1
|
Shi H, Yu J, Li L, Ji M, Li R, Peng T, Cheng Y, Wang T, Yang L, Wu Z, Zhang G, Wang F, Lu X. Design, Synthesis, and Antitumor Activity Evaluation of 2-Phenylthiazole-5-Carboxylic Acid Derivatives Targeting Transactivation Response RNA-Binding Protein 2. J Med Chem 2025; 68:421-447. [PMID: 39722648 DOI: 10.1021/acs.jmedchem.4c02041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Transactivation response (TAR) RNA-binding protein 2 (TRBP) plays a critical role in microRNA (miRNA) biosynthesis, with aberrant expression linked to various cancers. Previously, we identified CIB-3b, a phenyloxazole derivative that disrupts the TRBP-Dicer interaction in hepatocellular carcinoma (HCC). In this study, we optimized this scaffold and substituent, leading to the discovery of CIB-L43, a 2-phenylthiazole-5-carboxylic acid derivative with nanomolar inhibitory activity (EC50 = 0.66 nM). CIB-L43 demonstrated superior TRBP binding affinity (KD = 4.78 nM) and enhanced disruption of TRBP-Dicer interactions (IC50 = 2.34 μM). Mechanistically, CIB-L43 suppressed oncogenic miR-21 biosynthesis, increasing PTEN and Smad7 expression and inhibiting AKT and TGF-β signaling, thereby reducing HCC cell proliferation and migration. In vivo, CIB-L43 exhibited favorable pharmacokinetics, including 53.9% oral bioavailability, and comparable antitumor efficacy to first-line anticancer drug, sorafenib, with lower toxicity. CIB-L43 emerges as a promising HCC treatment candidate with potent TRBP inhibition and favorable drug-like properties.
Collapse
Affiliation(s)
- Hailong Shi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialing Yu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Ji
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runze Li
- Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ting Peng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Yao Cheng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linhan Yang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Wu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaoxia Lu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
2
|
Han T, Hao Q, Chao T, Sun Q, Chen Y, Gao B, Guan L, Ren W, Zhou X. Extracellular vesicles in cancer: golden goose or Trojan horse. J Mol Cell Biol 2024; 16:mjae025. [PMID: 38796692 PMCID: PMC11540518 DOI: 10.1093/jmcb/mjae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/16/2024] [Accepted: 05/24/2024] [Indexed: 05/28/2024] Open
Abstract
Intercellular communication can be mediated by direct cell-to-cell contact and indirect interactions through secretion of soluble chemokines, cytokines, and growth factors. Extracellular vesicles (EVs) have emerged as important mediators of cell-to-cell and cell-to-environment communications. EVs from tumor cells, immune cells, and stromal cells can remodel the tumor microenvironment and promote cancer cell survival, proliferation, metastasis, immune evasion, and therapeutic resistance. Most importantly, EVs as natural nanoparticles can be manipulated to serve as a potent delivery system for targeted cancer therapy. EVs can be engineered or modified to improve their ability to target tumors and deliver therapeutic substances, such as chemotherapeutic drugs, nucleic acids, and proteins, for the treatment of cancer. This review provides an overview of the biogenesis and recycling of EVs, discusses their roles in cancer development, and highlights their potential as a delivery system for targeted cancer therapy.
Collapse
Affiliation(s)
- Tao Han
- Institutes of Health Central Plains, Xinxiang Key Laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang 453003, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tengfei Chao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qinggang Sun
- Institutes of Health Central Plains, Xinxiang Key Laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang 453003, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Yitian Chen
- Institutes of Health Central Plains, Xinxiang Key Laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang 453003, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Bo Gao
- Umibio Co. Ltd, Shanghai 201210, China
| | - Liping Guan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Wenjie Ren
- Institutes of Health Central Plains, Xinxiang Key Laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Gan L, Zheng L, Zou J, Luo P, Chen T, Zou J, Li W, Chen Q, Cheng L, Zhang F, Qian B. MicroRNA-21 in urologic cancers: from molecular mechanisms to clinical implications. Front Cell Dev Biol 2024; 12:1437951. [PMID: 39114567 PMCID: PMC11304453 DOI: 10.3389/fcell.2024.1437951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
The three most common kinds of urologic malignancies are prostate, bladder, and kidney cancer, which typically cause substantial morbidity and mortality. Early detection and effective treatment are essential due to their high fatality rates. As a result, there is an urgent need for innovative research to improve the clinical management of patients with urologic cancers. A type of small noncoding RNAs of 22 nucleotides, microRNAs (miRNAs) are well-known for their important roles in a variety of developmental processes. Among these, microRNA-21 (miR-21) stands out as a commonly studied miRNA with implications in tumorigenesis and cancer development, particularly in urological tumors. Recent research has shed light on the dysregulation of miR-21 in urological tumors, offering insights into its potential as a prognostic, diagnostic, and therapeutic tool. This review delves into the pathogenesis of miR-21 in prostate, bladder, and renal cancers, its utility as a cancer biomarker, and the therapeutic possibilities of targeting miR-21.
Collapse
Affiliation(s)
- Lifeng Gan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Le Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Fangtao Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| |
Collapse
|
4
|
Liu S, Sui J, Luo B, Zhang J, Xiang X, Yang T, Luo Y, Liu J. Discovery of 5-(Piperidin-4-yl)-1,2,4-oxadiazole Derivatives as a New Class of Human Caseinolytic Protease P Agonists for the Treatment of Hepatocellular Carcinoma. J Med Chem 2024; 67:10622-10642. [PMID: 38905539 DOI: 10.1021/acs.jmedchem.4c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Chemical agonism of human caseinolytic protease P (HsClpP) is increasingly being recognized as a potential anticancer strategy due to its critical role in maintaining mitochondrial homeostasis. We unveil the discovery of 5-(piperidin-4-yl)-1,2,4-oxadiazole derivatives as a novel class of HsClpP agonists and demonstrate for the first time the application of HsClpP agonists in the treatment of hepatocellular carcinoma (HCC) (Pace, A.; Pierro, P. The new era of 1,2,4-oxadiazoles. Org. Biomol. Chem. 2009, 7 (21), 4337-4348). Compound SL44 exhibited potent HsClpP agonistic activity in the α-casein hydrolysis assay (EC50 = 1.30 μM) and inhibited the proliferation of HCCLM3 cells (IC50 = 3.1 μM, 21.4-fold higher than hit ADX-47273). Mechanistically, SL44 induces degradation of respiratory chain complex subunits and leads to apoptosis in HCC cells. In vivo results demonstrated that SL44 has potent tumor growth inhibitory activity and has a superior safety profile compared to the kinase inhibitor sorafenib. Overall, we developed a novel class of HsClpP agonists that can potentially be used for the treatment of HCC.
Collapse
Affiliation(s)
- Song Liu
- Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Sui
- Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Baozhu Luo
- Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiangnan Zhang
- Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinrong Xiang
- Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yang
- Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Liu
- Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Xiong L, Zhang Y, Wang J, Yu M, Huang L, Hou Y, Li G, Wang L, Li Y. Novel small molecule inhibitors targeting renal cell carcinoma: Status, challenges, future directions. Eur J Med Chem 2024; 267:116158. [PMID: 38278080 DOI: 10.1016/j.ejmech.2024.116158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Renal cell carcinoma (RCC) is the most common renal malignancy with a rapidly increasing morbidity and mortality rate gradually. RCC has a high mortality rate and an extremely poor prognosis. Despite numerous treatment strategies, RCC is resistant to conventional radiotherapy and chemotherapy. In addition, the limited clinical efficacy and inevitable resistance of multiple agents suggest an unmet clinical need. Therefore, there is an urgent need to develop novel anti-RCC candidates. Nowadays many promising results have been achieved with the development of novel small molecule inhibitors against RCC. This paper reviews the recent research progress of novel small molecule inhibitors targeting RCC. It is focusing on the structural optimization process and conformational relationships of small molecule inhibitors, as well as the potential mechanisms and anticancer activities for the treatment of RCC. To provide a theoretical basis for promoting the clinical translation of novel small molecule inhibitors, we discussed their application prospects and future development directions. It could be capable of improving the clinical efficacy of RCC and improving the therapy resistance for RCC.
Collapse
Affiliation(s)
- Lin Xiong
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Ya Zhang
- College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Min Yu
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Liming Huang
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Yanpei Hou
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Guisen Li
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Li Wang
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Yi Li
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
6
|
Keshavarzi Arshadi A, Salem M, Karner H, Garcia K, Arab A, Yuan JS, Goodarzi H. Functional microRNA-targeting drug discovery by graph-based deep learning. PATTERNS (NEW YORK, N.Y.) 2024; 5:100909. [PMID: 38264717 PMCID: PMC10801238 DOI: 10.1016/j.patter.2023.100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 11/09/2023] [Accepted: 12/07/2023] [Indexed: 01/25/2024]
Abstract
MicroRNAs are recognized as key drivers in many cancers but targeting them with small molecules remains a challenge. We present RiboStrike, a deep-learning framework that identifies small molecules against specific microRNAs. To demonstrate its capabilities, we applied it to microRNA-21 (miR-21), a known driver of breast cancer. To ensure selectivity toward miR-21, we performed counter-screens against miR-122 and DICER. Auxiliary models were used to evaluate toxicity and rank the candidates. Learning from various datasets, we screened a pool of nine million molecules and identified eight, three of which showed anti-miR-21 activity in both reporter assays and RNA sequencing experiments. Target selectivity of these compounds was assessed using microRNA profiling and RNA sequencing analysis. The top candidate was tested in a xenograft mouse model of breast cancer metastasis, demonstrating a significant reduction in lung metastases. These results demonstrate RiboStrike's ability to nominate compounds that target the activity of miRNAs in cancer.
Collapse
Affiliation(s)
- Arash Keshavarzi Arshadi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Milad Salem
- Department of Computer Engineering, University of Central Florida, Orlando, FL, USA
| | - Heather Karner
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kristle Garcia
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Abolfazl Arab
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Jiann Shiun Yuan
- Department of Computer Engineering, University of Central Florida, Orlando, FL, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Wang S, Liu T, Ren C, Wu W, Zhao Z, Pang S, Zhang Y. Predicting potential small molecule-miRNA associations utilizing truncated schatten p-norm. Brief Bioinform 2023; 24:bbad234. [PMID: 37366591 DOI: 10.1093/bib/bbad234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
MicroRNAs (miRNAs) have significant implications in diverse human diseases and have proven to be effectively targeted by small molecules (SMs) for therapeutic interventions. However, current SM-miRNA association prediction models do not adequately capture SM/miRNA similarity. Matrix completion is an effective method for association prediction, but existing models use nuclear norm instead of rank function, which has some drawbacks. Therefore, we proposed a new approach for predicting SM-miRNA associations by utilizing the truncated schatten p-norm (TSPN). First, the SM/miRNA similarity was preprocessed by incorporating the Gaussian interaction profile kernel similarity method. This identified more SM/miRNA similarities and significantly improved the SM-miRNA prediction accuracy. Next, we constructed a heterogeneous SM-miRNA network by combining biological information from three matrices and represented the network with its adjacency matrix. Finally, we constructed the prediction model by minimizing the truncated schatten p-norm of this adjacency matrix and we developed an efficient iterative algorithmic framework to solve the model. In this framework, we also used a weighted singular value shrinkage algorithm to avoid the problem of excessive singular value shrinkage. The truncated schatten p-norm approximates the rank function more closely than the nuclear norm, so the predictions are more accurate. We performed four different cross-validation experiments on two separate datasets, and TSPN outperformed various most advanced methods. In addition, public literature confirms a large number of predictive associations of TSPN in four case studies. Therefore, TSPN is a reliable model for SM-miRNA association prediction.
Collapse
Affiliation(s)
- Shudong Wang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Tiyao Liu
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Chuanru Ren
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Wenhao Wu
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Zhiyuan Zhao
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Shanchen Pang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Yuanyuan Zhang
- College of Information and Control Engineering, Qingdao University of Technology, Qingdao 266580, China
| |
Collapse
|
8
|
Liu Y, Zhang H, Fang Y, Tang D, Luo Z. Non-coding RNAs in renal cell carcinoma: Implications for drug resistance. Biomed Pharmacother 2023; 164:115001. [PMID: 37315433 DOI: 10.1016/j.biopha.2023.115001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023] Open
Abstract
Renal cell carcinoma (RCC) represents a malignant tumor of the urinary system. Individuals with early-stage RCC could be cured by surgical treatment, but a considerable number of cases of advanced RCC progress to drug resistance. Recently, numerous reports have demonstrated that a variety of non-coding RNAs (ncRNAs) contribute to tumor occurrence and development. ncRNAs can act as oncogenic or tumor suppressor genes to regulate proliferation, migration, drug resistance and other processes in RCC cells through a variety of signaling pathways. Considering the lack of treatment options for advanced RCC after drug resistance, ncRNAs may be a good choice as biomarkers of drug resistance in RCC and targets to overcome drug resistance. In this review, we discussed the effects of ncRNAs on drug resistance in RCC and the great potential of ncRNAs as a biomarker of or a new therapeutic method in RCC.
Collapse
Affiliation(s)
- Yiqi Liu
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Hu Zhang
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Dongshan Tang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China.
| | - Zhigang Luo
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
9
|
Arshadi AK, Salem M, Karner H, Garcia K, Arab A, Yuan JS, Goodarzi H. Functional microRNA-Targeting Drug Discovery by Graph-Based Deep Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.524005. [PMID: 36711761 PMCID: PMC9882104 DOI: 10.1101/2023.01.13.524005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
MicroRNAs are recognized as key drivers in many cancers, but targeting them with small molecules remains a challenge. We present RiboStrike, a deep learning framework that identifies small molecules against specific microRNAs. To demonstrate its capabilities, we applied it to microRNA-21 (miR-21), a known driver of breast cancer. To ensure the selected molecules only targeted miR-21 and not other microRNAs, we also performed a counter-screen against DICER, an enzyme involved in microRNA biogenesis. Additionally, we used auxiliary models to evaluate toxicity and select the best candidates. Using datasets from various sources, we screened a pool of nine million molecules and identified eight, three of which showed anti-miR-21 activity in both reporter assays and RNA sequencing experiments. One of these was also tested in mouse models of breast cancer, resulting in a significant reduction of lung metastases. These results demonstrate RiboStrike’s ability to effectively screen for microRNA-targeting compounds in cancer.
Collapse
|
10
|
Gibaut QMR, Akahori Y, Bush JA, Taghavi A, Tanaka T, Aikawa H, Ryan LS, Paegel BM, Disney MD. Study of an RNA-Focused DNA-Encoded Library Informs Design of a Degrader of a r(CUG) Repeat Expansion. J Am Chem Soc 2022; 144:21972-21979. [PMID: 36399603 PMCID: PMC9878440 DOI: 10.1021/jacs.2c08883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A solid-phase DNA-encoded library (DEL) was studied for binding the RNA repeat expansion r(CUG)exp, the causative agent of the most common form of adult-onset muscular dystrophy, myotonic dystrophy type 1 (DM1). A variety of uncharged and novel RNA binders were identified to selectively bind r(CUG)exp by using a two-color flow cytometry screen. The cellular activity of one binder was augmented by attaching it with a module that directly cleaves r(CUG)exp. In DM1 patient-derived muscle cells, the compound specifically bound r(CUG)exp and allele-specifically eliminated r(CUG)exp, improving disease-associated defects. The approaches herein can be used to identify and optimize ligands and bind RNA that can be further augmented for functionality including degradation.
Collapse
Affiliation(s)
- Quentin M. R. Gibaut
- Department of Chemistry, UF Scripps Biomedical Research and The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Yoshihiro Akahori
- Department of Chemistry, UF Scripps Biomedical Research and The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Jessica A. Bush
- Department of Chemistry, UF Scripps Biomedical Research and The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Amirhossein Taghavi
- Department of Chemistry, UF Scripps Biomedical Research and The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Toru Tanaka
- Department of Chemistry, UF Scripps Biomedical Research and The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Haruo Aikawa
- Department of Chemistry, UF Scripps Biomedical Research and The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Lucas S. Ryan
- Department of Chemistry, UF Scripps Biomedical Research and The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Brian M. Paegel
- Department of Chemistry, UF Scripps Biomedical Research and The Scripps Research Institute, Jupiter, Florida 33458, United States; Department of Chemistry and Pharmaceutical Sciences, University of California, Irvine, California 92617, United States
| | - Matthew D. Disney
- Department of Chemistry, UF Scripps Biomedical Research and The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|
11
|
Larrue R, Fellah S, Van der Hauwaert C, Hennino MF, Perrais M, Lionet A, Glowacki F, Pottier N, Cauffiez C. The Versatile Role of miR-21 in Renal Homeostasis and Diseases. Cells 2022; 11:cells11213525. [PMID: 36359921 PMCID: PMC9657972 DOI: 10.3390/cells11213525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA species that control gene expression and confer robustness to biological processes. Over the last two decades, their important roles during kidney development, homeostasis and the treatment of diseases have been established, in particular during the onset and progression of various forms of acute and chronic renal disorders. In recent years, miR-21, one of the best-characterized miRNAs to date, has received much attention in renal physiology in particular given its high degree of conservation and expression in kidneys, as well as its potent pathogenic role in various debilitating renal diseases. This review summarizes the current knowledge on miR-21’s involvement in both renal homeostasis and diseases, in particular its double-edged-sword role in acute versus chronic kidney injuries. Finally, we also discuss the potential of miR-21 as a biomarker and therapeutic target in renal diseases.
Collapse
Affiliation(s)
- Romain Larrue
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Sandy Fellah
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Cynthia Van der Hauwaert
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- CHU Lille, Département de la Recherche en Santé, F-59000 Lille, France
| | | | - Michaël Perrais
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Arnaud Lionet
- CHU Lille, Service de Néphrologie, F-59000 Lille, France
| | - François Glowacki
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- CHU Lille, Service de Néphrologie, F-59000 Lille, France
| | - Nicolas Pottier
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Christelle Cauffiez
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- Correspondence:
| |
Collapse
|
12
|
Chaudhry T, Coxon CR, Ross K. Trading places: Peptide and small molecule alternatives to oligonucleotide-based modulation of microRNA expression. Drug Discov Today 2022; 27:103337. [PMID: 35995360 DOI: 10.1016/j.drudis.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/13/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022]
Abstract
It is well established that microRNA (miRNA) dysregulation is involved in the development and progression of various diseases, especially cancer. Emerging evidence suggests that small molecule and peptide agents can interfere with miRNA disease pathways. Despite this, very little is known about structural features that drive drug-miRNA interactions and subsequent inhibition. In this review, we highlight the advances made in the development of small molecule and peptide inhibitors of miRNA processing. Specifically, we attempt to draw attention to peptide features that may be critical for interaction with the miRNA secondary structure to regulate miRNA expression. We hope that this review will help to establish peptides as exciting miRNA expression modulators and will contribute towards the development of the first miRNA-targeting peptide therapy.
Collapse
Affiliation(s)
- Talhat Chaudhry
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool, UK; Institute for Health Research, Liverpool John Moores University, Liverpool, UK
| | - Christopher R Coxon
- EaStChem School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH14 4AS, UK
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool, UK; Institute for Health Research, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
13
|
Noncoding RNAs Emerging as Drugs or Drug Targets: Their Chemical Modification, Bio-Conjugation and Intracellular Regulation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196717. [PMID: 36235253 PMCID: PMC9573214 DOI: 10.3390/molecules27196717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
With the increasing understanding of various disease-related noncoding RNAs, ncRNAs are emerging as novel drugs and drug targets. Nucleic acid drugs based on different types of noncoding RNAs have been designed and tested. Chemical modification has been applied to noncoding RNAs such as siRNA or miRNA to increase the resistance to degradation with minimum influence on their biological function. Chemical biological methods have also been developed to regulate relevant noncoding RNAs in the occurrence of various diseases. New strategies such as designing ribonuclease targeting chimeras to degrade endogenous noncoding RNAs are emerging as promising approaches to regulate gene expressions, serving as next-generation drugs. This review summarized the current state of noncoding RNA-based theranostics, major chemical modifications of noncoding RNAs to develop nucleic acid drugs, conjugation of RNA with different functional biomolecules as well as design and screening of potential molecules to regulate the expression or activity of endogenous noncoding RNAs for drug development. Finally, strategies of improving the delivery of noncoding RNAs are discussed.
Collapse
|
14
|
Akhtarkhavari T, Bahrami AR, M Matin M. Downregulation of miR-21 as a promising strategy to overcome drug resistance in cancer. Eur J Pharmacol 2022; 932:175233. [PMID: 36038011 DOI: 10.1016/j.ejphar.2022.175233] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
Despite tremendous achievements in the field of targeted cancer therapy, chemotherapy is still the main treatment option, which is challenged by acquired drug resistance. Various microRNAs are involved in developing drug-resistant cells. miR-21 is one of the first identified miRNAs involved in this process. Here, we conducted a literature review to categorize different mechanisms employed by miR-21 to drive drug resistance. miR-21 targets various genes involved in many pathways that can justify chemoresistance. It alters cancer cell metabolism and facilitates adaptation to the new environment. It also enhances drug detoxification in cancerous cells and increases genomic instability. We also summarized various strategies applied for the inhibition of miR-21 in order to reverse cancer drug resistance. These strategies include the delivery of antagomiRs, miRZip knockdown vectors, inhibitory small molecules, CRISPR-Cas9 technology, catalytic nucleic acids, artificial DNA and RNA sponges, and nanostructures like mesoporous silica nanoparticles, dendrimers, and exosomes. Furthermore, current challenges and limitations in targeting miR-21 are discussed in this article. Although huge progress has been made in the downregulation of miR-21 in drug-resistant cancer cells, there are still many challenges to be resolved. More research is still required to find the best strategy and timeline for the downregulation of miR-21 and also the most feasible approach for the delivery of this system into the tumor cells. In conclusion, downregulation of miR-21 would be a promising strategy to reverse chemoresistance, but still, more studies are required to clarify the aforementioned issues.
Collapse
Affiliation(s)
- Tara Akhtarkhavari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran.
| |
Collapse
|
15
|
Xi XX, Hei YY, Guo Y, Zhao HY, Xin M, Lu S, Jiang C, Zhang SQ. Identification of benzamides derivatives of norfloxacin as promising microRNA-21 inhibitors via repressing its transcription. Bioorg Med Chem 2022; 66:116803. [PMID: 35561631 DOI: 10.1016/j.bmc.2022.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022]
Abstract
MicroRNA-21 is a carcinogenic microRNA, whose overexpression arises in a variety of tumor tissues. Hence, microRNA-21 a prospective target for cancer treatment, and regulation of microRNA-21 by small molecule inhibitors is deemed as a promising approach for tumor therapy. In this work, to discover potent microRNA-21 inhibitor, series of 4-(N-norfloxacin-acyl)aminobenzamides were designed and synthesized, and their inhibitory effects were appraised by utilizing dual luciferase reporter assays. The results indicated that compound A7 was the most efficient microRNA-21 small molecule inhibitor. What's more, A7 suppressed the migration of Hela cells and the colony formation of Hela and HCT-116 cells as well as promoted apoptosis of Hela cells. In the mechanism study, results of RT-qPCR certified that A7 could reduce the level of mature microRNA-21 via disrupting its expression at the transcriptional level of its primary form "pri-miR-21", which was distinct from most previous inhibitors directly binding with pre-miR-21. Noticeably, Western blotting and RT-qPCR uncovered A7 could upregulate the expression PTEN, EGR1 and SLIT2, which are the downstream functional targets of microRNA-21. These findings demonstrated that A7 was a promising microRNA-21 small molecule inhibitor and 4-(N-norfloxacin-acyl) aminobenzamide can serve as a new scaffold for discovery of potent microRNA-21 inhibitor.
Collapse
Affiliation(s)
- Xiao-Xiao Xi
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Yuan-Yuan Hei
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Yuanxu Guo
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Hong-Yi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Shemin Lu
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710003, PR China; Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Congshan Jiang
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710003, PR China; Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, PR China.
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
16
|
Peng T, He Y, Wang T, Yu J, Ma X, Zhou Z, Sheng Y, Li L, Peng H, Li S, Zou J, Yuan Y, Zhao Y, Shi H, Li F, Liu W, Hu K, Lu X, Zhang G, Wang F. Discovery of a Novel Small-Molecule Inhibitor Disrupting TRBP-Dicer Interaction against Hepatocellular Carcinoma via the Modulation of microRNA Biogenesis. J Med Chem 2022; 65:11010-11033. [PMID: 35695407 DOI: 10.1021/acs.jmedchem.2c00189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are key players in human hepatocellular carcinoma (HCC) tumorigenesis. Therefore, small molecules targeting components of miRNA biogenesis may provide new therapeutic means for HCC treatment. By a high-throughput screening and structural simplification, we identified a small molecule, CIB-3b, which suppresses the growth and metastasis of HCC in vitro and in vivo by modulating expression profiles of miRNAome and proteome in HCC cells. Mechanistically, CIB-3b physically binds to transactivation response (TAR) RNA-binding protein 2 (TRBP) and disrupts the TRBP-Dicer interaction, thereby altering the activity of Dicer and mature miRNA production. Structure-activity relationship study via the synthesis of 45 CIB-3b derivatives showed that some compounds exhibited a similar inhibitory effect on miRNA biogenesis to CIB-3b. These results support TRBP as a potential therapeutic target in HCC and warrant further development of CIB-3b along with its analogues as a novel therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Ting Peng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujiao He
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Tao Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jialing Yu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofang Ma
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zongyuan Zhou
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Sheng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huipan Peng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Sheng Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jiawei Zou
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yi Yuan
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yongyun Zhao
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Hailong Shi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wanli Liu
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Kaifeng Hu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaoxia Lu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Xiongan Institute of Innovation, Chinese Academy of Sciences, Hebei 071700, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Xiongan Institute of Innovation, Chinese Academy of Sciences, Hebei 071700, China
| |
Collapse
|
17
|
Ahmadpour S, Taghavi T, Sheida A, Tamehri Zadeh SS, Hamblin MR, Mirzaei H. Effects of microRNAs and long non-coding RNAs on chemotherapy response in glioma. Epigenomics 2022; 14:549-563. [PMID: 35473299 DOI: 10.2217/epi-2021-0439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Glioma is the most prevalent invasive primary tumor of the central nervous system. Glioma cells can spread and infiltrate into normal surrounding brain tissues. Despite the standard use of chemotherapy and radiotherapy after surgery in glioma patients, treatment resistance is still a problem, as the underlying mechanisms are still not fully understood. Non-coding RNAs are widely involved in tumor progression and treatment resistance mechanisms. In the present review, we discuss the pathways by which microRNAs and long non-coding RNAs can affect resistance to chemotherapy and radiotherapy, as well as offer potential therapeutic options for future glioma treatment.
Collapse
Affiliation(s)
- Sara Ahmadpour
- Department of Biotechnology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | | | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
18
|
Szczepanek J, Skorupa M, Tretyn A. MicroRNA as a Potential Therapeutic Molecule in Cancer. Cells 2022; 11:1008. [PMID: 35326459 PMCID: PMC8947269 DOI: 10.3390/cells11061008] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Small noncoding RNAs, as post-translational regulators of many target genes, are not only markers of neoplastic disease initiation and progression, but also markers of response to anticancer therapy. Hundreds of miRNAs have been identified as biomarkers of drug resistance, and many have demonstrated the potential to sensitize cancer cells to therapy. Their properties of modulating the response of cells to therapy have made them a promising target for overcoming drug resistance. Several methods have been developed for the delivery of miRNAs to cancer cells, including introducing synthetic miRNA mimics, DNA plasmids containing miRNAs, and small molecules that epigenetically alter endogenous miRNA expression. The results of studies in animal models and preclinical studies for solid cancers and hematological malignancies have confirmed the effectiveness of treatment protocols using microRNA. Nevertheless, the use of miRNAs in anticancer therapy is not without limitations, including the development of a stable nanoconstruct, delivery method choices, and biodistribution. The aim of this review was to summarize the role of miRNAs in cancer treatment and to present new therapeutic concepts for these molecules. Supporting anticancer therapy with microRNA molecules has been verified in numerous clinical trials, which shows great potential in the treatment of cancer.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Ul. Wilenska 4, 87-100 Torun, Poland;
| | - Monika Skorupa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Ul. Wilenska 4, 87-100 Torun, Poland;
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Ul. Lwowska 1, 87-100 Torun, Poland;
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Ul. Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
19
|
Hei YY, Wang S, Xi XX, Wang HP, Guo Y, Xin M, Jiang C, Lu S, Zhang SQ. Design, synthesis, and evaluation of fluoroquinolone derivatives as MicroRNA-21 small-molecule inhibitors. J Pharm Anal 2022; 12:653-663. [PMID: 36105166 PMCID: PMC9463491 DOI: 10.1016/j.jpha.2021.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 01/10/2023] Open
Abstract
MicroRNA-21 (miRNA-21) is highly expressed in various tumors. Small-molecule inhibition of miRNA-21 is considered to be an attractive novel cancer therapeutic strategy. In this study, fluoroquinolone derivatives A1–A43 were synthesized and used as miRNA-21 inhibitors. Compound A36 showed the most potent inhibitory activity and specificity for miRNA-21 in a dual-luciferase reporter assay in HeLa cells. Compound A36 significantly reduced the expression of mature miRNA-21 and increased the protein expression of miRNA-21 target genes, including programmed cell death protein 4 (PDCD4) and phosphatase and tensin homology deleted on chromosome ten (PTEN), at 10 μM in HeLa cells. The Cell Counting Kit-8 assay (CCK-8) was used to evaluate the antiproliferative activity of A36; the results showed that the IC50 value range of A36 against six tumor cell lines was between 1.76 and 13.0 μM. Meanwhile, A36 did not display cytotoxicity in BEAS-2B cells (lung epithelial cells from a healthy human donor). Furthermore, A36 significantly induced apoptosis, arrested cells at the G0/G1 phase, and inhibited cell-colony formation in HeLa cells. In addition, mRNA deep sequencing showed that treatment with A36 could generate 171 dysregulated mRNAs in HeLa cells, while the expression of miRNA-21 target gene dual-specificity phosphatase 5 (DUSP5) was significantly upregulated at both the mRNA and protein levels. Collectively, these findings demonstrated that A36 is a novel miRNA-21 inhibitor. Fluoroquinolone derivatives A1–A43 were synthesized and evaluated as miRNA-21 small-compound inhibitors. The quinolone derivative A36 was validated as an active and specific miRNA-21 small-compound inhibitor. A36 displayed differential anti-cell proliferation activity between normal and miRNA-21-overexpressing cancer cells.
Collapse
Affiliation(s)
- Yuan-Yuan Hei
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China
| | - Si Wang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China
| | - Xiao-Xiao Xi
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Hai-Peng Wang
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Yuanxu Guo
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China
| | - Congshan Jiang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China
- Corresponding author. Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| | - Shemin Lu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China
- Corresponding author. Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
20
|
Chen X, Zhou C, Wang CC, Zhao Y. Predicting potential small molecule-miRNA associations based on bounded nuclear norm regularization. Brief Bioinform 2021; 22:6353837. [PMID: 34404088 DOI: 10.1093/bib/bbab328] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Mounting evidence has demonstrated the significance of taking microRNAs (miRNAs) as the target of small molecule (SM) drugs for disease treatment. Given the fact that exploring new SM-miRNA associations through biological experiments is extremely expensive, several computing models have been constructed to reveal the possible SM-miRNA associations. Here, we built a computing model of Bounded Nuclear Norm Regularization for SM-miRNA Associations prediction (BNNRSMMA). Specifically, we first constructed a heterogeneous SM-miRNA network utilizing miRNA similarity, SM similarity, confirmed SM-miRNA associations and defined a matrix to represent the heterogeneous network. Then, we constructed a model to complete this matrix by minimizing its nuclear norm. The Alternating Direction Method of Multipliers was adopted to minimize the nuclear norm and obtain predicted scores. The main innovation lies in two aspects. During completion, we limited all elements of the matrix within the interval of (0,1) to make sure they have practical significance. Besides, instead of strictly fitting all known elements, a regularization term was incorporated to tolerate the noise in integrated similarities. Furthermore, four kinds of cross-validations on two datasets and two types of case studies were performed to evaluate the predictive performance of BNNRSMMA. Finally, BNNRSMMA attained areas under the curve of 0.9822 (0.8433), 0.9793 (0.8852), 0.8253 (0.7350) and 0.9758 ± 0.0029 (0.8759 ± 0.0041) under global leave-one-out cross-validation (LOOCV), miRNA-fixed LOOCV, SM-fixed LOOCV and 5-fold cross-validation based on Dataset 1(Dataset 2), respectively. With regard to case studies, plenty of predicted associations have been verified by experimental literatures. All these results confirmed that BNNRSMMA is a reliable tool for inferring associations.
Collapse
Affiliation(s)
- Xing Chen
- Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou 221116, China
| | - Chi Zhou
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Yan Zhao
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
21
|
Pontes O, Oliveira-Pinto S, Baltazar F, Costa M. Renal cell carcinoma therapy: Current and new drug candidates. Drug Discov Today 2021; 27:304-314. [PMID: 34265458 DOI: 10.1016/j.drudis.2021.07.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022]
Abstract
Renal cell carcinoma (RCC) is the most common and lethal tumor of the urological system. Curative treatment of localized RCC includes nephrectomy, radio-ablation, and active surveillance, whereas metastatic RCC (mRCC) requires a combination of surgery and systemic therapy. Response to conventional therapy is limited but, recently, many novel therapies for mRCC have emerged, including targeted therapies and new immunotherapeutic agents. Nevertheless, development of resistance and limited durable responses demand new anticancer candidates with improved selectivity and efficacy. In this review, we summarize recent preclinical studies of novel natural and synthetic compounds to treat RCC, detailing their mechanisms of action and anticancer activities.
Collapse
Affiliation(s)
- Olívia Pontes
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Sofia Oliveira-Pinto
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Marta Costa
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
22
|
Maucort C, Vo DD, Aouad S, Charrat C, Azoulay S, Di Giorgio A, Duca M. Design and Implementation of Synthetic RNA Binders for the Inhibition of miR-21 Biogenesis. ACS Med Chem Lett 2021; 12:899-906. [PMID: 34141067 DOI: 10.1021/acsmedchemlett.0c00682] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/03/2021] [Indexed: 12/17/2022] Open
Abstract
Targeting RNAs using small molecules is an emerging field of medicinal chemistry and holds promise for the discovery of efficient tools for chemical biology. MicroRNAs are particularly interesting targets since they are involved in a number of pathologies such as cancers. Indeed, overexpressed microRNAs in cancer are oncogenic and various series of inhibitors of microRNAs biogenesis have been developed in recent years. Here, we describe the structure-based design of new efficient inhibitors of microRNA-21. Starting from a previously identified hit, we performed biochemical studies and molecular docking to design a new series of optimized conjugates of neomycin aminoglycoside with artificial nucleobases and amino acids. Investigation about the mode of action and the site of the interaction of the newly synthesized compounds allowed for the description of structure-activity relationships and the identification of the most important parameters for miR-21 inhibition.
Collapse
Affiliation(s)
- Chloé Maucort
- Université Côte d’Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06100 Nice, France
| | - Duc Duy Vo
- Université Côte d’Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06100 Nice, France
| | - Samy Aouad
- Université Côte d’Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06100 Nice, France
| | - Coralie Charrat
- Université Côte d’Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06100 Nice, France
| | - Stéphane Azoulay
- Université Côte d’Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06100 Nice, France
| | - Audrey Di Giorgio
- Université Côte d’Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06100 Nice, France
| | - Maria Duca
- Université Côte d’Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06100 Nice, France
| |
Collapse
|
23
|
Hong M, Sun H, Yang Q, Cheng S, Yu S, Fan S, Li C, Cui C, Tan W. A microRNA-21-responsive doxorubicin-releasing sticky-flare for synergistic anticancer with silencing of microRNA and chemotherapy. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Baisden JT, Childs-Disney JL, Ryan LS, Disney MD. Affecting RNA biology genome-wide by binding small molecules and chemically induced proximity. Curr Opin Chem Biol 2021; 62:119-129. [PMID: 34118759 PMCID: PMC9264282 DOI: 10.1016/j.cbpa.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/08/2023]
Abstract
The ENCODE and genome-wide association projects have shown that much of the genome is transcribed into RNA and much less is translated into protein. These and other functional studies suggest that the druggable transcriptome is much larger than the druggable proteome. This review highlights approaches to define druggable RNA targets and structure-activity relationships across genomic RNA. Binding compounds can be identified and optimized into structure-specific ligands by using sequence-based design with various modes of action, for example, inhibiting translation or directing pre-mRNA splicing outcomes. In addition, strategies to direct protein activity against an RNA of interest via chemically induced proximity is a burgeoning area that has been validated both in cells and in preclinical animal models, and we describe that it may allow rapid access to new avenues to affect RNA biology. These approaches and the unique modes of action suggest that more RNAs are potentially amenable to targeting than proteins.
Collapse
Affiliation(s)
- Jared T Baisden
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Jessica L Childs-Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Lucas S Ryan
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA.
| |
Collapse
|
25
|
Abstract
RNAs are involved in an enormous range of cellular processes, including gene regulation, protein synthesis, and cell differentiation, and dysfunctional RNAs are associated with disorders such as cancers, neurodegenerative diseases, and viral infections. Thus, the identification of compounds with the ability to bind RNAs and modulate their functions is an exciting approach for developing next-generation therapies. Numerous RNA-binding agents have been reported over the past decade, but the design of synthetic molecules with selectivity for specific RNA sequences is still in its infancy. In this perspective, we highlight recent advances in targeting RNAs with synthetic molecules, and we discuss the potential value of this approach for the development of innovative therapeutic agents.
Collapse
Affiliation(s)
- Farzad Zamani
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Takayoshi Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
26
|
Yang L, Zou X, Zou J, Zhang G. A Review of Recent Research on the Role of MicroRNAs in Renal Cancer. Med Sci Monit 2021; 27:e930639. [PMID: 33963171 PMCID: PMC8114846 DOI: 10.12659/msm.930639] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Renal cell carcinoma (RCC) is a most common type of urologic neoplasms; it accounts for 3% of malignant tumors, with high rates of relapse and mortality. The most common types of renal cancer are clear cell carcinoma (ccRCC), papillary renal cell carcinoma (pRCC), and chromophobe renal carcinoma (chRCC), which account for 90%, 6–15%, and 2–5%, respectively, of all renal malignancies. Although surgical resection, chemotherapy, and radiotherapy are the most common treatment method for those diseases, their effects remain dissatisfactory. Furthermore, recent research shows that the treatment efficacy of checkpoint inhibitors in advanced RCC patients is widely variable. Hence, patients urgently need a new molecular biomarker for early diagnosis and evaluating the prognosis of RCC. MicroRNAs (miRNAs) belong to a family of short, non-coding RNAs that are highly conserved, have long half-life evolution, and post-transcriptionally regulate gene expression; they have been predicted to play crucial roles in tumor metastasis, invasion, angiogenesis, proliferation, apoptosis, epithelial-mesenchymal transition, differentiation, metabolism, cancer occurrence, and treatment resistance. Although some previous papers demonstrated that miRNAs play vital roles in renal cancer, such as pathogenesis, diagnosis, and prognosis, the roles of miRNAs in kidney cancer are still unclear. Therefore, we reviewed studies indexed in PubMed from 2017 to 2020, and found several studies suggesting that there are more than 82 miRNAs involved in renal cancers. The present review describes the current status of miRNAs in RCC and their roles in progression, diagnosis, therapy targeting, and prognosis of RCC.
Collapse
Affiliation(s)
- Longfei Yang
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| | - Xiaofeng Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| | - Junrong Zou
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| | - Guoxi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| |
Collapse
|
27
|
Melo de Oliveira VN, Flávia do Amaral Moura C, Peixoto ADS, Gonçalves Ferreira VP, Araújo HM, Lapa Montenegro Pimentel LM, Pessoa CDÓ, Nicolete R, Versiani Dos Anjos J, Sharma PP, Rathi B, Pena LJ, Rollin P, Tatibouët A, Nascimento de Oliveira R. Synthesis of alkynylated 1,2,4-oxadiazole/1,2,3-1H-triazole glycoconjugates: Discovering new compounds for use in chemotherapy against lung carcinoma and Mycobacterium tuberculosis. Eur J Med Chem 2021; 220:113472. [PMID: 33940463 DOI: 10.1016/j.ejmech.2021.113472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/25/2022]
Abstract
A total of forty-three compounds were synthesized, including thirty-two new ones. Among those compounds, seventeen were selected and tested on human tumor cell lines: PC-3 (prostate adenocarcinoma), HCT-116 (colorectal tumor), NCIH-460 (lung carcinoma), SKMEL-103 (melanoma) and AGP-01 (gastric tumor). Alkynylated 1,2,4-oxadiazoles 2m, 3g and 3k exhibited antiproliferative activities against NCIH-460 in culture. Alkynylated N-cyclohexyl-1,2,4-oxadiazoles 3a-m and bis-heterocycle glucoglycero-1,2,3-triazole-N-cyclohexyl-1,2,4-oxadiazole derivatives 5a-k and 6-11 were evaluated for their in vitro efficacy towards Mycobacterium tuberculosis (Mtb) H37Ra and H37Rv strains. In general, glycerosugars conjugated to 1,2,4-oxadiazole via a 1,2,3-triazole linkage (5a, 5e, 5j, 5k, and 7) showed in vitro inhibitory activity against Mtb (H37Rv). The largest molecules bis-triazoles 10 and 11, proved inactive against TB. Probably, the absence of the N-cyclohexyl group in compound 8 and 1,2,4-oxadiazole nucleus in compound 9 were responsible for its low activity. Glucoglycero-triazole-oxadiazole derivatives 5e (10 μM) and 7 (23.9 μM) were the most promising antitubercular compounds, showing a better selective index than when tested against RAW 264.7 and HepG2 cells. Vero cell were used to investigate cytotoxicity of compounds 5a, 5h, 5j, 5k, and these compounds showed good cell viability. Further, in silico studies were performed for most active compounds (5e and 7) with potential drug targets, DprE1 and InhA of Mtb to understand possible interactions aided with molecular dynamic simulation (100ns).
Collapse
Affiliation(s)
| | | | | | - Vanessa Pinheiro Gonçalves Ferreira
- Laboratorio de Oncologia Experimental, Nucleo de Pesquisa Em Desenvolvimento de Medicamentos (NPDM), Universidade Federal Do Ceara, Fortaleza, Brazil; Oswaldo Cruz Foundation (Fiocruz), Eusebio, Brazil
| | - Héverton Mendes Araújo
- Laboratorio de Oncologia Experimental, Nucleo de Pesquisa Em Desenvolvimento de Medicamentos (NPDM), Universidade Federal Do Ceara, Fortaleza, Brazil; Oswaldo Cruz Foundation (Fiocruz), Eusebio, Brazil
| | | | - Claudia do Ó Pessoa
- Laboratorio de Oncologia Experimental, Nucleo de Pesquisa Em Desenvolvimento de Medicamentos (NPDM), Universidade Federal Do Ceara, Fortaleza, Brazil
| | - Roberto Nicolete
- Laboratorio de Oncologia Experimental, Nucleo de Pesquisa Em Desenvolvimento de Medicamentos (NPDM), Universidade Federal Do Ceara, Fortaleza, Brazil; Oswaldo Cruz Foundation (Fiocruz), Eusebio, Brazil
| | | | - Prem Prakash Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi, India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi, India
| | - Lindomar José Pena
- Department of Virology, Oswaldo Cruz Foundation, Fiocruz, 50740-465, Recife, PE, Brazil
| | - Patrick Rollin
- Universite D'Orleans et CNRS, ICOA, UMR 7311, BP 6759, F-45067, Orleans, France
| | - Arnaud Tatibouët
- Universite D'Orleans et CNRS, ICOA, UMR 7311, BP 6759, F-45067, Orleans, France
| | | |
Collapse
|
28
|
Rybak MY, Balanda AO, Yatsyshyna AP, Kotey IM, Starosyla SA, Bdzhola VG, Lukash LL, Yarmoluk SM, Tukalo MA, Volynets GP. Discovery of novel antituberculosis agents among 3-phenyl-5-(1-phenyl-1H-[1,2,3]triazol-4-yl)-[1,2,4]oxadiazole derivatives targeting aminoacyl-tRNA synthetases. Sci Rep 2021; 11:7162. [PMID: 33785838 PMCID: PMC8010095 DOI: 10.1038/s41598-021-86562-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/17/2021] [Indexed: 02/05/2023] Open
Abstract
Antibiotic resistance is a major problem of tuberculosis treatment. This provides the stimulus for the search of novel molecular targets and approaches to reduce or forestall resistance emergence in Mycobacterium tuberculosis. Earlier, we discovered a novel small-molecular inhibitor among 3-phenyl-5-(1-phenyl-1H-[1,2,3]triazol-4-yl)-[1,2,4]oxadiazoles targeting simultaneously two enzymes-mycobacterial leucyl-tRNA synthetase (LeuRS) and methionyl-tRNA synthetase (MetRS), which are promising molecular targets for antibiotic development. Unfortunately, the identified inhibitor does not reveal antibacterial activity toward M. tuberculosis. This study aims to develop novel aminoacyl-tRNA synthetase inhibitors among this chemical class with antibacterial activity toward resistant strains of M. tuberculosis. We performed molecular docking of the library of 3-phenyl-5-(1-phenyl-1H-[1,2,3]triazol-4-yl)-[1,2,4]oxadiazole derivatives and selected 41 compounds for investigation of their inhibitory activity toward MetRS and LeuRS in aminoacylation assay and antibacterial activity toward M. tuberculosis strains using microdilution assay. In vitro screening resulted in 10 compounds active against MetRS and 3 compounds active against LeuRS. Structure-related relationships (SAR) were established. The antibacterial screening revealed 4 compounds active toward M. tuberculosis mono-resistant strains in the range of concentrations 2-20 mg/L. Among these compounds, only one compound 27 has significant enzyme inhibitory activity toward mycobacterial MetRS (IC50 = 148.5 µM). The MIC for this compound toward M. tuberculosis H37Rv strain is 12.5 µM. This compound is not cytotoxic to human HEK293 and HepG2 cell lines. Therefore, 3-phenyl-5-(1-phenyl-1H-[1,2,3]triazol-4-yl)-[1,2,4]oxadiazole derivatives can be used for further chemical optimization and biological research to find non-toxic antituberculosis agents with a novel mechanism of action.
Collapse
Affiliation(s)
- Mariia Yu Rybak
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine.
| | - Anatoliy O Balanda
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| | - Anna P Yatsyshyna
- Department of Human Genetics, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| | - Igor M Kotey
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| | - Sergiy A Starosyla
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| | - Volodymyr G Bdzhola
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| | - Lubov L Lukash
- Department of Human Genetics, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| | - Sergiy M Yarmoluk
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| | - Michael A Tukalo
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| | - Galyna P Volynets
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
29
|
Amin S, Alam MM, Akhter M, Najmi AK, Siddiqui N, Husain A, Shaquiquzzaman M. A review on synthetic procedures and applications of phosphorus oxychloride (POCl 3) in the last biennial period (2018–19). PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2020.1831499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shaista Amin
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - M. Mumtaz Alam
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mymoona Akhter
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - A. K. Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nadeem Siddiqui
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Asif Husain
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - M. Shaquiquzzaman
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
30
|
Raue R, Frank AC, Syed SN, Brüne B. Therapeutic Targeting of MicroRNAs in the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22042210. [PMID: 33672261 PMCID: PMC7926641 DOI: 10.3390/ijms22042210] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor-microenvironment (TME) is an amalgamation of various factors derived from malignant cells and infiltrating host cells, including cells of the immune system. One of the important factors of the TME is microRNAs (miRs) that regulate target gene expression at a post transcriptional level. MiRs have been found to be dysregulated in tumor as well as in stromal cells and they emerged as important regulators of tumorigenesis. In fact, miRs regulate almost all hallmarks of cancer, thus making them attractive tools and targets for novel anti-tumoral treatment strategies. Tumor to stroma cell cross-propagation of miRs to regulate protumoral functions has been a salient feature of the TME. MiRs can either act as tumor suppressors or oncogenes (oncomiRs) and both miR mimics as well as miR inhibitors (antimiRs) have been used in preclinical trials to alter cancer and stromal cell phenotypes. Owing to their cascading ability to regulate upstream target genes and their chemical nature, which allows specific pharmacological targeting, miRs are attractive targets for anti-tumor therapy. In this review, we cover a recent update on our understanding of dysregulated miRs in the TME and provide an overview of how these miRs are involved in current cancer-therapeutic approaches from bench to bedside.
Collapse
Affiliation(s)
- Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Ann-Christin Frank
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| |
Collapse
|
31
|
Kelly ML, Chu CC, Shi H, Ganser LR, Bogerd HP, Huynh K, Hou Y, Cullen BR, Al-Hashimi HM. Understanding the characteristics of nonspecific binding of drug-like compounds to canonical stem-loop RNAs and their implications for functional cellular assays. RNA (NEW YORK, N.Y.) 2021; 27:12-26. [PMID: 33028652 PMCID: PMC7749633 DOI: 10.1261/rna.076257.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/26/2020] [Indexed: 05/30/2023]
Abstract
Identifying small molecules that selectively bind an RNA target while discriminating against all other cellular RNAs is an important challenge in RNA-targeted drug discovery. Much effort has been directed toward identifying drug-like small molecules that minimize electrostatic and stacking interactions that lead to nonspecific binding of aminoglycosides and intercalators to many stem-loop RNAs. Many such compounds have been reported to bind RNAs and inhibit their cellular activities. However, target engagement and cellular selectivity assays are not routinely performed, and it is often unclear whether functional activity directly results from specific binding to the target RNA. Here, we examined the propensities of three drug-like compounds, previously shown to bind and inhibit the cellular activities of distinct stem-loop RNAs, to bind and inhibit the cellular activities of two unrelated HIV-1 stem-loop RNAs: the transactivation response element (TAR) and the rev response element stem IIB (RREIIB). All compounds bound TAR and RREIIB in vitro, and two inhibited TAR-dependent transactivation and RRE-dependent viral export in cell-based assays while also exhibiting off-target interactions consistent with nonspecific activity. A survey of X-ray and NMR structures of RNA-small molecule complexes revealed that aminoglycosides and drug-like molecules form hydrogen bonds with functional groups commonly accessible in canonical stem-loop RNA motifs, in contrast to ligands that specifically bind riboswitches. Our results demonstrate that drug-like molecules can nonspecifically bind stem-loop RNAs most likely through hydrogen bonding and electrostatic interactions and reinforce the importance of assaying for off-target interactions and RNA selectivity in vitro and in cells when assessing novel RNA-binders.
Collapse
Affiliation(s)
- Megan L Kelly
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Chia-Chieh Chu
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Honglue Shi
- Department of Chemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Laura R Ganser
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Hal P Bogerd
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Kelly Huynh
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Yuze Hou
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Bryan R Cullen
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Chemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
32
|
Liu J, Gao Y, Zhu Y, Zhu J, Wang C, Rui X, Yang K, Si D, Lin J, Yuan D, Wen H, Li W. Rhodium(III)-Catalyzed Oxidative Annulation of 4-Aminoquinolines and Acrylate through Two Consecutive C(sp 2)-H Activations. Org Lett 2020; 22:2657-2662. [PMID: 32186885 DOI: 10.1021/acs.orglett.0c00630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The C-H annulation of the five-position of quinolines and acrylates to afford heterocycles is an active field of research in organic synthesis. Herein the annulation of 4-aminoquinolines with acrylates through two consecutive C-H activations catalyzed by Rh(III) is described. The reaction proceeds with high atom efficiency under mild reaction conditions, and this protocol will provide appealing strategies for the synthesis of fused quinoline heterocycles.
Collapse
Affiliation(s)
- Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yi Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yehua Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Junru Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chao Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiyan Rui
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Kundi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Dongjuan Si
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiamin Lin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dandan Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
33
|
Zhang X, Xie K, Zhou H, Wu Y, Li C, Liu Y, Liu Z, Xu Q, Liu S, Xiao D, Tao Y. Role of non-coding RNAs and RNA modifiers in cancer therapy resistance. Mol Cancer 2020; 19:47. [PMID: 32122355 PMCID: PMC7050132 DOI: 10.1186/s12943-020-01171-z] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/24/2020] [Indexed: 02/08/2023] Open
Abstract
As the standard treatments for cancer, chemotherapy and radiotherapy have been widely applied to clinical practice worldwide. However, the resistance to cancer therapies is a major challenge in clinics and scientific research, resulting in tumor recurrence and metastasis. The mechanisms of therapy resistance are complicated and result from multiple factors. Among them, non-coding RNAs (ncRNAs), along with their modifiers, have been investigated to play key roles in regulating tumor development and mediating therapy resistance within various cancers, such as hepatocellular carcinoma, breast cancer, lung cancer, gastric cancer, etc. In this review, we attempt to elucidate the mechanisms underlying ncRNA/modifier-modulated resistance to chemotherapy and radiotherapy, providing some therapeutic potential points for future cancer treatment.
Collapse
Affiliation(s)
- Xinyi Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Cardiovascular Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Kai Xie
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Honghua Zhou
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Cardiovascular Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yuwei Wu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Cardiovascular Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Chan Li
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yating Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhaoya Liu
- Department of Geriatrics, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Qian Xu
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Desheng Xiao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China.
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
34
|
Chigorina EA, Dotsenko VV. Novel reactions of 1-cyanoacetyl-3,5-dimethylpyrazole (microreview). Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02658-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Chen J, Zhong Y, Li L. miR-124 and miR-203 synergistically inactivate EMT pathway via coregulation of ZEB2 in clear cell renal cell carcinoma (ccRCC). J Transl Med 2020; 18:69. [PMID: 32046742 PMCID: PMC7014595 DOI: 10.1186/s12967-020-02242-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is one of the most aggressive urological malignancies. MicroRNAs (miRNAs) are post-transcriptional gene regulators in tumor pathophysiology. As miRNAs exert cooperative repressive effects on target genes, studying the miRNA synergism is important to elucidate the regulation mechanism of miRNAs. METHODS We first created a miRNA-mRNA association network based on sequence complementarity and co-expression patterns of miRNA-targets. The synergism between miRNAs was then defined based on their expressional coherence and the concordance between target genes. The miRNA and mRNA expression were detected in RCC cell lines (786-O) using quantitative RT-PCR. Potential miRNA-target interaction was identified by Dual-Luciferase Reporter assay. Cell proliferation and migration were assessed by CCK-8 and transwell assay. RESULTS A synergistic miRNA-miRNA interaction network of 28 miRNAs (52 miRNA pairs) with high coexpression level were constructed, among which miR-124 and miR-203 were identified as most tightly connected. ZEB2 expression is inversely correlated with miR-124 and miR-203 and verified as direct miRNA target. Cotransfection of miR-124 and miR-203 into 786-O cell lines effectively attenuated ZEB2 level and normalized renal cancer cell proliferation and migration. The inhibitory effects were abolished by ZEB2 knockdown. Furthermore, pathway analysis suggested that miR-124 and miR-203 participated in activation of epithelial-to-mesenchymal transition (EMT) pathway via regulation of ZEB2. CONCLUSIONS Our findings provided insights into the role of miRNA-miRNA collaboration as well as a novel therapeutic approach in ccRCC.
Collapse
Affiliation(s)
- Jiajia Chen
- School of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215011, China.
| | - Yuqing Zhong
- School of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215011, China
| | - Liangzhi Li
- School of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215011, China
| |
Collapse
|
36
|
An Y, Yang Q. MiR-21 modulates the polarization of macrophages and increases the effects of M2 macrophages on promoting the chemoresistance of ovarian cancer. Life Sci 2019; 242:117162. [PMID: 31837336 DOI: 10.1016/j.lfs.2019.117162] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/06/2019] [Accepted: 12/09/2019] [Indexed: 01/07/2023]
Abstract
AIMS Chemoresistance is a major underlying cause of relapse or death in ovarian cancer patients. Emerging evidence has shown that macrophages could play an essential role in mediating the chemoresistance of cancer cells. MiR-21 has been reported to be an oncogene, which promotes chemoresistance in cancer. Here, we aim to investigate the role that miR-21 plays in polarization of macrophages and ovarian cancer progression. MAIN METHODS The CIBERSORT algorithm was used to investigate immune cell infiltration in ovarian cancer tissues. To explore the role that miR-21 played in macrophages, M2 macrophages transfected with a miR-21 mimic or a miR-21 inhibitor were co-cultured with ovarian cancer cells. Western blotting was used to detect protein expression levels. CCK8 was used to detect the IC50 of ovarian cancer cells. Flow cytometry was used to detect apoptosis and the cell cycle of ovarian cancer cells. KEY FINDINGS In this study, we found that higher expression of M1 macrophages and lower expression of M2 macrophages correlated with a better prognosis of ovarian cancer patients. M2 macrophages promoted the chemoresistance of ovarian cancer cells. The results showed that miR-21 could partially regulate the polarization of macrophages. Furthermore, M2 macrophages transfected with the miR-21 mimic significantly promoted chemoresistance and inhibited apoptosis of ovarian cancer cells, while the M2 macrophages transfected with the miR-21 inhibitor showed the opposite effects. SIGNIFICANCE miR-21 plays an important role in regulating macrophage polarization, therefore increasing the M2 macrophage-mediated chemoresistance in ovarian cancer cells.
Collapse
Affiliation(s)
- Yuanyuan An
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Qing Yang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
37
|
Ritter A, Hirschfeld M, Berner K, Rücker G, Jäger M, Weiss D, Medl M, Nöthling C, Gassner S, Asberger J, Erbes T. Circulating non‑coding RNA‑biomarker potential in neoadjuvant chemotherapy of triple negative breast cancer? Int J Oncol 2019; 56:47-68. [PMID: 31789396 PMCID: PMC6910196 DOI: 10.3892/ijo.2019.4920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Due to the positive association between neoadjuvant chemotherapy (NACT) and the promising early response rates of patients with triple negative breast cancer (TNBC), including probabilities of pathological complete response, NACT is increasingly used in TNBC management. Liquid biopsy-based biomarkers with the power to diagnose the early response to NACT may support established monitoring tools, which are to a certain extent imprecise and costly. Simple serum- or urine-based analyses of non-coding RNA (ncRNA) expression may allow for fast, minimally-invasive testing and timely adjustment of the therapy regimen. The present study investigated breast cancer-related ncRNAs [microRNA (miR)-7, -9, -15a, -17, -18a, -19b, -21, -30b, -222 and -320c, PIWI-interacting RNA-36743 and GlyCCC2] in triple positive BT-474 cells and three TNBC cell lines (BT-20, HS-578T and MDA-MB-231) treated with various chemotherapeutic agents using reverse transcription-quantitative PCR. Intracellular and secreted microvesicular ncRNA expression levels were analysed using a multivariable statistical regression analysis. Chemotherapy-driven effects were investigated by analysing cell cycle determinants at the mRNA and protein levels. Serum and urine specimens from 8 patients with TNBC were compared with 10 healthy females using two-sample t-tests. Samples from the patients with TNBC were compared at two time points. Chemotherapeutic treatments induced distinct changes in ncRNA expression in TNBC cell lines and the BT-474 cell line in intra- and extracellular compartments. Serum and urine-based ncRNA expression analysis was able to discriminate between patients with TNBC and controls. Time point comparisons in the urine samples of patients with TNBC revealed a general rise in the level of ncRNA. Serum data suggested a potential association between piR-36743, miR-17, -19b and -30b expression levels and an NACT-driven complete clinical response. The present study highlighted the potential of ncRNAs as liquid biopsy-based biomarkers in TNBC chemotherapy treatment. The ncRNAs tested in the present study have been previously investigated for their involvement in BC or TNBC chemotherapy responses; however, these previous studies were restricted to patient tissue or in vitro models. The data from the present study offer novel insight into ncRNA expression in liquid samples from patients with TNBC, and the study serves as an initial step in the evaluation of ncRNAs as diagnostic biomarkers in the monitoring of TNBC therapy.
Collapse
Affiliation(s)
- Andrea Ritter
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Marc Hirschfeld
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Gerta Rücker
- Institute of Medical Biometry and Statistics, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79104 Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Daniela Weiss
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Markus Medl
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Claudia Nöthling
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Sandra Gassner
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Jasmin Asberger
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| |
Collapse
|
38
|
Lai Y, Zeng T, Liang X, Wu W, Zhong F, Wu W. Cell death-related molecules and biomarkers for renal cell carcinoma targeted therapy. Cancer Cell Int 2019; 19:221. [PMID: 31462894 PMCID: PMC6708252 DOI: 10.1186/s12935-019-0939-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/18/2019] [Indexed: 02/07/2023] Open
Abstract
Renal cell carcinoma (RCC) is not sensitive to conventional radio- and chemotherapies and is at least partially resistant to impairments in cell death-related signaling pathways. The hallmarks of RCC formation include diverse signaling pathways, such as maintenance of proliferation, cell death resistance, angiogenesis induction, immune destruction avoidance, and DNA repair. RCC diagnosed during the early stage has the possibility of cure with surgery. For metastatic RCC (mRCC), molecular targeted therapy, especially antiangiogenic therapy (e.g., tyrosine kinase inhibitors, TKIs, such as sunitinib), is one of the main partially effective therapeutics. Various forms of cell death that may be associated with the resistance to targeted therapy because of the crosstalk between targeted therapy and cell death resistance pathways were originally defined and differentiated into apoptosis, necroptosis, pyroptosis, ferroptosis and autophagic cell death based on cellular morphology. Particularly, as a new form of cell death, T cell-induced cell death by immune checkpoint inhibitors expands the treatment options beyond the current targeted therapy. Here, we provide an overview of cell death-related molecules and biomarkers for the progression, prognosis and treatment of mRCC by targeted therapy, with a focus on apoptosis and T cell-induced cell death, as well as other forms of cell death.
Collapse
Affiliation(s)
- Yongchang Lai
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Tao Zeng
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Xiongfa Liang
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Weizou Wu
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Fangling Zhong
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Wenqi Wu
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| |
Collapse
|
39
|
Hei YY, Guo YX, Jiang CS, Wang S, Lu SM, Zhang SQ. The dual luciferase reporter system and RT-qPCR strategies for screening of MicroRNA-21 small-molecule inhibitors. Biotechnol Appl Biochem 2019; 66:755-762. [PMID: 31021480 DOI: 10.1002/bab.1756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
The therapeutic potential of microRNA-21 (miR-21) small-molecule inhibitors has been of particular interest to medicinal chemists. Moreover, the development of more facile screening methods is lacking. In the present study, two potential screening strategies for miR-21 small-molecule inhibitor including the stem-loop reverse transcription-quantitative PCR and dual luciferase reporter assay system were demonstrated and discussed in detail. A pmirGLO-miR21cswt plasmid and its two different mutants were constructed for dual luciferase reporter assay system. In addition, the sensitivity and specificity of these two methods were validated. Our results demonstrated that both strategies are decent choices for the screening of small-molecule inhibitors for miR-21 and possibly other miRNAs. Eventually, we applied our optimized strategy to discover and characterize several promising compounds such as azobenzene derivate A, enoxacin, and norfloxacin for their potential impact on intracellular miR-21 concentration.
Collapse
Affiliation(s)
- Yuan-Yuan Hei
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Yuan-Xu Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, People's Republic of China
| | - Cong-Shan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, People's Republic of China
| | - Si Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, People's Republic of China
| | - She-Min Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, People's Republic of China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
40
|
Ankenbruck N, Kumbhare R, Naro Y, Thomas M, Gardner L, Emanuelson C, Deiters A. Small molecule inhibition of microRNA-21 expression reduces cell viability and microtumor formation. Bioorg Med Chem 2019; 27:3735-3743. [DOI: 10.1016/j.bmc.2019.05.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/01/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022]
|
41
|
Garner AL, Lorenz DA, Sandoval J, Gallagher EE, Kerk SA, Kaur T, Menon A. Tetracyclines as Inhibitors of Pre-microRNA Maturation: A Disconnection between RNA Binding and Inhibition. ACS Med Chem Lett 2019; 10:816-821. [PMID: 31098005 DOI: 10.1021/acsmedchemlett.9b00091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/22/2019] [Indexed: 12/21/2022] Open
Abstract
In a high-throughput screening campaign, we recently discovered the rRNA-binding tetracyclines, methacycline and meclocycline, as inhibitors of Dicer-mediated processing of microRNAs. Herein, we describe our biophysical and biochemical characterization of these compounds. Interestingly, although direct, albeit weak, binding to the pre-microRNA hairpins was observed, the inhibitory activity of these compounds was not due to RNA binding. Through additional biochemical and chemical studies, we revealed that metal chelation likely plays a principle role in their mechanism of inhibition. By exploring the activity of other known RNA-binding scaffolds, we identified additional disconnections between direct RNA interaction and inhibition of Dicer processing. Thus, the results presented within provide a valuable case study in the complexities of targeting RNA with small molecules, particularly with weak binding and potentially promiscuous scaffolds.
Collapse
|
42
|
Luo Q, Cui M, Deng Q, Liu J. Comprehensive analysis of differentially expressed profiles and reconstruction of a competing endogenous RNA network in papillary renal cell carcinoma. Mol Med Rep 2019; 19:4685-4696. [PMID: 30957192 PMCID: PMC6522832 DOI: 10.3892/mmr.2019.10138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/27/2019] [Indexed: 01/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) function as competing endogenous RNAs (ceRNAs). ceRNA networks may serve important roles in various tumors, as demonstrated by an increasing number of studies; however, papillary renal cell carcinoma (PRCC)-associated ceRNA networks mediated by lncRNAs remain unknown. Increased knowledge of ceRNA networks in PRCC may aid the identification of novel targets and biomarkers in the treatment of PRCC. In the present study, a comprehensive investigation of mRNA, lncRNA, and microRNA (miRNA) expression in PRCC was conducted using sequencing data from The Cancer Genome Atlas. Differential expression (DE) profiles of mRNAs, lncRNAs and miRNAs were evaluated, with 1,970 mRNAs, 1,201 lncRNAs and 96 miRNAs identified as genes with significantly different expression between PRCC and control paracancerous tissues. Based on the identified DEmRNAs, a protein-protein interaction network was generated using the STRING database. Furthermore, a ceRNA network for PRCC was determined using a targeted assay combined with the DE of miRNAs, mRNAs and lncRNAs, enabling the identification of important lncRNA-miRNA and miRNA-mRNA pairs. Analysis of the ceRNA network led to the extraction of a subnetwork and the identification of lncRNA maternally expressed 3 (MEG3), lncRNA PWRN1, miRNA (miR)-508, miR-21 and miR519 as important genes. Reverse transcription-quantitative polymerase chain reaction analysis was conducted to validate the results of the bioinformatics analyses; it was revealed that lncRNA MEG3 expression levels were downregulated in PRCC tumor tissues compared with adjacent non-tumor tissues. In addition, survival analysis was conducted to investigate the association between identified genes and the prognosis of patients with PRCC, indicating the potential involvement of 13 mRNAs, 15 lncRNAs and six miRNAs. In conclusion, the present study may improve understanding of the regulatory mechanisms of ceRNA networks in PRCC and provide novel insight for future studies of prognostic biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Qing Luo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Meng Cui
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qinfu Deng
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
43
|
Fan R, Xiao C, Wan X, Cha W, Miao Y, Zhou Y, Qin C, Cui T, Su F, Shan X. Small molecules with big roles in microRNA chemical biology and microRNA-targeted therapeutics. RNA Biol 2019; 16:707-718. [PMID: 30900502 DOI: 10.1080/15476286.2019.1593094] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that post-transcriptionally regulate gene expression. Aberrant miRNA expression or function have close links with various human diseases. Therefore, therapeutic treatments with disease-associated miRNAs as targets are emerging. However, the intracellular miRNA networks are extremely complicated and poorly understood, which thus hinder the development of miRNA-targeted therapeutics. Small molecules that are able to regulate endogenous miRNAs hold great potential in both elucidation of miRNA networks and treatment of miRNA-related diseases. Herein, we summarize current strategies for discovery of small molecule modifiers of miRNAs, and we highlight aspects of miRNA cellular biology elucidated by using these small molecules and miRNA-targeted therapeutics realized by these small molecules. We envision that this area will expand dramatically in the near future and will ultimately contribute to a better understanding of miRNA-involved cellular processes and development of therapeutic agents for miRNA-associated diseases.
Collapse
Affiliation(s)
- Rengen Fan
- a Department of General Surgery, Yancheng City No. 1 People's Hospital , Yancheng , China
| | - Chaocheng Xiao
- b Department of General Surgery, Yancheng City No. 1 People's Hospital , Yancheng , China
| | - Xinqiang Wan
- c Department of Gynaecology and Obstetrics, Yancheng City No. 1 People's Hospital , Yancheng , China
| | - Wenzhang Cha
- a Department of General Surgery, Yancheng City No. 1 People's Hospital , Yancheng , China
| | - Yufeng Miao
- d Department of Medical Oncology , Wuxi Third People's Hospital , Wuxi , China
| | - Yong Zhou
- a Department of General Surgery, Yancheng City No. 1 People's Hospital , Yancheng , China
| | - Chenglin Qin
- a Department of General Surgery, Yancheng City No. 1 People's Hospital , Yancheng , China
| | - Ting Cui
- e Department of Cardiology, The Third People's Hospital of Yancheng , Yancheng , China
| | - Fenglian Su
- f School of Medical University, Xuzhou , Xuzhou , China
| | - Xiangxiang Shan
- g Department of Geraeology, Yancheng City No.1 People's Hospital , Yancheng , China
| |
Collapse
|
44
|
Merlin S, Follenzi A. Transcriptional Targeting and MicroRNA Regulation of Lentiviral Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 12:223-232. [PMID: 30775404 PMCID: PMC6365353 DOI: 10.1016/j.omtm.2018.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gene expression regulation is the result of complex interactions between transcriptional and post-transcriptional controls, resulting in cell-type-specific gene expression patterns that are determined by the developmental and differentiation stage of pathophysiological conditions. Understanding the complexity of gene expression regulatory networks is fundamental to gene therapy, an approach which has the potential to treat and cure inherited disorders by delivering the correct gene to patient specific cells or tissues by means of both viral and non-viral vectors. Besides the issues of biosafety, in recent years efforts have focused on achieving a robust and sustained transgene expression, which attains a phenotypic correction in several diseases, while avoiding transgene-related adverse effects, such as overexpression-associated cytotoxicity and/or immune responses to the transgene. In this sense, the use of cell-type-specific promoters and microRNA target sequences (miRTs) in gene transfer expression cassettes have allowed for a restricted expression after gene transfer in several studies. This review will focus on the use of transcriptional and post-transcriptional regulation to achieve a highly specific and safe transgene expression, as well as their application in ex vivo and in vivo gene therapeutic approaches.
Collapse
Affiliation(s)
- Simone Merlin
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
45
|
Antiviral activities of Janus-type nucleosides and their related oxime-intermediates. Bioorg Med Chem 2018; 27:2332-2339. [PMID: 30578076 DOI: 10.1016/j.bmc.2018.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 02/05/2023]
Abstract
Herpes simplex virus (HSV) infection has been recognized as the most common mucosal disease in humans, manifesting as a life-threatening infection especially for patients with compromised immunity. When combined with the emergence of resistance due to the long-term use of classical antiviral agents, these threats make novel therapeutics for HSV a clinically necessity. We therefore designed and synthesized a series of Janus-type nucleosides by combining the natural genetic alphabets into a singular nucleoside structural unit. We also synthesized a series of new compounds and systematically evaluated their antiviral activity and structure-antiviral activity relationship. The results indicated that both nucleosides and their related intermediates exhibited high anti-HSV-1 activity. Compounds HY17 and HY19, in particular, possessed excellent anti-HSV-1 activity with IC50 values of 0.05 and 0.04 µg/mL, respectively. They also showed broad-spectrum antiviral activity against a multitude of diverse viruses, such as HSV-2, influenza virus A (H3N2), CVB3, HBV, HCV, and HPV. These results suggest that once their mechanisms are fully elucidated, these compounds will prove to be promising candidates as antiviral agents.
Collapse
|