1
|
Su Q, Wang Z, Zhou H, Zhang M, Deng W, Wei X, Xiao J, Duan X. Eradication of Large Tumors by Nanoscale Drug Self-Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410536. [PMID: 39420689 DOI: 10.1002/adma.202410536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Most patients with cancer are first diagnosed at an advanced disease stage, when tumors are already large and/or metastases are present. This circumstance has a negative impact on the prognosis and therapeutic effect of anticancer drugs. In this study, it is demonstrated that photosensitizer chlorin e6 and the photochemotherapy drug mitoxantrone self-assemble into relatively stable nanoassemblies (CM NAs) through hydrogen-bonding effect, π-π stacking, and hydrophobic interactions. Administration of CM NAs in combination with 660 nm laser irradiation shows chemotherapeutic, photothermal, and photodynamic effects, causing tumor cell apoptosis and pyroptosis and enabling noninvasive tumor ablation without compromising the surrounding normal tissue. More importantly, treatment with CM NAs increases tumor immunogenicity, leading to a strong and long-term antitumor immune response that eradicates large tumors and provides long-term protection against tumor recurrence on various tumor models.
Collapse
Affiliation(s)
- Qianyi Su
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhenyu Wang
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Huimin Zhou
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Miaomiao Zhang
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenjia Deng
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xin Wei
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Jisheng Xiao
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaopin Duan
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
2
|
Chen S, Huang B, Tian J, Zhang W. Advancements of Porphyrin-Derived Nanomaterials for Antibacterial Photodynamic Therapy and Biofilm Eradication. Adv Healthc Mater 2024; 13:e2401211. [PMID: 39073000 DOI: 10.1002/adhm.202401211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Indexed: 07/30/2024]
Abstract
The threat posed by antibiotic-resistant bacteria and the challenge of biofilm formation has highlighted the inadequacies of conventional antibacterial therapies, leading to increased interest in antibacterial photodynamic therapy (aPDT) in recent years. This approach offers advantages such as minimal invasiveness, low systemic toxicity, and notable effectiveness against drug-resistant bacterial strains. Porphyrins and their derivatives, known for their high molar extinction coefficients and singlet oxygen quantum yields, have emerged as crucial photosensitizers in aPDT. However, their practical application is hindered by challenges such as poor water solubility and aggregation-induced quenching. To address these limitations, extensive research has focused on the development of porphyrin-based nanomaterials for aPDT, enhancing the efficacy of photodynamic sterilization and broadening the range of antimicrobial activity. This review provides an overview of various porphyrin-based nanomaterials utilized in aPDT and biofilm eradication in recent years, including porphyrin-loaded inorganic nanoparticles, porphyrin-based polymer assemblies, supramolecular assemblies, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs). Additionally, insights into the prospects of aPDT is offered, highlighting its potential for practical implementation.
Collapse
Affiliation(s)
- Suwen Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
3
|
Sun Y, Liu J, Li Q, Zhang X, Cao Z, Bu L, Cao S, Liu X, Yuan XA, Liu Z. Studies of Anticancer Activities In Vitro and In Vivo for Butyltin(IV)-Iridium(III) Imidazole-Phenanthroline Complexes with Aggregation-Induced Emission Properties. Inorg Chem 2024; 63:14641-14655. [PMID: 39053139 DOI: 10.1021/acs.inorgchem.4c02160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Organotin(IV) and iridium(III) complexes have shown good application potential in the field of anticancer; however, the aggregation-caused quenching (ACQ) effect induced by high concentration or dose has limited the research on their targeting and anticancer mechanism. Then, a series of aggregation-induced emission (AIE)-activated butyltin(IV)-iridium(III) imidazole-phenanthroline complexes were prepared in this study. Complexes exhibited significant fluorescence improvement in the aggregated state because of the restricted intramolecular rotation (RIR), accompanied by an absolute fluorescence quantum yield of up to 29.2% (IrSn9). Complexes demonstrated potential in vitro antiproliferative and antimigration activity against A549 cells, following a lysosomal-mitochondrial apoptotic pathway. Nude mouse models further confirmed that complexes had favorable in vivo antitumor and antimigration activity in comparison to cisplatin. Therefore, butyltin(IV)-iridium(III) imidazole-phenanthroline complexes possess the potential as potential substitutes for platinum-based drugs.
Collapse
Affiliation(s)
- Yiwei Sun
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jiayi Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Qinyu Li
- Experimental Teaching and Equipment Management Center, Qufu Normal University, Qufu 273165, China
| | - Xinru Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Ziwei Cao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Luoyi Bu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Shuying Cao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xicheng Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiang-Ai Yuan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
4
|
Aebisher D, Serafin I, Batóg-Szczęch K, Dynarowicz K, Chodurek E, Kawczyk-Krupka A, Bartusik-Aebisher D. Photodynamic Therapy in the Treatment of Cancer-The Selection of Synthetic Photosensitizers. Pharmaceuticals (Basel) 2024; 17:932. [PMID: 39065781 PMCID: PMC11279632 DOI: 10.3390/ph17070932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment method that uses photosensitizing (PS) compounds to selectively destroy tumor cells using laser light. This review discusses the main advantages of PDT, such as its low invasiveness, minimal systemic toxicity and low risk of complications. Special attention is paid to photosensitizers obtained by chemical synthesis. Three generations of photosensitizers are presented, starting with the first, based on porphyrins, through the second generation, including modified porphyrins, chlorins, 5-aminolevulinic acid (ALA) and its derivative hexyl aminolevulinate (HAL), to the third generation, which is based on the use of nanotechnology to increase the selectivity of therapy. In addition, current research trends are highlighted, including the search for new photosensitizers that can overcome the limitations of existing therapies, such as heavy-atom-free nonporphyrinoid photosensitizers, antibody-drug conjugates (ADCs) or photosensitizers with a near-infrared (NIR) absorption peak. Finally, the prospects for the development of PDTs are presented, taking into account advances in nanotechnology and biomedical engineering. The references include both older and newer works. In many cases, when writing about a given group of first- or second-generation photosensitizers, older publications are used because the properties of the compounds described therein have not changed over the years. Moreover, older articles provide information that serves as an introduction to a given group of drugs.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Iga Serafin
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | | | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Ewa Chodurek
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8 Str., 41-200 Sosnowiec, Poland;
| | - Aleksandra Kawczyk-Krupka
- Center for Laser Diagnostics and Therapy, Department of Internal Medicine, Angiology and Physical Medicine, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| |
Collapse
|
5
|
Sasaki I, Brégier F, Chemin G, Daniel J, Couvez J, Chkair R, Vaultier M, Sol V, Blanchard-Desce M. Hydrophilic Biocompatible Fluorescent Organic Nanoparticles as Nanocarriers for Biosourced Photosensitizers for Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:216. [PMID: 38276734 PMCID: PMC10819872 DOI: 10.3390/nano14020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Most photosensitizers of interest for photodynamic therapy-especially porphyrinoids and chlorins-are hydrophobic. To circumvent this difficulty, the use of nanocarriers is an attractive strategy. In this perspective, we have developed highly water-soluble and biocompatible fluorescent organic nanoparticles (FONPs) made from citric acid and diethyltriamine which are then activated by ethlynene diamine as nanoplatforms for efficient photosensitizers (PSs). Purpurin 18 (Pp18) was selected as a biosourced chlorin photosensitizer combining the efficient single oxygen generation ability and suitable absorption in the biological spectral window. The simple reaction of activated FONPs with Pp18, which contains a reactive anhydride ring, yielded nanoparticles containing both Pp18 and Cp6 derivatives. These functionalized nanoparticles combine solubility in water, high singlet oxygen generation quantum yield in aqueous media (0.72) and absorption both in the near UV region (FONPS) and in the visible region (Soret band approximately 420 nm as well as Q bands at 500 nm, 560 nm, 660 nm and 710 nm). The functionalized nanoparticles retain the blue fluorescence of FONPs when excited in the near UV region but also show deep-red or NIR fluorescence when excited in the visible absorption bands of the PSs (typically at 520 nm, 660 nm or 710 nm). Moreover, these nanoparticles behave as efficient photosensitizers inducing colorectal cancer cell (HCT116 and HT-29 cell lines) death upon illumination at 650 nm. Half maximal inhibitory concentration (IC50) values down to, respectively, 0.04 and 0.13 nmol/mL were observed showing the potential of FONPs[Cp6] for the PDT treatment of cancer. In conclusion, we have shown that these novel biocompatible nanoparticles, which can be elaborated from biosourced components, both show deep-red emission upon excitation in the red region and are able to produce singlet oxygen with high efficiency in aqueous environments. Moreover, they show high PDT efficiency on colorectal cancer cells upon excitation in the deep red region. As such, these functional organic nanoparticles hold promise both for PDT treatment and theranostics.
Collapse
Affiliation(s)
- Isabelle Sasaki
- Institut des Sciences Moléculaires (ISM, UMR5255), University of Bordeaux, Centre National de la Recherche Scientifique, Institut Polytechnique de Bordeaux, Bat A12, 351 Cours de la Libération, 33405 Talence, France (J.C.)
| | - Frédérique Brégier
- Laboratoire des Agroressources, Biomolécules et Chimie pour l’Innovation en Santé (LABCiS, UR22722), University of Limoges, 87000 Limoges, France; (F.B.); (G.C.)
| | - Guillaume Chemin
- Laboratoire des Agroressources, Biomolécules et Chimie pour l’Innovation en Santé (LABCiS, UR22722), University of Limoges, 87000 Limoges, France; (F.B.); (G.C.)
| | - Jonathan Daniel
- Institut des Sciences Moléculaires (ISM, UMR5255), University of Bordeaux, Centre National de la Recherche Scientifique, Institut Polytechnique de Bordeaux, Bat A12, 351 Cours de la Libération, 33405 Talence, France (J.C.)
| | - Justine Couvez
- Institut des Sciences Moléculaires (ISM, UMR5255), University of Bordeaux, Centre National de la Recherche Scientifique, Institut Polytechnique de Bordeaux, Bat A12, 351 Cours de la Libération, 33405 Talence, France (J.C.)
| | - Rayan Chkair
- Laboratoire des Agroressources, Biomolécules et Chimie pour l’Innovation en Santé (LABCiS, UR22722), University of Limoges, 87000 Limoges, France; (F.B.); (G.C.)
| | - Michel Vaultier
- Institut des Sciences Moléculaires (ISM, UMR5255), University of Bordeaux, Centre National de la Recherche Scientifique, Institut Polytechnique de Bordeaux, Bat A12, 351 Cours de la Libération, 33405 Talence, France (J.C.)
| | - Vincent Sol
- Laboratoire des Agroressources, Biomolécules et Chimie pour l’Innovation en Santé (LABCiS, UR22722), University of Limoges, 87000 Limoges, France; (F.B.); (G.C.)
| | - Mireille Blanchard-Desce
- Institut des Sciences Moléculaires (ISM, UMR5255), University of Bordeaux, Centre National de la Recherche Scientifique, Institut Polytechnique de Bordeaux, Bat A12, 351 Cours de la Libération, 33405 Talence, France (J.C.)
| |
Collapse
|
6
|
Coupling of cationic porphyrins on manganese ferrite nanoparticles: a potential multifunctional nanostructure for theranostics applications. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Donohoe C, Schaberle FA, Rodrigues FMS, Gonçalves NPF, Kingsbury CJ, Pereira MM, Senge MO, Gomes-da-Silva LC, Arnaut LG. Unraveling the Pivotal Role of Atropisomerism for Cellular Internalization. J Am Chem Soc 2022; 144:15252-15265. [PMID: 35960892 PMCID: PMC9446767 DOI: 10.1021/jacs.2c05844] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The intrinsic challenge of large molecules to cross the cell membrane and reach intracellular targets is a major obstacle for the development of new medicines. We report how rotation along a single C-C bond, between atropisomers of a drug in clinical trials, improves cell uptake and therapeutic efficacy. The atropisomers of redaporfin (a fluorinated sulfonamide bacteriochlorin photosensitizer of 1135 Da) are separable and display orders of magnitude differences in photodynamic efficacy that are directly related to their differential cellular uptake. We show that redaporfin atropisomer uptake is passive and only marginally affected by ATP depletion, plasma proteins, or formulation in micelles. The α4 atropisomer, where meso-phenyl sulfonamide substituents are on the same side of the tetrapyrrole macrocycle, exhibits the highest cellular uptake and phototoxicity. This is the most amphipathic atropisomer with a conformation that optimizes hydrogen bonding (H-bonding) with polar head groups of membrane phospholipids. Consequently, α4 binds to the phospholipids on the surface of the membrane, flips into the membrane to adopt the orientation of a surfactant, and eventually diffuses to the interior of the cell (bind-flip mechanism). We observed increased α4 internalization by cells of the tumor microenvironment in vivo and correlated this to the response of photodynamic therapy when tumor illumination was performed 24 h after α4 administration. These results show that properly orientated aryl sulfonamide groups can be incorporated into drug design as efficient cell-penetrating motifs in vivo and reveal the unexpected biological consequences of atropisomerism.
Collapse
Affiliation(s)
- Claire Donohoe
- CQC, Coimbra Chemistry Center, University of Coimbra, Rua Larga, Coimbra 3004-535, Portugal.,Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
| | - Fábio A Schaberle
- CQC, Coimbra Chemistry Center, University of Coimbra, Rua Larga, Coimbra 3004-535, Portugal
| | - Fábio M S Rodrigues
- CQC, Coimbra Chemistry Center, University of Coimbra, Rua Larga, Coimbra 3004-535, Portugal
| | - Nuno P F Gonçalves
- Luzitin SA, Ed. Bluepharma, S. Martinho do Bispo, Coimbra 3045-016, Portugal
| | - Christopher J Kingsbury
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mariette M Pereira
- CQC, Coimbra Chemistry Center, University of Coimbra, Rua Larga, Coimbra 3004-535, Portugal
| | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland.,Institute for Advanced Study (TUM-IAS), Technical University of Munich, Lichtenbergstrasse 2a, Garching 85748, Germany
| | - Lígia C Gomes-da-Silva
- CQC, Coimbra Chemistry Center, University of Coimbra, Rua Larga, Coimbra 3004-535, Portugal
| | - Luis G Arnaut
- CQC, Coimbra Chemistry Center, University of Coimbra, Rua Larga, Coimbra 3004-535, Portugal
| |
Collapse
|
8
|
Carobeli LR, Meirelles LEDF, Damke GMZF, Damke E, de Souza MVF, Mari NL, Mashiba KH, Shinobu-Mesquita CS, Souza RP, da Silva VRS, Gonçalves RS, Caetano W, Consolaro MEL. Phthalocyanine and Its Formulations: A Promising Photosensitizer for Cervical Cancer Phototherapy. Pharmaceutics 2021; 13:pharmaceutics13122057. [PMID: 34959339 PMCID: PMC8705941 DOI: 10.3390/pharmaceutics13122057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer is one of the most common causes of cancer-related deaths in women worldwide. Despite advances in current therapies, women with advanced or recurrent disease present poor prognosis. Photodynamic therapy (PDT) has emerged as an effective therapeutic alternative to treat oncological diseases such as cervical cancer. Phthalocyanines (Pcs) are considered good photosensitizers (PS) for PDT, although most of them present high levels of aggregation and are lipophilic. Despite many investigations and encouraging results, Pcs have not been approved as PS for PDT of invasive cervical cancer yet. This review presents an overview on the pathophysiology of cervical cancer and summarizes the most recent developments on the physicochemical properties of Pcs and biological results obtained both in vitro in tumor-bearing mice and in clinical tests reported in the last five years. Current evidence indicates that Pcs have potential as pharmaceutical agents for anti-cervical cancer therapy. The authors firmly believe that Pc-based formulations could emerge as a privileged scaffold for the establishment of lead compounds for PDT against different types of cervical cancer.
Collapse
Affiliation(s)
- Lucimara R. Carobeli
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Lyvia E. de F. Meirelles
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Gabrielle M. Z. F. Damke
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Edilson Damke
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Maria V. F. de Souza
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Natália L. Mari
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Kayane H. Mashiba
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Cristiane S. Shinobu-Mesquita
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Raquel P. Souza
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Vânia R. S. da Silva
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Renato S. Gonçalves
- Department of Chemistry, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (R.S.G.); (W.C.)
| | - Wilker Caetano
- Department of Chemistry, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (R.S.G.); (W.C.)
| | - Márcia E. L. Consolaro
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
- Correspondence: ; Tel.: +55-44-3011-5455
| |
Collapse
|
9
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 638] [Impact Index Per Article: 212.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
10
|
Lin Z, Chen Z, Zhong G, Long L, He P, Luo G. A Porphyrin‐Based 5‐Fluorouracil and Its Metal Complexes: Synthesis, Optical Properties, and Antitumor Activity. ChemistrySelect 2021. [DOI: 10.1002/slct.202101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zunxian Lin
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Zhengwang Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Guanlin Zhong
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Lipeng Long
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Peng He
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Guotian Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| |
Collapse
|
11
|
Jiang Q, Zhang M, Sun Q, Yin D, Xuan Z, Yang Y. Enhancing the Antitumor Effect of Doxorubicin with Photosensitive Metal-Organic Framework Nanoparticles against Breast Cancer. Mol Pharm 2021; 18:3026-3036. [PMID: 34213912 DOI: 10.1021/acs.molpharmaceut.1c00249] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Breast cancer is one of the most common malignant tumors in women. The existence of multiple breast cancer subtypes often leads to chemotherapy failure or the development of drug resistance. In recent years, photodynamic therapy has been proven to enhance the sensitivity of tumors to chemotherapeutic drugs. Porphyrin-based metal-organic framework (MOF) materials could simultaneously be used as carriers for chemotherapy and photosensitizers in photodynamic therapy. In this paper, doxorubicin hydrochloride (DOX) was loaded in porphyrin MOFs, and the mechanism of the synergistic effect of the DOX carriers and photodynamic therapy on breast cancer was investigated. In vitro and in vivo experiments have shown that MOFs could prolong the residence time of DOX in tumor tissues and promote the endocytosis of DOX by tumor cells. In addition, adjuvant treatment with photodynamic therapy can promote breast cancer tumors to resensitize to DOX and synergistically enhance the chemotherapy effect of DOX. Therefore, this study can provide effective development ideas for reversing drug resistance during breast cancer chemotherapy and improving the therapeutic effect of chemotherapy on breast cancer.
Collapse
Affiliation(s)
- Qianqian Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Mengmeng Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Quanwei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China.,Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei 230021, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230038, China
| | - Zihua Xuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230031, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230038, China
| |
Collapse
|
12
|
Fujitsuka M, Iohara D, Oumura S, Matsushima M, Sakuragi M, Anraku M, Ikeda T, Hirayama F, Kuroiwa K. Supramolecular Assembly of Hybrid Pt(II) Porphyrin/Tomatine Analogues with Different Nanostructures and Cytotoxic Activities. ACS OMEGA 2021; 6:13284-13292. [PMID: 34056476 PMCID: PMC8158828 DOI: 10.1021/acsomega.1c01239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/23/2021] [Indexed: 05/14/2023]
Abstract
A simple strategy for synthesizing supramolecular hybrids was developed for the preparation of bioavailable nanohybrid photosensitizers by assembling visible-light-sensitive Pt(II) meso-tetrakis(4-carboxyphenyl)porphyrinporphyrin (PtTCPP)/tomatine analogues. The hybrids were self-assembled into nanofibrous or nanosheet structures approximately 3-5 nm thick and several micrometers wide. α-Tomatine generated a unique fibrous vesicle nanostructure based on intermolecular interactions, while dehydrotomatine generated nanosheet structures. Nanoassembly of these fibrous vesicles and sheets directly affected the properties of the light-responsive photosensitizer for tumor photodynamic therapy (PDT), depending on the nanostructure of the hybrid PtTCPP/tomatine analogues. The cytotoxicity of PtTCPP to cancer cells under photoirradiation was significantly enhanced by a tomatine assembly with a fibrous vesicle nanostructure, attributable to increased incorporation of the drug into cells.
Collapse
Affiliation(s)
- Mayuko Fujitsuka
- Department
of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Daisuke Iohara
- Department
of Pharmaceutical Science, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Sae Oumura
- Department
of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Misaki Matsushima
- Department
of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Mina Sakuragi
- Department
of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Makoto Anraku
- Department
of Pharmaceutical Science, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Tsuyoshi Ikeda
- Department
of Pharmaceutical Science, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Fumitoshi Hirayama
- Department
of Pharmaceutical Science, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Keita Kuroiwa
- Department
of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
- . Tel/Fax: +81-96-326-3891
| |
Collapse
|
13
|
Sun Y, Geng X, Wang Y, Su X, Han R, Wang J, Li X, Wang P, Zhang K, Wang X. Highly Efficient Water-Soluble Photosensitizer Based on Chlorin: Synthesis, Characterization, and Evaluation for Photodynamic Therapy. ACS Pharmacol Transl Sci 2021; 4:802-812. [PMID: 33860203 DOI: 10.1021/acsptsci.1c00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 01/10/2023]
Abstract
The clinical applications of many photosensitizers (PSs) are limited because of their poor water solubility, weak tissue penetration, low chemical purity, and severe toxicity in the absence of light. We designed a novel chlorin-based PS (designated as HPS) to achieve fluorescence image-guided photodynamic therapy (PDT) with efficient ROS generation. In addition to its simple fabrication process, HPS has other advantages such as excellent water solubility, strong NIR absorption, and high biocompatibility upon chemical functionalization for enhanced phototherapy. HPS exhibited high photodynamic performance against lung cancer and breast cancer cells by generating a large amount of singlet oxygen (1O2) under 654 nm laser irradiation. HPS accumulated into multiple organelles such as mitochondria and the endoplasmic reticulum and triggered cell apoptosis by laser exposure. In the tumor-bearing mice, in vivo, HPS showed an optimal half-life in circulation and achieved fluorescence-image-guided PDT within the irradiation window, resulting in effective tumor growth inhibition and the prolonged survival of animals. Moreover, the antitumor PDT effect of HPS was close to the clinical trial phase II stage of HPPH even at the low dosage of 0.32 mg/kg (under 75 J/cm2 laser), while the systemic safety of HPS was much higher. In conclusion, HPS is a novel water-soluble chlorin derivative with excellent PDT potential for clinical transformation.
Collapse
Affiliation(s)
- Yue Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Xiaorui Geng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Yihui Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Xiaomin Su
- Shannxi Blood Center, Xi'an 710061, The People's Republic of China
| | - Ruyin Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Jiangyue Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Xinyan Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Kun Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| |
Collapse
|
14
|
Li MY, Gao YH, Zhang JH, Mi L, Zhu XX, Wang F, Zhou XP, Yan YJ, Chen ZL. Synthesis and evaluation of novel fluorinated hematoporphyrin ether derivatives for photodynamic therapy. Bioorg Chem 2021; 107:104528. [PMID: 33357982 DOI: 10.1016/j.bioorg.2020.104528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
A photosensitizer with high phototoxicity, suitable amphipathy and low dark toxicity could play a pivotal role in photodynamic therapy (PDT). In this study, a facile and versatile approach was adopted to synthesize a series of novel fluorinated hematoporphyrin ether derivatives (I1-I5 and II1-II4), and the photodynamic activities of these compounds were studied. Compared to hematoporphyrin monomethyl ether (HMME), all PSs showed preferable photodynamic activity against A549 lung tumor cells. The longest visible absorption wavelength of these compounds was approximately 622 nm. Among them, II3 revealed the highest singlet oxygen yield (0.0957 min-1), the strongest phototoxicity (IC50 = 1.24 μM), the lowest dark toxicity in vitro, and exhibited excellent anti-tumor effects in vivo. So compound II3 could act as new drug candidate for photodynamic therapy.
Collapse
Affiliation(s)
- Man-Yi Li
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Ying-Hua Gao
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Jia-Hui Zhang
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Le Mi
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Xue-Xue Zhu
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Feng Wang
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Xing-Ping Zhou
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Yi-Jia Yan
- Shanghai Xianhui Pharmaceutical Co., Ltd., Shanghai 200433, China.
| | - Zhi-Long Chen
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
15
|
Ostańska E, Aebisher D, Bartusik-Aebisher D. The potential of photodynamic therapy in current breast cancer treatment methodologies. Biomed Pharmacother 2021; 137:111302. [PMID: 33517188 DOI: 10.1016/j.biopha.2021.111302] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023] Open
Abstract
Photodynamic Therapy (PDT) has been known for over a hundred years, and currently gaining in acceptance as an alternative cancer treatment. Light delivery is still a difficult problem in deep cancer treatment with PDT. Only near-infrared light in the 700-1100 nm range can penetrate deeply into the tissue because most tissue chromophores, including oxyhemoglobin, deoxyhemoglobin, melanin and fat, poorly absorb in the near infrared window. The light sources used in PDT are lasers, arc lamps, light-emitting diodes and fluorescent lamps. PDT has been used for many different clinical applications. PDT may be excellent alternative in the treatment and diagnosis of breast cancer compared to the conventional surgery, chemotherapy and radiotherapy. The basic elements of PDT are an appropriate photosensitizer (PS), oxygen, and light. The effectiveness of photodynamic therapy depends on the induction of photocytotoxic reactions, which are the result of light activation of PS), pre-administered to the body. The condition for initiating PDT processes is light absorption by PS and subsequent localized generation of cytotoxic reactive oxygen species. This study is a review of empirical research aimed at improving the therapy and diagnosis of breast cancer using PDT based on the physicochemical differences in healthy and diseased tissues and the tissues undergoing treatment.
Collapse
Affiliation(s)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The University of Rzeszów, Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The University of Rzeszów, Rzeszów, Poland.
| |
Collapse
|
16
|
Gao D, Gao Y, Shen J, Wang Q. Modified nanoscale metal organic framework-based nanoplatforms in photodynamic therapy and further applications. Photodiagnosis Photodyn Ther 2020; 32:102026. [PMID: 32979544 DOI: 10.1016/j.pdpdt.2020.102026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/21/2020] [Accepted: 09/18/2020] [Indexed: 01/01/2023]
Abstract
Photodynamic therapy (PDT) has emerged as a modality in cancer treatment because it is less invasive and highly selective compared with conventional chemotherapy and radiation therapy. Nanoscale metal organic frameworks (nMOFs) have exhibited great potential for use in constructing nanoplatforms for improved PDT because of their unique structural advantages such as large surface areas, high porosities, tunable compositions and various other modifications. The large majority of current nMOF-based systems employ specific modifying groups to overcome the deficiencies previously observed when using older nMOFs in PDT. In this review, we summarize modifications to these systems such as enhancing singlet oxygen generation by introducing photoactive agents, alleviating tumor hypoxia and engineering active targeting abilities. The applications of MOF-based nanoparticles in synergistic cancer therapies that include PDT, as well as in theranostics are also discussed. Finally, we discuss some of the challenges faced in this field and the future prospects for the use of nMOFs in PDT.
Collapse
Affiliation(s)
- Dongruo Gao
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, 310015, PR China; College of Chemical and Biological Engineering, Zhejiang University, Zhejiang, Hangzhou, 310027, PR China
| | - Ying Gao
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, 310015, PR China; Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Jie Shen
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, 310015, PR China.
| | - Qiwen Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China.
| |
Collapse
|
17
|
Lin Y, Zhou T, Bai R, Xie Y. Chemical approaches for the enhancement of porphyrin skeleton-based photodynamic therapy. J Enzyme Inhib Med Chem 2020; 35:1080-1099. [PMID: 32329382 PMCID: PMC7241559 DOI: 10.1080/14756366.2020.1755669] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 01/15/2023] Open
Abstract
With the development of photodynamic therapy (PDT), remarkable studies have been conducted to generate photosensitisers (PSs), especially porphyrin PSs. A variety of chemical modifications of the porphyrin skeleton have been introduced to improve cellular delivery, stability, and selectivity for cancerous tissues. This review aims to highlight the developments in porphyrin-based structural modifications, with a specific emphasis on the role of PDT in anticancer treatment and the design of PSs to achieve a synergistic effect on multiple targets.
Collapse
Affiliation(s)
- Yuyan Lin
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Renren Bai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuanyuan Xie
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
18
|
Zhang Q, Li Z, Liu J. Applying Cu(II) complexes assisted by water‐soluble porphyrin to DNA binding and selective anticancer activities. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qian Zhang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Zhenzhen Li
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
- Shaanxi Normal University Pingliang Experimental Middle School Pingliang 744000 China
| | - Jiacheng Liu
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| |
Collapse
|
19
|
Effects of extraction methods on antioxidant and immunomodulatory activities of polysaccharides from superfine powder Gynostemma pentaphyllum Makino. Glycoconj J 2020; 37:777-789. [PMID: 32990828 DOI: 10.1007/s10719-020-09949-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/16/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUP Superfine grinding (SG) technology has attracted considerable attention in food and medicine researcher fields. METHODS Polysaccharides in superfine powder of Gynostemma pentaphyllum Makino (GPP) were extracted using three methods, including hot water extraction (HWE), ultrasound-assisted hot extraction (UAE), and microwave-assisted hot extraction (MAE), and the purified polysaccharides were specially denoted as GPWP, GPUP, and GPMP, respectively. The possible structures of polysaccharides were investigated by FT-IR, HPLC and SEM. In addition, the antioxidative and immunomodulatory activities were evaluated by in vitro radical-scavenging activity assay and immune cell functional evaluation. RESULTS We observed that the yield of GPUP (20.31%) was relatively higher than that of GPWP (15.34%) and GPMP (16.96%). Among all products, GPWP exhibited the highest antioxidative activities against DPPH, hydroxyl, and superoxide anion radicals. GPWP could also preferably chelate Fe2+ and protect against the oxidative damage by increasing the cellular levels of antioxidant enzymes (SOD, CAT and GSH-PX) and decreasing the content of oxidation product (MDA). Three polysaccharides presented some extent of immunoregulatory activity by promoting the phagocytosis of mononuclear macrophages and elevating the levels of NO, TNF-ɑ, and IL-6, and among which GPWP showed the best. CONCLUSION These results indicate that the HWE method is an excellent technique for extracting GPP with high bioactivities that would be suitable for various industrial applications. Graphical Abstract.
Collapse
|
20
|
Abdel Hamid AM, Hamed EO. Synthesis and fluorescent properties of some Furan‐tagged Thieno[2,3‐
d
]pyrimidines and Thieno[2,3‐
d
:4,5‐
d
']dipyrimidines. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Atef M. Abdel Hamid
- Department of Chemistry, Faculty of Science Zagazig University Zagazig Egypt
| | - Eman O. Hamed
- Department of Chemistry, Faculty of Science Zagazig University Zagazig Egypt
| |
Collapse
|
21
|
Xiao Q, Lin H, Wu J, Pang X, Zhou Q, Jiang Y, Wang P, Leung W, Lee H, Jiang S, Yao SQ, Gao L, Liu G, Xu C. Pyridine-Embedded Phenothiazinium Dyes as Lysosome-Targeted Photosensitizers for Highly Efficient Photodynamic Antitumor Therapy. J Med Chem 2020; 63:4896-4907. [DOI: 10.1021/acs.jmedchem.0c00280] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Huirong Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Centre for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Juan Wu
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xin Pang
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Centre for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Quanming Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yue Jiang
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Pan Wang
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wingnang Leung
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hungkay Lee
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Shao Q. Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Centre for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
22
|
Liu D, Zhang Q, Zhang L, Yu W, Long H, He J, Liu Y. Novel photosensitizing properties of porphyrin–chrysin derivatives with antitumor activity in vitro. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820907248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Photodynamic therapy is a promising cancer treatment with the advantages of low toxicity, high efficiency, and noninvasiveness. In this study, 23 novel porphyrin–chrysin derivatives are synthesized using alkyl carbon chains as bridges. We use human gastric cancer cells (MGC-803) and human cervical cancer cells to evaluate the in vitro antitumor activity of all the porphyrin–chrysin derivatives, with 5-fluorouracil (5-Fu) as a positive control. Several of the prepared compounds showed effective photodynamic killing effects, among which 5-hydroxy-2-phenyl-7-(2-(4-(10,15,20-tris(4-hydroxyphenyl)porphyrin-5-yl)phenoxy)ethoxy)-4 H-chromen-4-one shows the highest antiproliferation activity on human cervical cancer cells, with a half maximal inhibitory concentration of 26.51 ± 1.15 µM. Flow cytometry analysis showed that human cervical cancer cell apoptosis might be induced by G1 phase arrest.
Collapse
Affiliation(s)
- Ding Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, P.R. China
| | - Qizhi Zhang
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, P.R. China
| | - Lang Zhang
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang, P.R. China
| | - Wenmei Yu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, P.R. China
| | - Huizhi Long
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, P.R. China
| | - Jun He
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang, P.R. China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, P.R. China
| |
Collapse
|
23
|
Chu JQ, Wang DX, Zhang LM, Cheng M, Gao RZ, Gu CG, Lang PF, Liu PQ, Zhu LN, Kong DM. Green Layer-by-Layer Assembly of Porphyrin/G-Quadruplex-Based Near-Infrared Nanocomposite Photosensitizer with High Biocompatibility and Bioavailability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7575-7585. [PMID: 31958010 DOI: 10.1021/acsami.9b21443] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A simple and green layer-by-layer assembly strategy is developed for the preparation of a highly bioavailable nanocomposite photosensitizer by assembling near-infrared (NIR) light-sensitive porphyrin/G-quadruplex complexes on the surface of a highly biocompatible nanoparticle that is prepared via Zn2+-assisted coordination self-assembly of an amphiphilic amino acid. After being efficiently delivered to the target site and internalized into tumor cells via enhanced permeability and retention effect and interactions between aptamers and tumor markers, the as-prepared nanoassembly can be directly used as an NIR light-responsive photosensitizer for tumor photodynamic therapy (PDT) since the porphyrin/G-quadruplex complexes are exposed on the nanoassembly surface and kept in an active state. It can also disassemble under the synergistic stimuli of an acidic pH environment and overexpressed glutathione, leasing more efficient porphyrin/G-quadruplex composite photosensitizers while reducing the interference caused by glutathione-dependent 1O2 consumption. Since the nanoassembly can work no matter if it is disassembled or not, the compulsory requirement for in vivo photosensitizer release is eliminated, thus resulting in the great improvement of the bioavailability of the photosensitizer. The PDT applications of the nanoassembly were well demonstrated in both in vitro cell and in vivo animal experiments.
Collapse
Affiliation(s)
- Jun-Qing Chu
- Department of Chemistry, School of Science , Tianjin University , Tianjin 300072 , P. R. China
| | - Dong-Xia Wang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Li-Ming Zhang
- Department of Chemistry, School of Science , Tianjin University , Tianjin 300072 , P. R. China
| | - Meng Cheng
- Department of Chemistry, School of Science , Tianjin University , Tianjin 300072 , P. R. China
| | - Rong-Zhi Gao
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Cheng-Guang Gu
- Department of Chemistry, School of Science , Tianjin University , Tianjin 300072 , P. R. China
| | - Peng-Fei Lang
- Department of Chemistry, School of Science , Tianjin University , Tianjin 300072 , P. R. China
| | - Pei-Qi Liu
- Department of Chemistry, School of Science , Tianjin University , Tianjin 300072 , P. R. China
| | - Li-Na Zhu
- Department of Chemistry, School of Science , Tianjin University , Tianjin 300072 , P. R. China
| | - De-Ming Kong
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| |
Collapse
|
24
|
Galliani M, Signore G. Poly(Lactide-Co-Glycolide) Nanoparticles Co-Loaded with Chlorophyllin and Quantum Dots as Photodynamic Therapy Agents. Chempluschem 2019; 84:1653-1658. [PMID: 31943880 DOI: 10.1002/cplu.201900342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/29/2019] [Indexed: 01/26/2023]
Abstract
Photodynamic therapy (PDT) is an approach to treating cancer and involves light-induced activation of a photosensitizer that triggers the formation of reactive oxygen species (ROS) in targeted cells and subsequent cell death. Examples of photosensitizers are porphyrins, including the natural compound chlorophyll. These molecules can be delivered alone or co-formulated with an agent, such as quantum dots (QDs), that is able to excite them through a fluorescence resonance energy transfer (FRET)-based mechanism. We encapsulated a chlorophyllin copper complex and CdSe/ZnS core-shell QDs into biodegradable nanoparticles (NPs) composed of poly(lactide-co-glycolide) (PLGA), that allow modification with specific targeting ligands. When excited at 365 nm, FRET occurs between co-encapsulated QDs and chlorophyllin to result in the formation of ROS. This chlorophyllin-QD coformulation allows generation of ROS both in an aqueous environment and in cells, thus confirming the potential of this formulation in PDT.
Collapse
Affiliation(s)
- Marianna Galliani
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Giovanni Signore
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy.,Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017, San Giuliano Terme, Pisa, Italy
| |
Collapse
|
25
|
Wu G, Zhao T, Kang D, Zhang J, Song Y, Namasivayam V, Kongsted J, Pannecouque C, De Clercq E, Poongavanam V, Liu X, Zhan P. Overview of Recent Strategic Advances in Medicinal Chemistry. J Med Chem 2019; 62:9375-9414. [PMID: 31050421 DOI: 10.1021/acs.jmedchem.9b00359] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introducing novel strategies, concepts, and technologies that speed up drug discovery and the drug development cycle is of great importance both in the highly competitive pharmaceutical industry as well as in academia. This Perspective aims to present a "big-picture" overview of recent strategic innovations in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Yuning Song
- Department of Clinical Pharmacy , Qilu Hospital of Shandong University , 250012 Ji'nan , China
| | - Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Vasanthanathan Poongavanam
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| |
Collapse
|
26
|
Zhang Z, Yu HJ, Wu S, Huang H, Si LP, Liu HY, Shi L, Zhang HT. Synthesis, characterization, and photodynamic therapy activity of 5,10,15,20-Tetrakis(carboxyl)porphyrin. Bioorg Med Chem 2019; 27:2598-2608. [PMID: 30992204 DOI: 10.1016/j.bmc.2019.03.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/22/2023]
Abstract
Water-soluble porphyrins are considered promising drug candidates for photodynamic therapy (PDT). This study investigated the PDT activity of a new water-soluble, anionic porphyrin (1-Zn), which possesses four negative charges. The photodynamic anticancer activity of 1-Zn was investigated by the MTT assay, with mTHPC as a positive control. The cellular distribution was determined by fluorescence microscopy. Holographic and phase contrast images were recorded after 1-Zn treatment with a HoloMonitor™ M3 instrument. The inhibition of A549 cell growth achieved by inducing apoptosis was investigated by flow cytometry and fluorescence microscopy. DNA damage was investigated by the comet assay. The expression of apoptosis-related proteins was also measured by western blot assays. 1-Zn had better phototoxicity against A549 cells than HeLa and HepG2 cancer cells. Interestingly, 1-Zn was clearly located almost entirely in the cell cytoplasmic region/organelles. The late apoptotic population was less than 1.0% at baseline in the untreated and only light-treated cells and increased to 40.5% after 1-Zn treatment and irradiation (P < 0.05). 1-Zn triggered significant ROS generation after irradiation, causing ΔΨm disruption (P < 0.01) and DNA damage. 1-Zn induced A549 cell apoptosis via the mitochondrial apoptosis pathway. In addition, 1-Zn bound in the groove of DNA via an outside binding mode by pi-pi stacking and hydrogen bonding. 1-Zn exhibits good photonuclease activity and might serve as a potential photosensitizer (PS) for lung cancer cells.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Hua-Jun Yu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Shang Wu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Hui Huang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Li-Ping Si
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, PR China
| | - Hai-Yang Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, PR China.
| | - Lei Shi
- Department of Chemistry, Guangdong University of Education, Guangzhou 510303, PR China.
| | - Hai-Tao Zhang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, PR China.
| |
Collapse
|
27
|
Reddy POV, Shekar KPC, Khandagale SB, Hara D, Son A, Ito T, Tanabe K, Kumar D. Easy Access to Water-Soluble Cationic Porphyrin- β
-Carboline Conjugates as Potent Photocytotoxic and DNA Cleaving Agents. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201800649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | - K. P. Chandra Shekar
- Department of Chemistry; Birla Institute of Technology and Science; Pilani- 333031 Rajasthan India
| | - Santosh B. Khandagale
- Department of Chemistry; Birla Institute of Technology and Science; Pilani- 333031 Rajasthan India
| | - Daiki Hara
- Department of Energy and Hydrocarbon Chemistry; Kyoto University; Kyoto 615-8510 Japan
| | - Aoi Son
- Department of Energy and Hydrocarbon Chemistry; Kyoto University; Kyoto 615-8510 Japan
| | - Takeo Ito
- Department of Energy and Hydrocarbon Chemistry; Kyoto University; Kyoto 615-8510 Japan
| | - Kazuhito Tanabe
- College of Science and Engineering; Aoyama Gakuin University; Sagamihara 252-5258 Japan
| | - Dalip Kumar
- Department of Chemistry; Birla Institute of Technology and Science; Pilani- 333031 Rajasthan India
| |
Collapse
|
28
|
Cabrera-González J, Soriano J, Conway-Kenny R, Wang J, Lu Y, Zhao J, Nogués C, Draper SM. Multinuclear Ru(ii) and Ir(iii) decorated tetraphenylporphyrins as efficient PDT agents. Biomater Sci 2019; 7:3287-3296. [DOI: 10.1039/c9bm00192a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two novel multi-metallic porphyrin complexes were synthesised and evaluated as effective PDT agents against human breast epithelial cells (SKBR-3).
Collapse
Affiliation(s)
| | - Jorge Soriano
- Departament de Biologia Cellular
- Fisiologia i Immunologia
- Universitat Autònoma de Barcelona
- E-08193-Bellaterra, Barcelona
- Spain
| | | | - Junsi Wang
- School of Chemistry
- Trinity College Dublin
- College Green
- Dublin 2
- Ireland
| | - Yue Lu
- School of Chemistry
- Trinity College Dublin
- College Green
- Dublin 2
- Ireland
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116012
- P. R. China
| | - Carme Nogués
- Departament de Biologia Cellular
- Fisiologia i Immunologia
- Universitat Autònoma de Barcelona
- E-08193-Bellaterra, Barcelona
- Spain
| | - Sylvia M. Draper
- School of Chemistry
- Trinity College Dublin
- College Green
- Dublin 2
- Ireland
| |
Collapse
|
29
|
Lei Z, Zhang X, Zheng X, Liu S, Xie Z. Porphyrin–ferrocene conjugates for photodynamic and chemodynamic therapy. Org Biomol Chem 2018; 16:8613-8619. [DOI: 10.1039/c8ob02391c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Porphyrin–ferrocene conjugates were designed and synthesized for photodynamic and chemodynamic therapy.
Collapse
Affiliation(s)
- Zhitao Lei
- College of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
- P. R. China
- State Key Laboratory of Polymer Physics and Chemistry
| | - Xiaoyu Zhang
- College of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
- P. R. China
| | - Xiaohua Zheng
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Shi Liu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|