1
|
Marshall CM, Federice JG, Bell CN, Cox PB, Njardarson JT. An Update on the Nitrogen Heterocycle Compositions and Properties of U.S. FDA-Approved Pharmaceuticals (2013-2023). J Med Chem 2024; 67:11622-11655. [PMID: 38995264 DOI: 10.1021/acs.jmedchem.4c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
This Perspective is a continuation of our analysis of U.S. FDA-approved small-molecule drugs (1938-2012) containing nitrogen heterocycles. In this study we report drug structure and property analyses of 321 unique new small-molecule drugs approved from January 2013 to December 2023 as well as information about frequency of important heteroatoms such as sulfur and fluorine and key small nitrogen substituents (CN and NO2). The most notable change is an incredible increase in drugs containing at least one nitrogen heterocycle─82%, compared to 59% from preceding decades─as well as a significant increase in the number of nitrogen heterocycles per drug. Pyridine has claimed the #1 high-frequency nitrogen heterocycle occurrence spot from piperidine (#2), with pyrimidine (#5), pyrazole (#6), and morpholine (#9) being the big top 10 climbers. Also notable is high number of fused nitrogen heterocycles, apparently driven largely by newly approved cancer drugs.
Collapse
Affiliation(s)
- Christopher M Marshall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - John G Federice
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Chloe N Bell
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Philip B Cox
- Discovery Research, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jon T Njardarson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
2
|
Cui Y, Lanne A, Peng X, Browne E, Bhatt A, Coltman NJ, Craven P, Cox LR, Cundy NJ, Dale K, Feula A, Frampton J, Fung M, Morton M, Goff A, Salih M, Lang X, Li X, Moon C, Pascoe J, Portman V, Press C, Schulz-Utermoehl T, Lee S, Tortorella MD, Tu Z, Underwood ZE, Wang C, Yoshizawa A, Zhang T, Waddell SJ, Bacon J, Alderwick L, Fossey JS, Neagoie C. Azetidines Kill Multidrug-Resistant Mycobacterium tuberculosis without Detectable Resistance by Blocking Mycolate Assembly. J Med Chem 2024; 67:2529-2548. [PMID: 38331432 PMCID: PMC10895678 DOI: 10.1021/acs.jmedchem.3c01643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Tuberculosis (TB) is the leading cause of global morbidity and mortality resulting from infectious disease, with over 10.6 million new cases and 1.4 million deaths in 2021. This global emergency is exacerbated by the emergence of multidrug-resistant MDR-TB and extensively drug-resistant XDR-TB; therefore, new drugs and new drug targets are urgently required. From a whole cell phenotypic screen, a series of azetidines derivatives termed BGAz, which elicit potent bactericidal activity with MIC99 values <10 μM against drug-sensitive Mycobacterium tuberculosis and MDR-TB, were identified. These compounds demonstrate no detectable drug resistance. The mode of action and target deconvolution studies suggest that these compounds inhibit mycobacterial growth by interfering with cell envelope biogenesis, specifically late-stage mycolic acid biosynthesis. Transcriptomic analysis demonstrates that the BGAz compounds tested display a mode of action distinct from the existing mycobacterial cell wall inhibitors. In addition, the compounds tested exhibit toxicological and PK/PD profiles that pave the way for their development as antitubercular chemotherapies.
Collapse
Affiliation(s)
- Yixin Cui
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Alice Lanne
- Institute
of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West
Midlands B15 2TT, U.K.
| | - Xudan Peng
- State
Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory
on Biomedicine and Health, Guangzhou Institutes of Biomedicine and
Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Edward Browne
- Sygnature
Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham NG1 1GR, U.K.
| | - Apoorva Bhatt
- Institute
of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West
Midlands B15 2TT, U.K.
| | - Nicholas J. Coltman
- School
of Biosciences, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Philip Craven
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Liam R. Cox
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Nicholas J. Cundy
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Katie Dale
- Institute
of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West
Midlands B15 2TT, U.K.
| | - Antonio Feula
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Jon Frampton
- College of
Medical and Dental Sciences, University
of Birmingham, Edgbaston, Birmingham, West
Midlands B15 2TT, U.K.
| | - Martin Fung
- Centre
for Regenerative Medicine and Health, Hong Kong Institute of Science
& Innovation, Chinese Academy of Sciences, 15 Science Park West Avenue NT, Hong Kong SAR
| | - Michael Morton
- ApconiX
Ltd, BIOHUB at Alderly Park, Nether Alderly, Cheshire SK10 4TG, U.K.
| | - Aaron Goff
- Department
of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9PX, U.K.
| | - Mariwan Salih
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Xingfen Lang
- State
Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory
on Biomedicine and Health, Guangzhou Institutes of Biomedicine and
Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Xingjian Li
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
- State
Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory
on Biomedicine and Health, Guangzhou Institutes of Biomedicine and
Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Chris Moon
- TB
Research Group, National Infection Service, Public Health England (UKHSA), Manor Farm Road, Porton, Salisbury SP4 0JG, U.K.
| | - Jordan Pascoe
- TB
Research Group, National Infection Service, Public Health England (UKHSA), Manor Farm Road, Porton, Salisbury SP4 0JG, U.K.
| | - Vanessa Portman
- Sygnature
Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham NG1 1GR, U.K.
| | - Cara Press
- Institute
of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West
Midlands B15 2TT, U.K.
| | - Timothy Schulz-Utermoehl
- Sygnature
Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham NG1 1GR, U.K.
| | - Suki Lee
- Centre
for Regenerative Medicine and Health, Hong Kong Institute of Science
& Innovation, Chinese Academy of Sciences, 15 Science Park West Avenue NT, Hong Kong SAR
| | - Micky D. Tortorella
- State
Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory
on Biomedicine and Health, Guangzhou Institutes of Biomedicine and
Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
- Centre
for Regenerative Medicine and Health, Hong Kong Institute of Science
& Innovation, Chinese Academy of Sciences, 15 Science Park West Avenue NT, Hong Kong SAR
| | - Zhengchao Tu
- State
Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory
on Biomedicine and Health, Guangzhou Institutes of Biomedicine and
Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Zoe E. Underwood
- TB
Research Group, National Infection Service, Public Health England (UKHSA), Manor Farm Road, Porton, Salisbury SP4 0JG, U.K.
| | - Changwei Wang
- State
Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory
on Biomedicine and Health, Guangzhou Institutes of Biomedicine and
Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Akina Yoshizawa
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Tianyu Zhang
- State
Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory
on Biomedicine and Health, Guangzhou Institutes of Biomedicine and
Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Simon J. Waddell
- Department
of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9PX, U.K.
| | - Joanna Bacon
- TB
Research Group, National Infection Service, Public Health England (UKHSA), Manor Farm Road, Porton, Salisbury SP4 0JG, U.K.
| | - Luke Alderwick
- Institute
of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West
Midlands B15 2TT, U.K.
- Discovery
Sciences, Charles River Laboratories, Chesterford Research Park, Saffron Walden CB10 1XL, U.K.
| | - John S. Fossey
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Cleopatra Neagoie
- State
Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory
on Biomedicine and Health, Guangzhou Institutes of Biomedicine and
Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
- Centre
for Regenerative Medicine and Health, Hong Kong Institute of Science
& Innovation, Chinese Academy of Sciences, 15 Science Park West Avenue NT, Hong Kong SAR
- Visiting
Scientist, School of Chemistry, University
of Birmingham, Edgbaston, Birmingham, West
Midlands B15 2TT, U.K.
| |
Collapse
|
3
|
Barazorda-Ccahuana HL, Cárcamo-Rodriguez EG, Centeno-Lopez AE, Galdino AS, Machado-de-Ávila RA, Giunchetti RC, Coelho EAF, Chávez-Fumagalli MA. Targeting with Structural Analogs of Natural Products the Purine Salvage Pathway in Leishmania (Leishmania) infantum by Computer-Aided Drug-Design Approaches. Trop Med Infect Dis 2024; 9:41. [PMID: 38393130 PMCID: PMC10891554 DOI: 10.3390/tropicalmed9020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Visceral Leishmaniasis (VL) has a high death rate, with 500,000 new cases and 50,000 deaths occurring annually. Despite the development of novel strategies and technologies, there is no adequate treatment for the disease. Therefore, the purpose of this study is to find structural analogs of natural products as potential novel drugs to treat VL. We selected structural analogs from natural products that have shown antileishmanial activities, and that may impede the purine salvage pathway using computer-aided drug-design (CADD) approaches. For these, we started with the vastly studied target in the pathway, the adenine phosphoribosyl transferase (APRT) protein, which alone is non-essential for the survival of the parasite. Keeping this in mind, we search for a substance that can bind to multiple targets throughout the pathway. Computational techniques were used to study the purine salvage pathway from Leishmania infantum, and molecular dynamic simulations were used to gather information on the interactions between ligands and proteins. Because of its low homology to human proteins and its essential role in the purine salvage pathway proteins network interaction, the findings further highlight the significance of adenylosuccinate lyase protein (ADL) as a therapeutic target. An analog of the alkaloid Skimmianine, N,N-diethyl-4-methoxy-1-benzofuran-6-carboxamide, demonstrated a good binding affinity to APRT and ADL targets, no expected toxicity, and potential for oral route administration. This study indicates that the compound may have antileishmanial activity, which was granted in vitro and in vivo experiments to settle this finding in the future.
Collapse
Affiliation(s)
- Haruna Luz Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Eymi Gladys Cárcamo-Rodriguez
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Angela Emperatriz Centeno-Lopez
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Alexsandro Sobreira Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| | | | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador 40015-970, BA, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
| |
Collapse
|
4
|
Sudarshana KA, Sarma MJ, Radhakrishnan M, Chakravarty S, Srihari P, Mehta G. A protocol for directly accessing geminal C-4 diarylated pyrazol-5(4 H)-ones via tandem C-H aryne insertion and their inceptive neurobiological evaluation. Org Biomol Chem 2024; 22:714-719. [PMID: 38165701 DOI: 10.1039/d3ob01932b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Geminal C-4 diarylation of substituted pyrazol-5(4H)-ones with in situ generated arynes as the aryl source has been achieved in a one-flask operation. All the newly accessed C4-gem-diarylated pyrazolone entities were found to be non-cytotoxic with varying AChE enzyme inhibitory activities and BBB permeability attributes that augur well for further advancement towards CNS therapeutics for untreatable disorders.
Collapse
Affiliation(s)
- K A Sudarshana
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manas Jyoti Sarma
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| | - Mydhili Radhakrishnan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Sumana Chakravarty
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Pabbaraja Srihari
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| |
Collapse
|
5
|
Solovyev I, Dar'in D, Krasavin M. Diazo chemistry in the access to novel fatty acids linked to spiro-fused oxetane-pyrazolone scaffold. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
6
|
Kawamura M, Kobashi Y, Tanaka H, Bohno-Mikami A, Hamada M, Ito Y, Hirata T, Ohara H, Kojima N, Koretsune H, Gunji E, Fukunaga T, Inatani S, Hasegawa Y, Suzuki A, Takahashi T, Kakinuma H. Discovery of Novel Pyrazolylpyridine Derivatives for 20-Hydroxyeicosatetraenoic Acid Synthase Inhibitors with Selective CYP4A11/4F2 Inhibition. J Med Chem 2022; 65:14599-14613. [DOI: 10.1021/acs.jmedchem.2c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Madoka Kawamura
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Yohei Kobashi
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Hiroaki Tanaka
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Ayako Bohno-Mikami
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Makoto Hamada
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Yuji Ito
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Takashi Hirata
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Hiroki Ohara
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Naoki Kojima
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Hiroko Koretsune
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Emi Gunji
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Takuya Fukunaga
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Shoko Inatani
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Yoshitaka Hasegawa
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Akinori Suzuki
- Pharmaceutical Sciences Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Teisuke Takahashi
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Hiroyuki Kakinuma
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| |
Collapse
|
7
|
Synthesis of 4-Aminopyrazol-5-ols as Edaravone Analogs and Their Antioxidant Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227722. [PMID: 36431823 PMCID: PMC9699072 DOI: 10.3390/molecules27227722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022]
Abstract
One of the powerful antioxidants used clinically is Edaravone (EDA). We synthesized a series of new EDA analogs, 4-aminopyrazol-5-ol hydrochlorides, including polyfluoroalkyl derivatives, via the reduction of 4-hydroxyiminopyrazol-5-ones. The primary antioxidant activity of the compounds in comparison with EDA was investigated in vitro using ABTS, FRAP, and ORAC tests. In all tests, 4-Amino-3-pyrazol-5-ols were effective. The lead compound, 4-amino-3-methyl-1-phenylpyrazol-5-ol hydrochloride (APH), showed the following activities: ABTS, 0.93 TEAC; FRAP, 0.98 TE; and ORAC, 4.39 TE. APH and its NH-analog were not cytotoxic against cultured normal human fibroblasts even at 100 μM, in contrast to EDA. According to QM calculations, 4-aminopyrazolols were characterized by lower gaps, IP, and η compared to 4-hydroxyiminopyrazol-5-ones, consistent with their higher antioxidant activities in ABTS and FRAP tests, realized by the SET mechanism. The radical-scavenging action evaluated in the ORAC test occurred by the HAT mechanism through OH bond breaking in all compounds, directly dependent on the dissociation energy of the OH bond. All the studied compounds demonstrated the absence of anticholinesterase activity and moderate inhibition of CES by some 4-aminopyrazolols. Thus, the lead compound APH was found to be a good antioxidant with the potential to be developed as a novel therapeutic drug candidate in the treatment of diseases associated with oxidative stress.
Collapse
|
8
|
Yuan S, Wang DS, Liu H, Zhang SN, Yang WG, Lv M, Zhou YX, Zhang SY, Song J, Liu HM. New drug approvals for 2021: Synthesis and clinical applications. Eur J Med Chem 2022; 245:114898. [DOI: 10.1016/j.ejmech.2022.114898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
9
|
Phenotypic drug discovery: recent successes, lessons learned and new directions. Nat Rev Drug Discov 2022; 21:899-914. [DOI: 10.1038/s41573-022-00472-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 12/29/2022]
|
10
|
Chemical property prediction under experimental biases. Sci Rep 2022; 12:8206. [PMID: 35581358 PMCID: PMC9114131 DOI: 10.1038/s41598-022-12116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
Predicting the chemical properties of compounds is crucial in discovering novel materials and drugs with specific desired characteristics. Recent significant advances in machine learning technologies have enabled automatic predictive modeling from past experimental data reported in the literature. However, these datasets are often biased because of various reasons, such as experimental plans and publication decisions, and the prediction models trained using such biased datasets often suffer from over-fitting to the biased distributions and perform poorly on subsequent uses. Hence, this study focused on mitigating bias in the experimental datasets. We adopted two techniques from causal inference combined with graph neural networks that can represent molecular structures. The experimental results in four possible bias scenarios indicated that the inverse propensity scoring-based method and the counter-factual regression-based method made solid improvements.
Collapse
|
11
|
Unmodified methodologies in target discovery for small molecule drugs: A rising star. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Wang Z, Cherukupalli S, Xie M, Wang W, Jiang X, Jia R, Pannecouque C, De Clercq E, Kang D, Zhan P, Liu X. Contemporary Medicinal Chemistry Strategies for the Discovery and Development of Novel HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors. J Med Chem 2022; 65:3729-3757. [PMID: 35175760 DOI: 10.1021/acs.jmedchem.1c01758] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) are a major component of the highly active anti-retroviral therapy (HAART) regimen. However, the occurrence of drug-resistant strains and adverse reactions after long-term usage have inevitably compromised the clinical application of NNRTIs. Therefore, the development of novel inhibitors with distinct anti-resistance profiles and better pharmacological properties is still an enormous challenge. Herein, we summarize state-of-the-art medicinal chemistry strategies for the discovery of potent NNRTIs, such as structure-based design strategies, contemporary computer-aided drug design, covalent-binding strategies, and the application of multi-target-directed ligands. The strategies described here will facilitate the identification of promising HIV-1 NNRTIs.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Minghui Xie
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Wenbo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| |
Collapse
|
13
|
Zhao P, Guo Y, Luan X. Total Synthesis of Dalesconol A by Pd(0)/Norbornene-Catalyzed Three-Fold Domino Reaction and Pd(II)-Catalyzed Trihydroxylation. J Am Chem Soc 2021; 143:21270-21274. [PMID: 34894686 DOI: 10.1021/jacs.1c12118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, we describe a concise total synthesis of dalesconol A through a "polycyclization/oxidation" approach. In the polycyclization stage, a Pd(0)/NBE-catalyzed 3-fold domino reaction and a subsequent intramolecular Michael addition have been utilized for the one-step assembly of the heptacyclic molecular skeleton. In the late stage of oxidation state adjustments, a stepwise sequence including site-selective benzylic oxidation, Pd(II)-catalyzed oxime ether directed trihydroxylation, and desaturation has been adopted to introduce the oxygen functionalities and furnish the synthesis of dalesconol A. With the advantage of the late-stage amidation of three C-H bonds in a single step, the amino analogue of dalesconol A has also been obtained with high efficiency.
Collapse
Affiliation(s)
- Ping Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Yun Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Xinjun Luan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China.,State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| |
Collapse
|
14
|
Ma J, Yang J, Yan K, Sun X, Wei W, Tian L, Wen J. Electrochemical‐Induced C(sp
3
)−H Dehydrogenative Trimerization of Pyrazolones to Tripyrazolones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jing Ma
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| | - Jianjing Yang
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| | - Kelu Yan
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| | - Xue Sun
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| | - Wei Wei
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| | - Laijin Tian
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| | - Jiangwei Wen
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| |
Collapse
|
15
|
Huff S, Kummetha IR, Tiwari SK, Huante MB, Clark AE, Wang S, Bray W, Smith D, Carlin AF, Endsley M, Rana TM. Discovery and Mechanism of SARS-CoV-2 Main Protease Inhibitors. J Med Chem 2021; 65:2866-2879. [PMID: 34570513 PMCID: PMC8491550 DOI: 10.1021/acs.jmedchem.1c00566] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The emergence of a new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), presents an urgent public health crisis. Without available targeted therapies, treatment options remain limited for COVID-19 patients. Using medicinal chemistry and rational drug design strategies, we identify a 2-phenyl-1,2-benzoselenazol-3-one class of compounds targeting the SARS-CoV-2 main protease (Mpro). FRET-based screening against recombinant SARS-CoV-2 Mpro identified six compounds that inhibit proteolysis with nanomolar IC50 values. Preincubation dilution experiments and molecular docking determined that the inhibition of SARS-CoV-2 Mpro can occur by either covalent or noncovalent mechanisms, and lead E04 was determined to inhibit Mpro competitively. Lead E24 inhibited viral replication with a nanomolar EC50 value (844 nM) in SARS-CoV-2-infected Vero E6 cells and was further confirmed to impair SARS-CoV-2 replication in human lung epithelial cells and human-induced pluripotent stem cell-derived 3D lung organoids. Altogether, these studies provide a structural framework and mechanism of Mpro inhibition that should facilitate the design of future COVID-19 treatments.
Collapse
Affiliation(s)
- Sarah Huff
- Division of Genetics, Department of Pediatrics, Center for Drug Discovery Innovation, Program in Immunology, Institute for Genomic Medicine, 9500 Gilman Drive MC 0762, La Jolla, California 92093, United States
| | - Indrasena Reddy Kummetha
- Division of Genetics, Department of Pediatrics, Center for Drug Discovery Innovation, Program in Immunology, Institute for Genomic Medicine, 9500 Gilman Drive MC 0762, La Jolla, California 92093, United States
| | - Shashi Kant Tiwari
- Division of Genetics, Department of Pediatrics, Center for Drug Discovery Innovation, Program in Immunology, Institute for Genomic Medicine, 9500 Gilman Drive MC 0762, La Jolla, California 92093, United States
| | - Matthew B Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Alex E Clark
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, 9500 Gilman Drive MC 0762, La Jolla, California 92093, United States
| | - Shaobo Wang
- Division of Genetics, Department of Pediatrics, Center for Drug Discovery Innovation, Program in Immunology, Institute for Genomic Medicine, 9500 Gilman Drive MC 0762, La Jolla, California 92093, United States
| | - William Bray
- Division of Genetics, Department of Pediatrics, Center for Drug Discovery Innovation, Program in Immunology, Institute for Genomic Medicine, 9500 Gilman Drive MC 0762, La Jolla, California 92093, United States
| | - Davey Smith
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, 9500 Gilman Drive MC 0762, La Jolla, California 92093, United States
| | - Aaron F Carlin
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, 9500 Gilman Drive MC 0762, La Jolla, California 92093, United States
| | - Mark Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Tariq M Rana
- Division of Genetics, Department of Pediatrics, Center for Drug Discovery Innovation, Program in Immunology, Institute for Genomic Medicine, 9500 Gilman Drive MC 0762, La Jolla, California 92093, United States.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, 9500 Gilman Drive MC 0762, La Jolla, California 92093, United States
| |
Collapse
|
16
|
Jakhmola S, Jonniya NA, Sk MF, Rani A, Kar P, Jha HC. Identification of Potential Inhibitors against Epstein-Barr Virus Nuclear Antigen 1 (EBNA1): An Insight from Docking and Molecular Dynamic Simulations. ACS Chem Neurosci 2021; 12:3060-3072. [PMID: 34340305 DOI: 10.1021/acschemneuro.1c00350] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV), a known tumorigenic virus, is associated with various neuropathies, including multiple sclerosis (MS). However, there is no anti-EBV FDA-approved drug available in the market. Our study targeted EBV protein EBV nuclear antigen 1 (EBNA1), crucial in virus replication and expressed in all the stages of viral latencies. This dimeric protein binds to an 18 bp palindromic DNA sequence and initiates the process of viral replication. We chose phytochemicals and FDA-approved MS drugs based on literature survey followed by their evaluation efficacies as anti-EBNA1 molecules. Molecular docking revealed FDA drugs ozanimod, siponimod, teriflunomide, and phytochemicals; emodin; protoapigenone; and EGCG bound to EBNA1 with high affinities. ADMET and Lipinski's rule analysis of the phytochemicals predicted favorable druggability. We supported our assessments of pocket druggability with molecular dynamics simulations and binding affinity predictions by the molecular mechanics generalized Born surface area (MM/GBSA) method. Our results establish a stable binding for siponimod and ozanimod with EBNA1 mainly via van der Waals interactions. We identified hot spot residues like I481', K477', L582', and K586' in the binding of ligands. In particular, K477' at the amino terminal of EBNA1 is known to establish interaction with two bases at the major groove of the DNA. Siponimod bound to EBNA1 engaging K477', thus plausibly making it unavailable for DNA interaction. Computational alanine scanning further supported the significant roles of K477', I481', and K586' in the binding of ligands with EBNA1. Conclusively, the compounds showed promising results to be used against EBNA1.
Collapse
Affiliation(s)
- Shweta Jakhmola
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Nisha Amarnath Jonniya
- Computational Biophysics Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Md Fulbabu Sk
- Computational Biophysics Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Annu Rani
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Parimal Kar
- Computational Biophysics Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
17
|
Li H, Shi W, Wang C, Liu H, Wang W, Wu Y, Guo H. Phosphine-Catalyzed Cascade Annulation of MBH Carbonates and Diazenes: Synthesis of Hexahydrocyclopenta[c]pyrazole Derivatives. Org Lett 2021; 23:5571-5575. [PMID: 34232667 DOI: 10.1021/acs.orglett.1c01975] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A phosphine-catalyzed cascade annulation of Morita-Baylis-Hillman (MBH) carbonates and diazenes was achieved, giving tetrahydropyrazole-fused heterocycles bearing two five-membered rings in moderate to excellent yields. The reaction underwent an unprecedented reaction mode of MBH carbonates, in which two molecules of MBH carbonates were fully merged into the ring system.
Collapse
Affiliation(s)
- Hongxiang Li
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P.R. China
| | - Wangyu Shi
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P.R. China
| | - Chang Wang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P.R. China
| | - Hao Liu
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P.R. China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
18
|
Mousavi H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int J Biol Macromol 2021; 186:1003-1166. [PMID: 34174311 DOI: 10.1016/j.ijbiomac.2021.06.123] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
19
|
Leeson PD, Bento AP, Gaulton A, Hersey A, Manners EJ, Radoux CJ, Leach AR. Target-Based Evaluation of "Drug-Like" Properties and Ligand Efficiencies. J Med Chem 2021; 64:7210-7230. [PMID: 33983732 PMCID: PMC7610969 DOI: 10.1021/acs.jmedchem.1c00416] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Physicochemical descriptors commonly used to define "drug-likeness" and ligand efficiency measures are assessed for their ability to differentiate marketed drugs from compounds reported to bind to their efficacious target or targets. Using ChEMBL version 26, a data set of 643 drugs acting on 271 targets was assembled, comprising 1104 drug-target pairs having ≥100 published compounds per target. Taking into account changes in their physicochemical properties over time, drugs are analyzed according to their target class, therapy area, and route of administration. Recent drugs, approved in 2010-2020, display no overall differences in molecular weight, lipophilicity, hydrogen bonding, or polar surface area from their target comparator compounds. Drugs are differentiated from target comparators by higher potency, ligand efficiency (LE), lipophilic ligand efficiency (LLE), and lower carboaromaticity. Overall, 96% of drugs have LE or LLE values, or both, greater than the median values of their target comparator compounds.
Collapse
Affiliation(s)
- Paul D Leeson
- Paul Leeson Consulting Ltd, The Malt House, Main Street, Congerstone, Nuneaton, Warkwickshire CV13 6LZ, United Kingdom
| | - A Patricia Bento
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| | - Anna Gaulton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| | - Anne Hersey
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| | - Emma J Manners
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| | - Chris J Radoux
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| | - Andrew R Leach
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| |
Collapse
|
20
|
Zhang H, Hsu HC, Kahne SC, Hara R, Zhan W, Jiang X, Burns-Huang K, Ouellette T, Imaeda T, Okamoto R, Kawasaki M, Michino M, Wong TT, Toita A, Yukawa T, Moraca F, Vendome J, Saha P, Sato K, Aso K, Ginn J, Meinke PT, Foley M, Nathan CF, Darwin KH, Li H, Lin G. Macrocyclic Peptides that Selectively Inhibit the Mycobacterium tuberculosis Proteasome. J Med Chem 2021; 64:6262-6272. [PMID: 33949190 PMCID: PMC8194371 DOI: 10.1021/acs.jmedchem.1c00296] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Treatment of tuberculosis (TB) currently takes at least 6 months. Latent Mycobacterium tuberculosis (Mtb) is phenotypically tolerant to most anti-TB drugs. A key hypothesis is that drugs that kill nonreplicating (NR) Mtb may shorten treatment when used in combination with conventional drugs. The Mtb proteasome (Mtb20S) could be such a target because its pharmacological inhibition kills NR Mtb and its genetic deletion renders Mtb unable to persist in mice. Here, we report a series of macrocyclic peptides that potently and selectively target the Mtb20S over human proteasomes, including macrocycle 6. The cocrystal structure of macrocycle 6 with Mtb20S revealed structural bases for the species selectivity. Inhibition of 20S within Mtb by 6 dose dependently led to the accumulation of Pup-tagged GFP that is degradable but resistant to depupylation and death of nonreplicating Mtb under nitrosative stress. These results suggest that compounds of this class have the potential to develop as anti-TB therapeutics.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065
| | - Hao-Chi Hsu
- Department of Structural Biology, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Shoshanna C. Kahne
- Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, New York, NY 10016
| | - Ryoma Hara
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Wenhu Zhan
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065
| | - Xiuju Jiang
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065
| | - Kristin Burns-Huang
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065
| | - Tierra Ouellette
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065
| | - Toshihiro Imaeda
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Rei Okamoto
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Masanori Kawasaki
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Mayako Michino
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Tzu-Tshin Wong
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Akinori Toita
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Takafumi Yukawa
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | | | | | - Priya Saha
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065
| | - Kenjiro Sato
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Kazuyoshi Aso
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - John Ginn
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Peter T. Meinke
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Michael Foley
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Carl F Nathan
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065
| | - K. Heran Darwin
- Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, New York, NY 10016
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Gang Lin
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065
| |
Collapse
|
21
|
Serafini M, Cargnin S, Massarotti A, Tron GC, Pirali T, Genazzani AA. What's in a Name? Drug Nomenclature and Medicinal Chemistry Trends using INN Publications. J Med Chem 2021; 64:4410-4429. [PMID: 33847110 PMCID: PMC8154580 DOI: 10.1021/acs.jmedchem.1c00181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/13/2022]
Abstract
The World Health Organization assigns international nonproprietary names (INN), also known as common names, to compounds upon request from drug developers. Structures of INNs are publicly available and represent a source, albeit underused, to understand trends in drug research and development. Here, we explain how a common drug name is composed and analyze chemical entities from 2000 to 2021. In the analysis, we describe some changes that intertwine chemical structure, newer therapeutic targets (e.g., kinases), including a significant increase in the use of fluorine and of heterocycles, and some other evolutionary modifications, such as the progressive increase in molecular weight. Alongside these, small signs of change can be spotted, such as the rise in spirocyclic scaffolds and small rings and the emergence of unconventional structural moieties that might forecast the future to come.
Collapse
Affiliation(s)
| | | | | | - Gian Cesare Tron
- Department of Pharmaceutical
Sciences, Università del Piemonte
Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Tracey Pirali
- Department of Pharmaceutical
Sciences, Università del Piemonte
Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Armando A. Genazzani
- Department of Pharmaceutical
Sciences, Università del Piemonte
Orientale, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
22
|
New drug approvals for 2020: Synthesis and clinical applications. Eur J Med Chem 2021; 215:113284. [PMID: 33611190 DOI: 10.1016/j.ejmech.2021.113284] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
53 New drugs including 38 chemical entities and 15 biologics were approved by the U.S. Food and Drug Administration during 2020. Among the marketed drugs, 34 new small molecule drugs and 4 new diagnostic agents with privileged structures and novel clinical applications represent as promising leads for the development of new drugs with the similar indications and improved therapeutic efficacy. This review is mainly focused on the clinical applications and synthetic methods of 34 small-molecule drugs newly approved by the FDA in 2020.
Collapse
|
23
|
Wang P, Gong Q, Hu J, Li X, Zhang X. Reactive Oxygen Species (ROS)-Responsive Prodrugs, Probes, and Theranostic Prodrugs: Applications in the ROS-Related Diseases. J Med Chem 2020; 64:298-325. [PMID: 33356214 DOI: 10.1021/acs.jmedchem.0c01704] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Elevated levels of reactive oxygen species (ROS) have commonly been implicated in a variety of diseases, including cancer, inflammation, and neurodegenerative diseases. In light of significant differences in ROS levels between the nonpathogenic and pathological tissues, an increasing number of ROS-responsive prodrugs, probes, and theranostic prodrugs have been developed for the targeted treatment and precise diagnosis of ROS-related diseases. This review will summarize and provide insight into recent advances in ROS-responsive prodrugs, fluorescent probes, and theranostic prodrugs, with applications to different ROS-related diseases and various subcellular organelle-targetable and disease-targetable features. The ROS-responsive moieties, the self-immolative linkers, and the typical activation mechanism for the ROS-responsive release are also summarized and discussed.
Collapse
Affiliation(s)
- Pengfei Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China.,Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Qijie Gong
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jiabao Hu
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xiang Li
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaojin Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
24
|
New drug approvals for 2019: Synthesis and clinical applications. Eur J Med Chem 2020; 205:112667. [DOI: 10.1016/j.ejmech.2020.112667] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
|
25
|
Wu P, Cheng TJ, Lin HX, Xu H, Dai HX. Copper-mediated C H thiolation of (hetero)arenes using weakly coordinating directing group. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Tutone M, Pibiri I, Perriera R, Campofelice A, Culletta G, Melfi R, Pace A, Almerico AM, Lentini L. Pharmacophore-Based Design of New Chemical Scaffolds as Translational Readthrough-Inducing Drugs (TRIDs). ACS Med Chem Lett 2020; 11:747-753. [PMID: 32435380 DOI: 10.1021/acsmedchemlett.9b00609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/18/2020] [Indexed: 12/31/2022] Open
Abstract
Translational readthrough-inducing drugs (TRIDs) rescue the functional full-length protein expression in genetic diseases, such as cystic fibrosis, caused by premature termination codons (PTCs). Small molecules have been developed as TRIDs to trick the ribosomal machinery during recognition of the PTC. Herein we report a computational study to identify new TRID scaffolds. A pharmacophore approach was carried out on compounds that showed readthrough activity. The pharmacophore model applied to screen different libraries containing more than 87000 compounds identified four hit-compounds presenting scaffolds with diversity from the oxadiazole lead. These compounds have been synthesized and tested using the Fluc reporter harboring the UGA PTC. Moreover, the cytotoxic effect and the expression of the CFTR protein were evaluated. These compounds, a benzimidazole derivative (NV2899), a benzoxazole derivative (NV2913), a thiazole derivative (NV2909), and a benzene-1,3-disulfonate derivative (NV2907), were shown to be potential new lead compounds as TRIDs, boosting further efforts to address the optimization of the chemical scaffolds.
Collapse
Affiliation(s)
- Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi, 90123-Palermo, Italy
| | - Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi, 90123-Palermo, Italy
| | - Riccardo Perriera
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi, 90123-Palermo, Italy
| | - Ambra Campofelice
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi, 90123-Palermo, Italy
| | - Giulia Culletta
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi, 90123-Palermo, Italy
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, viale Annunziata, 98168-Messina, Italy
| | - Raffaella Melfi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi, 90123-Palermo, Italy
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi, 90123-Palermo, Italy
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi, 90123-Palermo, Italy
| | - Laura Lentini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi, 90123-Palermo, Italy
| |
Collapse
|
27
|
Yu J, Li J, Wang P, Yu J. Cu‐Mediated Amination of (Hetero)Aryl C−H bonds with NH Azaheterocycles. Angew Chem Int Ed Engl 2019; 58:18141-18145. [DOI: 10.1002/anie.201910395] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Jin‐Feng Yu
- State key laboratory of organometallic chemistryCenter for excellence in molecular synthesisShanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Jian‐Jun Li
- State key laboratory of organometallic chemistryCenter for excellence in molecular synthesisShanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Peng Wang
- State key laboratory of organometallic chemistryCenter for excellence in molecular synthesisShanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
- CAS Key Laboratory of Energy Regulation MaterialsShanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Jin‐Quan Yu
- The Scripps Research Institute (TSRI) 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
28
|
Yu J, Li J, Wang P, Yu J. Cu‐Mediated Amination of (Hetero)Aryl C−H bonds with NH Azaheterocycles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jin‐Feng Yu
- State key laboratory of organometallic chemistryCenter for excellence in molecular synthesisShanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Jian‐Jun Li
- State key laboratory of organometallic chemistryCenter for excellence in molecular synthesisShanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Peng Wang
- State key laboratory of organometallic chemistryCenter for excellence in molecular synthesisShanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
- CAS Key Laboratory of Energy Regulation MaterialsShanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Jin‐Quan Yu
- The Scripps Research Institute (TSRI) 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
29
|
Wang C, Chen Y, Li J, Zhou L, Wang B, Xiao Y, Guo H. Phosphine-Catalyzed Asymmetric Cycloaddition Reaction of Diazenes: Enantioselective Synthesis of Chiral Dihydropyrazoles. Org Lett 2019; 21:7519-7523. [DOI: 10.1021/acs.orglett.9b02800] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chang Wang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Yuehua Chen
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Jingyu Li
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Leijie Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Bo Wang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Yumei Xiao
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
30
|
Ieawsuwan W, Pingaew R, Kunkaewom S, Ploypradith P, Ruchirawat S. Scandium(III)‐Triflate‐Catalyzed Pinacol‐Pinacolone Rearrangement and Cyclization of 1,2‐Diaryl‐1,2‐Ethanediol: A Versatile Synthesis of 1‐Aryl‐2,3‐Dihydro‐1
H
‐3‐Benzazepines. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Winai Ieawsuwan
- Laboratory of Medicinal ChemistryChulabhorn Research Institute 54 Kamphaeng Phet 6 Road, Laksi Bangkok 10210 Thailand
| | - Ratchanok Pingaew
- Department of ChemistryFaculty of ScienceSrinakharinwirot University Sukhumvit 23 Bangkok 10110 Thailand
| | - Sukanya Kunkaewom
- Laboratory of Medicinal ChemistryChulabhorn Research Institute 54 Kamphaeng Phet 6 Road, Laksi Bangkok 10210 Thailand
| | - Poonsakdi Ploypradith
- Laboratory of Medicinal ChemistryChulabhorn Research Institute 54 Kamphaeng Phet 6 Road, Laksi Bangkok 10210 Thailand
- Chemical Biology ProgramChulabhorn Graduate Institute 54 Kamphaeng Phet 6 Road, Laksi Bangkok 10210 Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT)Ministry of Education 54 Kamphaeng Phet 6 Road, Laksi Bangkok 10210 Thailand
| | - Somsak Ruchirawat
- Laboratory of Medicinal ChemistryChulabhorn Research Institute 54 Kamphaeng Phet 6 Road, Laksi Bangkok 10210 Thailand
- Chemical Biology ProgramChulabhorn Graduate Institute 54 Kamphaeng Phet 6 Road, Laksi Bangkok 10210 Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT)Ministry of Education 54 Kamphaeng Phet 6 Road, Laksi Bangkok 10210 Thailand
| |
Collapse
|
31
|
Dandara C, Masimirembwa C, Haffani YZ, Ogutu B, Mabuka J, Aklillu E, Bolaji O. African Pharmacogenomics Consortium: Consolidating pharmacogenomics knowledge, capacity development and translation in Africa: Consolidating pharmacogenomics knowledge, capacity development and translation in Africa. AAS Open Res 2019; 2:19. [PMID: 32382701 PMCID: PMC7194139 DOI: 10.12688/aasopenres.12965.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
The African Pharmacogenomics Consortium (APC) was formally launched on the 6th September 2018. This white paper outlines its vision, and objectives towards addressing challenges of conducting and applying pharmacogenomics in Africa and identifies opportunities for advancement of individualized drugs use on the continent. Africa, especially south of the Sahara, is beset with a huge burden of infectious diseases with much co-morbidity whose multiplicity and intersection are major challenges in achieving the sustainable development goals (SDG), SDG3, on health and wellness. The profile of drugs commonly used in African populations lead to a different spectrum of adverse drug reactions (ADRs) when compared to other parts of the world. Coupled with the genetic diversity among Africans, the APC is established to promote pharmacogenomics research and its clinical implementation for safe and effective use of medicine in the continent. Variation in the way patients respond to treatment is mainly due to differences in activity of enzymes and transporters involved in pathways associated with each drug’s disposition. Knowledge of pharmacogenomics, therefore, helps in identifying genetic variants in these proteins and their functional effects. Africa needs to consolidate its pharmacogenomics expertise and technological platforms to bring pharmacogenomics to use.
Collapse
Affiliation(s)
- Collet Dandara
- Pathology & Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | | | - Yosr Z Haffani
- Higher Institute of Biotechnology Sidi Thabet, Manouba University, Ariana, LR17ES03, Tunisia
| | - Bernhards Ogutu
- Centre for Research in Therapeutic Sciences, Strathmore University, Nairobi, Kenya
| | - Jenniffer Mabuka
- Secretariat, The African Academy of Sciences (AAS), Nairobi, Kenya
| | - Eleni Aklillu
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Oluseye Bolaji
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | |
Collapse
|
32
|
Wu G, Zhao T, Kang D, Zhang J, Song Y, Namasivayam V, Kongsted J, Pannecouque C, De Clercq E, Poongavanam V, Liu X, Zhan P. Overview of Recent Strategic Advances in Medicinal Chemistry. J Med Chem 2019; 62:9375-9414. [PMID: 31050421 DOI: 10.1021/acs.jmedchem.9b00359] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introducing novel strategies, concepts, and technologies that speed up drug discovery and the drug development cycle is of great importance both in the highly competitive pharmaceutical industry as well as in academia. This Perspective aims to present a "big-picture" overview of recent strategic innovations in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Yuning Song
- Department of Clinical Pharmacy , Qilu Hospital of Shandong University , 250012 Ji'nan , China
| | - Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Vasanthanathan Poongavanam
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| |
Collapse
|
33
|
Tutone M, Pibiri I, Lentini L, Pace A, Almerico AM. Deciphering the Nonsense Readthrough Mechanism of Action of Ataluren: An in Silico Compared Study. ACS Med Chem Lett 2019; 10:522-527. [PMID: 30996790 DOI: 10.1021/acsmedchemlett.8b00558] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/07/2019] [Indexed: 12/26/2022] Open
Abstract
Ataluren was reported to suppress nonsense mutations by promoting the readthrough of premature stop codons, although its mechanism of action (MOA) is still debated. The likely interaction of Ataluren with CFTR-mRNA has been previously studied by molecular dynamics. In this work we extended the modeling of Ataluren's MOA by complementary computational approaches such as induced fit docking (IFD), quantum polarized ligand docking (QPLD), MM-GBSA free-energy calculations, and computational mutagenesis. In addition to CFTR-mRNA, this study considered other model targets implicated in the translation process, such as eukaryotic rRNA 18S, prokaryotic rRNA 16S, and eukaryotic Release Factor 1 (eRF1), and we performed a comparison with a new promising Ataluren analogue (NV2445) and with a series of aminoglycosides, known to suppress the normal proofreading function of the ribosome. Results confirmed mRNA as the most likely candidate target for Ataluren and its analogue, and binding energies calculated after computational mutagenesis highlighted how Ataluren's interaction with the premature stop codon could be affected by ancillary nucleotides in the genetic context.
Collapse
Affiliation(s)
- Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo, via Archirafi 28 - viale delle Scienze, Edificio 16 & 17, 90100-Palermo-Italy
| | - Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo, via Archirafi 28 - viale delle Scienze, Edificio 16 & 17, 90100-Palermo-Italy
| | - Laura Lentini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo, via Archirafi 28 - viale delle Scienze, Edificio 16 & 17, 90100-Palermo-Italy
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo, via Archirafi 28 - viale delle Scienze, Edificio 16 & 17, 90100-Palermo-Italy
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo, via Archirafi 28 - viale delle Scienze, Edificio 16 & 17, 90100-Palermo-Italy
| |
Collapse
|
34
|
Fumagalli F, de Melo SMG, Ribeiro CM, Solcia MC, Pavan FR, da Silva Emery F. Exploiting the furo[2,3-b]pyridine core against multidrug-resistant Mycobacterium tuberculosis. Bioorg Med Chem Lett 2019; 29:974-977. [PMID: 30803803 DOI: 10.1016/j.bmcl.2019.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 10/27/2022]
Abstract
Identification of new antibiotics suitable for the treatment of tuberculosis is required. In addition to selectivity, it is necessary to find new antibiotics that are effective when the tuberculous mycobacteria are resistant to the available therapies. The furo[2,3-b]pyridine core offers potential for this application. Herein, we have described the screening of our in-house library of furopyridines against Mycobacterium tuberculosis and identified a promising selective bioactive compound against different drug-resistant strains of this mycobacteria. The library of compounds was prepared by a CH amination reaction using mild and metal-free conditions, increasing the available information about the reactivity of furo[2,3-b]pyridine core through this reaction.
Collapse
Affiliation(s)
- Fernando Fumagalli
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Av. do Café, s/n° - Campus Universitário da USP, 14040-903 Ribeirão Preto, SP, Brazil
| | - Shaiani Maria Gil de Melo
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Av. do Café, s/n° - Campus Universitário da USP, 14040-903 Ribeirão Preto, SP, Brazil
| | - Camila Maríngolo Ribeiro
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú, km01, s/n, Campos Ville, 14800-903 Araraquara, Brazil
| | - Mariana Cristina Solcia
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú, km01, s/n, Campos Ville, 14800-903 Araraquara, Brazil
| | - Fernando Rogério Pavan
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú, km01, s/n, Campos Ville, 14800-903 Araraquara, Brazil.
| | - Flavio da Silva Emery
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú, km01, s/n, Campos Ville, 14800-903 Araraquara, Brazil.
| |
Collapse
|
35
|
Pibiri I, Lentini L, Melfi R, Tutone M, Baldassano S, Ricco Galluzzo P, Di Leonardo A, Pace A. Rescuing the CFTR protein function: Introducing 1,3,4-oxadiazoles as translational readthrough inducing drugs. Eur J Med Chem 2018; 159:126-142. [PMID: 30278331 DOI: 10.1016/j.ejmech.2018.09.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022]
Abstract
Nonsense mutations in the CFTR gene prematurely terminate translation of the CFTR mRNA leading to the production of a truncated protein that lacks normal function causing a more severe form of the cystic fibrosis (CF) disease. About 10% of patients affected by CF show a nonsense mutation. A potential treatment of this alteration is to promote translational readthrough of premature termination codons (PTCs) by Translational Readthrough Inducing Drugs (TRIDs) such as PTC124. In this context we aimed to compare the activity of PTC124 with analogues differing in the heteroatoms position in the central heterocyclic core. By a validated protocol consisting of computational screening, synthesis and biological tests we identified a new small molecule (NV2445) with 1,3,4-oxadiazole core showing a high readthrough activity. Moreover, we evaluated the CFTR functionality after NV2445 treatment in CF model systems and in cells expressing a nonsense-CFTR-mRNA. Finally, we studied the supramolecular interactions between TRIDs and CFTR-mRNA to assess the biological target/mechanism and compared the predicted ADME properties of NV2445 and PTC124.
Collapse
Affiliation(s)
- Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128, Palermo, Italy.
| | - Laura Lentini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128, Palermo, Italy.
| | - Raffaella Melfi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128, Palermo, Italy
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128, Palermo, Italy
| | - Sara Baldassano
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128, Palermo, Italy
| | - Paola Ricco Galluzzo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128, Palermo, Italy
| | - Aldo Di Leonardo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128, Palermo, Italy; Centro di OncoBiologia Sperimentale (COBS), via San Lorenzo Colli, 90145, Palermo, Italy
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128, Palermo, Italy
| |
Collapse
|