tracers for imaging of neuroinflammation, new carbon-11-labeled sEH/PDE4 dual inhibitors have been synthesized. The reference standard N-(4-methoxy-2-(trifluoromethyl)benzyl)benzamide (1) and its corresponding desmethylated precursor N-(4-hydroxy-2-(trifluoromethyl)benzyl)benzamide (2) were synthesized from (4-methoxy-2-(trifluoromethyl)phenyl)methanamine and benzoic acid in one and two steps with 84% and 49% overall chemical yield, respectively. The standard N-(4-methoxy-2-(trifluoromethyl)benzyl)-1-propionylpiperidine-4-carboxamide (MPPA, 4) and its precursor N-(4-hydroxy-2-(trifluoromethyl)benzyl)-1-propionylpiperidine-4-carboxamide (5) were synthesized from methyl 4-piperidinecarboxylate, propionyl chloride and (4-methoxy-2-(trifluoromethyl)phenyl)methanamine in two and three steps with 62% and 34% overall chemical yield, respectively. The target tracers N-(4-[11C]methoxy-2-(trifluoromethyl)benzyl)benzamide ([11C]1) and N-(4-[11C]methoxy-2-(trifluoromethyl)benzyl)-1-propionylpiperidine-4-carboxamide ([11C]MPPA, [11C]4) were prepared from their corresponding precursors 2 and 5 with [11C]CH3OTf through O-[11C]methylation and isolated by HPLC combined with SPE in 25-35% radiochemical yield, based on [11C]CO2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the molar activity (AM) at EOB was 370-740 GBq/μmol with a total synthesis time of 35-40-minutes from EOB.
Collapse
Affiliation(s)
- Limeng Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China
| | - Caihong Miao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China
| | - Fugui Dong
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China
| | - Wei Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China
| | - Min Wang
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 1345 West 16(th) Street, Room 202, Indianapolis, IN 46202, USA
| | - Qi-Huang Zheng
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 1345 West 16(th) Street, Room 202, Indianapolis, IN 46202, USA.
| | - Zhidong Xu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China; College of Chemical & Pharmaceutical Engineering, Key Laboratory of Molecular Chemistry for Medicine of Hebei Province, Hebei University of Science & Technology, Shijiazhuang, Hebei 050018, China; Shijiazhuang Vince Pharmatech Co., Ltd., Shijiazhuang, Hebei 050030, China.
| |
Collapse
|
15
|
Upchurch C, Leitinger N. Biologically Active Lipids in Vascular Biology. FUNDAMENTALS OF VASCULAR BIOLOGY 2019. [DOI: 10.1007/978-3-030-12270-6_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|