1
|
Asemota S, Effah W, Holt J, Johnson D, Cripe L, Ponnusamy S, Thiyagarajan T, Khosrosereshki Y, Hwang DJ, He Y, Grimes B, Fleming MD, Pritchard FE, Hendrix A, Fan M, Jain A, Choi HY, Makowski L, Hayes DN, Miller DD, Pfeffer LM, Santhanam B, Narayanan R. A molecular switch from tumor suppressor to oncogene in ER+ve breast cancer: Role of androgen receptor, JAK-STAT, and lineage plasticity. Proc Natl Acad Sci U S A 2024; 121:e2406837121. [PMID: 39312663 PMCID: PMC11459127 DOI: 10.1073/pnas.2406837121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Cancers develop resistance to inhibitors of oncogenes mainly due to target-centric mechanisms such as mutations and splicing. While inhibitors or antagonists force targets to unnatural conformation contributing to protein instability and resistance, activating tumor suppressors may maintain the protein in an agonistic conformation to elicit sustainable growth inhibition. Due to the lack of tumor suppressor agonists, this hypothesis and the mechanisms underlying resistance are not understood. In estrogen receptor (ER)-positive breast cancer (BC), androgen receptor (AR) is a druggable tumor suppressor offering a promising avenue for this investigation. Spatial genomics suggests that the molecular portrait of AR-expressing BC cells in tumor microenvironment corresponds to better overall patient survival, clinically confirming AR's role as a tumor suppressor. Ligand activation of AR in ER-positive BC xenografts reprograms cistromes, inhibits oncogenic pathways, and promotes cellular elasticity toward a more differentiated state. Sustained AR activation results in cistrome rearrangement toward transcription factor PROP paired-like homeobox 1, transformation of AR into oncogene, and activation of the Janus kinase/signal transducer (JAK/STAT) pathway, all culminating in lineage plasticity to an aggressive resistant subtype. While the molecular profile of AR agonist-sensitive tumors corresponds to better patient survival, the profile represented in the resistant phenotype corresponds to shorter survival. Inhibition of activated oncogenes in resistant tumors reduces growth and resensitizes them to AR agonists. These findings indicate that persistent activation of a context-dependent tumor suppressor may lead to resistance through lineage plasticity-driven tumor metamorphosis. Our work provides a framework to explore the above phenomenon across multiple cancer types and underscores the importance of factoring sensitization of tumor suppressor targets while developing agonist-like drugs.
Collapse
Affiliation(s)
- Sarah Asemota
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
| | - Wendy Effah
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
| | - Jeremiah Holt
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
| | - Daniel Johnson
- Molecular Bioinformatics Core, University of Tennessee Health Science Center, Memphis, TN38163
| | - Linnea Cripe
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
| | - Suriyan Ponnusamy
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
| | - Thirumagal Thiyagarajan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
| | - Yekta Khosrosereshki
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN38163
| | - Yali He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN38163
| | - Brandy Grimes
- West Cancer Center and Research Institute, Memphis, TN38120
| | - Martin D. Fleming
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
| | - Frances E. Pritchard
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
| | - Ashley Hendrix
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
| | - Meiyun Fan
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
| | - Abhinav Jain
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Hyo Young Choi
- University of Tennessee Health Science Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN38163
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN38163
| | - Liza Makowski
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
- University of Tennessee Health Science Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN38163
| | - D. Neil Hayes
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
- University of Tennessee Health Science Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN38163
| | - Duane D. Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN38163
- University of Tennessee Health Science Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN38163
| | - Lawrence M. Pfeffer
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
- University of Tennessee Health Science Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN38163
| | - Balaji Santhanam
- Center of Excellence for Data Driven Discovery and Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Ramesh Narayanan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
- University of Tennessee Health Science Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN38163
| |
Collapse
|
2
|
Yoshida S, Kajiwara D, Seki M, Tayama M, Tanaka Y, Mizutani H, Fujita R, Yamamura K, Okajima S, Asai M, Minamiguchi K. TAS3681, an androgen receptor antagonist, prevents drug resistance driven by aberrant androgen receptor signaling in prostate cancer. Mol Oncol 2024; 18:1980-2000. [PMID: 38600681 PMCID: PMC11306513 DOI: 10.1002/1878-0261.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/04/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024] Open
Abstract
Second-generation androgen receptor (AR) signaling inhibitors (ARSIs), such as abiraterone and enzalutamide, prolong the life of patients with castration-resistant prostate cancer (CRPC). However, patients receiving ARSIs ultimately develop resistance through various complex mechanisms, including AR mutations, constitutively active AR-splice variants (AR-Vs), and AR overexpression. Here, we characterized a novel AR pure antagonist, TAS3681, which inhibits AR transcriptional activity and downregulates AR-full length (AR-FL) and AR-Vs. TAS3681 reduced the protein levels of AR-FL and AR-Vs including AR-V7 in enzalutamide-resistant cells (SAS MDV No. 3-14), in vitro and in vivo, showing strong antitumor efficacy in an AR-V7-positive xenograft model. In AR-overexpressing VCaP (prostate cancer) cells, conversely to enzalutamide, TAS3681 effectively suppressed cell proliferation and downregulated AR expression. Importantly, TAS3681 blocked the transcriptional activity of various mutant ARs, including mutations F877L/T878A and H875Y/T878A, which confer resistance to enzalutamide, and V716M and H875Y mutations, which confer resistance to darolutamide. Our results demonstrate that TAS3681 suppresses the reactivation of AR signaling, which causes resistance to ARSIs, via a newly identified mechanism of action. Therefore, TAS3681 could be a new therapeutic option for CRPC treatment.
Collapse
MESH Headings
- Male
- Humans
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Androgen Receptor Antagonists/pharmacology
- Androgen Receptor Antagonists/therapeutic use
- Cell Line, Tumor
- Animals
- Signal Transduction/drug effects
- Mice, Nude
- Mice
- Xenograft Model Antitumor Assays
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Cell Proliferation/drug effects
- Phenylthiohydantoin/pharmacology
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/therapeutic use
- Benzamides/pharmacology
- Nitriles/pharmacology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
Collapse
Affiliation(s)
- Shohei Yoshida
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Daisuke Kajiwara
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Masanao Seki
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Manabu Tayama
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Yuki Tanaka
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Hiroya Mizutani
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Ryoto Fujita
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Keisuke Yamamura
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Shigeo Okajima
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Masanori Asai
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Kazuhisa Minamiguchi
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| |
Collapse
|
3
|
Zhang W, Fan Y, Zhang Y, Feng Y, Luo Y, Zhou X, Chen Z, Wang C, Lu T, Tang F, Chen Y, Li H, Jiao Y. Discovery of novel biphenyl derivatives as androgen receptor degraders for the treatment of enzalutamide-resistant prostate cancer. Bioorg Chem 2024; 148:107433. [PMID: 38754311 DOI: 10.1016/j.bioorg.2024.107433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Second-generation AR antagonists, such as enzalutamide, are the primary therapeutic agents for advanced prostate cancer. However, the development of both primary and secondary drug resistance leads to treatment failures and patient mortality. Bifunctional agents that simultaneously antagonize and degrade AR block the AR signaling pathway more completely and exhibit excellent antiproliferative activity against wild-type and drug-resistant prostate cancer cells. Here, we reported the discovery and optimization of a series of biphenyl derivatives as androgen receptor antagonists and degraders. These biphenyl derivatives exhibited potent antiproliferative activity against LNCaP and 22Rv1 cells. Our discoveries enrich the diversity of small molecule AR degraders and offer insights for the development of novel AR degraders for the treatment of enzalutamide-resistant prostate cancer.
Collapse
Affiliation(s)
- Wenqiang Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yawen Fan
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yan Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China; State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd, 699-18 Xuan Wu Avenue, Nanjing 210042, PR China; Jiangsu Simcere Pharmaceutical Co, Ltd, 699-18 Xuan Wu Avenue, Nanjing 210042, PR China
| | - Yunrui Feng
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yi Luo
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Xiaoyu Zhou
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Zhuolin Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Chenxiao Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Feng Tang
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd, 699-18 Xuan Wu Avenue, Nanjing 210042, PR China; Jiangsu Simcere Pharmaceutical Co, Ltd, 699-18 Xuan Wu Avenue, Nanjing 210042, PR China.
| | - Yadong Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| | - Hongmei Li
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| | - Yu Jiao
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| |
Collapse
|
4
|
Xiao M, Ha S, Zhu J, Tao W, Fu Z, Wei H, Hou Q, Luo G, Xiang H. Structure-Activity Relationship (SAR) Studies of Novel Monovalent AR/AR-V7 Dual Degraders with Potent Efficacy against Advanced Prostate Cancer. J Med Chem 2024; 67:5567-5590. [PMID: 38512060 DOI: 10.1021/acs.jmedchem.3c02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Androgen receptor (AR) has been extensively established as a potential therapeutic target for nearly all stages of prostate cancer (PCa). However, acquired resistance to AR-targeted drugs inevitably develops and severely limits their clinical efficacy. Particularly, there currently exists no efficient treatment for patients expressing the constitutively active AR splice variants, such as AR-V7. Herein, we report the structure-activity relationship studies of 55 N-heterocycle-substituted hydantoins, which identified the structural motifs required for AR/AR-V7 degradation. Among them, the most potent compound 27c exhibited selective AR/AR-V7 degradation over other hormone receptors and excellent antiproliferative activities in LNCaP and 22RV1 cells. RNA sequence analysis confirmed that 27c effectively suppressed transcriptional activity of the AR signaling pathway. Importantly, 27c demonstrated potent antitumor efficacy in an enzalutamide-resistant 22RV1 xenograft model. These results highlight the potential of 27c as a promising dual AR/AR-V7 degrader for overcoming drug resistance in advanced PCa expressing AR splice variants.
Collapse
Affiliation(s)
- Maoxu Xiao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Si Ha
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiacheng Zhu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wenxiang Tao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zixuan Fu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hanlin Wei
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qiangqiang Hou
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
5
|
Chen QH, Munoz E, Ashong D. Insight into Recent Advances in Degrading Androgen Receptor for Castration-Resistant Prostate Cancer. Cancers (Basel) 2024; 16:663. [PMID: 38339414 PMCID: PMC10854644 DOI: 10.3390/cancers16030663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
Induced protein degradation has emerged as an innovative drug discovery approach, complementary to the classical method of suppressing protein function. The androgen receptor signaling pathway has been identified as the primary driving force in the development and progression of lethal castration-resistant prostate cancer. Since androgen receptor degraders function differently from androgen receptor antagonists, they hold the promise to overcome the drug resistance challenges faced by current therapeutics. Proteolysis-targeting chimeras (PROTACs), monomeric degraders, hydrophobic tagging, molecular glues, and autophagic degradation have demonstrated their capability in downregulating intracellular androgen receptor concentrations. The potential of these androgen receptor degraders to treat castration-resistant prostate cancer is substantiated by the advancement of six PROTACs and two monomeric androgen receptor degraders into phase I or II clinical trials. Although the chemical structures, in vitro and in vivo data, and degradation mechanisms of androgen receptor degraders have been reviewed, it is crucial to stay updated on recent advances in this field as novel androgen receptor degraders and new strategies continue to emerge. This review thus provides insight into recent advancements in this paradigm, offering an overview of the progress made since 2020.
Collapse
Affiliation(s)
- Qiao-Hong Chen
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA; (E.M.); (D.A.)
| | | | | |
Collapse
|
6
|
Zhang W, Zhao S, Luo Y, Zhang Y, Feng Y, Tang F, Zhou X, Peng S, Fan Y, Xie S, Li H, Lai Q, Fu L, Luo Y, Pei S, Chen Z, Lu T, Tang R, Chen Y, Jiao Y. Discovery of (2 S)- N-(6-Cyano-5-(trifluoromethyl)pyridin-3-yl)-3-(6-(4-cyanophenyl)-3,6-diazabicyclo[3.1.1]heptan-3-yl)-2-hydroxy-2-methylpropanamide as a Highly Potent and Selective Topical Androgen Receptor Antagonist for Androgenetic Alopecia Treatment. J Med Chem 2024; 67:322-348. [PMID: 38128906 DOI: 10.1021/acs.jmedchem.3c01417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Androgenetic alopecia (AGA) is the most prevalent form of progressive hair loss disorder in both men and women, significantly impacting their appearance and overall quality of life. Overactivation of the AR signaling pathway in dermal papilla cells (DPCs) plays a crucial role in the development and progression of AGA. Considering the severe systemic side effects associated with oral AR antagonists, the idea of developing of topical AR antagonists with rapid metabolic deactivation properties emerged as a promising approach. Herein, through systematic structural optimization, we successfully identified compound 30a as a potent and selective AR antagonist with favorable pharmacokinetic properties, resulting in high skin exposure and low plasma exposure following topical administration. Importantly, in both hair-growth and AGA mouse models, compound 30a showed potent hair-growth-promoting effects without any noticeable toxicity. These findings suggest that compound 30a holds significant potential as a topical AR antagonist for treating AGA patients.
Collapse
Affiliation(s)
- Wenqiang Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Siqi Zhao
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., 699-18 Xuan Wu Avenue, Nanjing 210042, P. R. China
- Jiangsu Simcere Pharmaceutical Co., Ltd., 699-18 Xuan Wu Avenue, Nanjing 210042, P. R. China
| | - Yi Luo
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yan Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., 699-18 Xuan Wu Avenue, Nanjing 210042, P. R. China
- Jiangsu Simcere Pharmaceutical Co., Ltd., 699-18 Xuan Wu Avenue, Nanjing 210042, P. R. China
| | - Yunrui Feng
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Feng Tang
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., 699-18 Xuan Wu Avenue, Nanjing 210042, P. R. China
- Jiangsu Simcere Pharmaceutical Co., Ltd., 699-18 Xuan Wu Avenue, Nanjing 210042, P. R. China
| | - Xiaoyu Zhou
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Shaoping Peng
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., 699-18 Xuan Wu Avenue, Nanjing 210042, P. R. China
- Jiangsu Simcere Pharmaceutical Co., Ltd., 699-18 Xuan Wu Avenue, Nanjing 210042, P. R. China
| | - Yawen Fan
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Shaofei Xie
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., 699-18 Xuan Wu Avenue, Nanjing 210042, P. R. China
- Jiangsu Simcere Pharmaceutical Co., Ltd., 699-18 Xuan Wu Avenue, Nanjing 210042, P. R. China
| | - Hongmei Li
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Qianlong Lai
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Lingsheng Fu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yi Luo
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Sheng Pei
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Zhuolin Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Renhong Tang
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., 699-18 Xuan Wu Avenue, Nanjing 210042, P. R. China
- Simcere Zaiming Pharmaceutical Co., Ltd., 699-18 Xuan Wu Avenue, Nanjing 210042, P. R. China
| | - Yadong Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yu Jiao
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| |
Collapse
|
7
|
Yoon H, Rutter JC, Li YD, Ebert BL. Induced protein degradation for therapeutics: past, present, and future. J Clin Invest 2024; 134:e175265. [PMID: 38165043 PMCID: PMC10760958 DOI: 10.1172/jci175265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
The concept of induced protein degradation by small molecules has emerged as a promising therapeutic strategy that is particularly effective in targeting proteins previously considered "undruggable." Thalidomide analogs, employed in the treatment of multiple myeloma, stand as prime examples. These compounds serve as molecular glues, redirecting the CRBN E3 ubiquitin ligase to degrade myeloma-dependency factors, IKZF1 and IKZF3. The clinical success of thalidomide analogs demonstrates the therapeutic potential of induced protein degradation. Beyond molecular glue degraders, several additional modalities to trigger protein degradation have been developed and are currently under clinical evaluation. These include heterobifunctional degraders, polymerization-induced degradation, ligand-dependent degradation of nuclear hormone receptors, disruption of protein interactions, and various other strategies. In this Review, we will provide a concise overview of various degradation modalities, their clinical applications, and potential future directions in the field of protein degradation.
Collapse
Affiliation(s)
- Hojong Yoon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Justine C. Rutter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Yen-Der Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Asemota S, Effah W, Young KL, Holt J, Cripe L, Ponnusamy S, Thiyagarajan T, Hwang DJ, He Y, Mcnamara K, Johnson D, Wang Y, Grimes B, Khosrosereshki Y, Hollingsworth TJ, Fleming MD, Pritchard FE, Hendrix A, Khan F, Fan M, Makowski L, Yin Z, Sasano H, Hayes DN, Pfeffer LM, Miller DD, Narayanan R. Identification of a targetable JAK-STAT enriched androgen receptor and androgen receptor splice variant positive triple-negative breast cancer subtype. Cell Rep 2023; 42:113461. [PMID: 37979170 PMCID: PMC10872270 DOI: 10.1016/j.celrep.2023.113461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype with no targeted therapeutics. The luminal androgen receptor (LAR) subtype constitutes 15% of TNBC and is enriched for androgen receptor (AR) and AR target genes. Here, we show that a cohort of TNBC not only expresses AR at a much higher rate (∼80%) but also expresses AR splice variants (AR-SVs) (∼20%), further subclassifying LAR-TNBC. Higher AR and AR-SV expression and corresponding aggressive phenotypes are observed predominantly in specimens obtained from African American women. LAR TNBC specimens are enriched for interferon, Janus kinase (JAK)-signal activator and transducer (STAT), and androgen signaling pathways, which are exclusive to AR-expressing epithelial cancer cells. AR- and AR-SV-expressing TNBC cell proliferation and xenograft and patient-tumor explant growth are inhibited by AR N-terminal domain-binding selective AR degrader or by a JAK inhibitor. Biochemical analysis suggests that STAT1 is an AR coactivator. Collectively, our work identifies pharmacologically targetable TNBC subtypes and identifies growth-promoting interaction between AR and JAK-STAT signaling.
Collapse
Affiliation(s)
- Sarah Asemota
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Wendy Effah
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Kirsten L Young
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Jeremiah Holt
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Linnea Cripe
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Suriyan Ponnusamy
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Thirumagal Thiyagarajan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Yali He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Keely Mcnamara
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8577, Japan
| | - Daniel Johnson
- Molecular Bioinformatics Core, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Yinan Wang
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Brandy Grimes
- West Cancer Center and Research Institute, Memphis, TN 38138, USA
| | - Yekta Khosrosereshki
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - T J Hollingsworth
- Department of Ophthalmology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Martin D Fleming
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Frances E Pritchard
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Ashley Hendrix
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Farhan Khan
- Department of Pathology, Methodist Hospital, Memphis, TN 38104, USA
| | - Meiyun Fan
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Liza Makowski
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Zheng Yin
- Biomedical and Informatics Services Core, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8577, Japan
| | - D Neil Hayes
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Lawrence M Pfeffer
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38103, USA; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Ramesh Narayanan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA.
| |
Collapse
|
9
|
Thankan RS, Thomas E, Purushottamachar P, Weber DJ, Njar VCO. Salinization Dramatically Enhance the Anti-Prostate Cancer Efficacies of AR/AR-V7 and Mnk1/2 Molecular Glue Degraders, Galeterone and VNPP433-3β Which Outperform Docetaxel and Enzalutamide in CRPC CWR22Rv1 Xenograft Mouse Model. Bioorg Chem 2023; 139:106700. [PMID: 37392559 PMCID: PMC10528634 DOI: 10.1016/j.bioorg.2023.106700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
Galeterone, 3β-(hydroxy)-17-(1H-benzimidazole-1-yl)androsta-5,16-diene (Gal, 1) and VNPP433-3β, 3β-(1H-imidazole-1-yl-17-(1H-benzimidazole-1-yl)androsta-5,16-diene (2) are potent molecular glue degrader modulators of AR/AR-V7 and Mnk1/2-eIF4E signaling pathways, and are promising Phase 3 and Phase 1 drug candidates, respectively. Because appropriate salts can be utilized to create new chemical entities with enhanced aqueous solubility, in vivo pharmacokinetics, and enhanced in vitro and in vivo efficacies, the monohydrochloride salt of Gal (3) and the mono- and di-hydrochlorides salts of compound 2, compounds 4 and 5, respectively, were synthesized. The salts were characterized using 1H NMR, 13C NMR and HRMS analyses. Compound 3 displayed enhanced in vitro antiproliferative activity (7.4-fold) against three prostate cancer cell lines but surprisingly decreased plasma exposure in the pharmacokinetics study. The antiproliferative activities of the compound 2 salts (4 and 5) were equivalent to that of compound 2, but their oral pharmacokinetic profiles were significantly enhanced. Finally, and most importantly, oral administration of the parent compounds (1 and 2) and their corresponding salts (3, 4 and 5) caused dose-dependent potent inhibition/regression of aggressive and difficult-to-treat CWR22Rv1 tumor xenografts growth, with no apparent host toxicities and were highly more efficacious than the blockbuster FDA-approved prostate cancer drugs, Enzalutamide (Xtandi) and Docetaxel (Taxotere). Thus, the HCl salts of Gal (3) and VNPP433-3β (4 and 5) are excellent orally bioavailable candidates for clinical development.
Collapse
Affiliation(s)
- Retheesh S Thankan
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Isoprene Pharmaceuticals, Inc. 801 West Baltimore Street, Suite 502J, Baltimore, MD 21201, USA.
| | - Elizabeth Thomas
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| | - Puranik Purushottamachar
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Isoprene Pharmaceuticals, Inc. 801 West Baltimore Street, Suite 502J, Baltimore, MD 21201, USA.
| | - David J Weber
- The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Isoprene Pharmaceuticals, Inc. 801 West Baltimore Street, Suite 502J, Baltimore, MD 21201, USA.
| | - Vincent C O Njar
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Isoprene Pharmaceuticals, Inc. 801 West Baltimore Street, Suite 502J, Baltimore, MD 21201, USA.
| |
Collapse
|
10
|
Xiang W, Zhao L, Han X, Xu T, Kregel S, Wang M, Miao B, Qin C, Wang M, McEachern D, Lu J, Bai L, Yang CY, Kirchhoff PD, Takyi-Williams J, Wang L, Wen B, Sun D, Ator M, Mckean R, Chinnaiyan AM, Wang S. Discovery of ARD-1676 as a Highly Potent and Orally Efficacious AR PROTAC Degrader with a Broad Activity against AR Mutants for the Treatment of AR + Human Prostate Cancer. J Med Chem 2023; 66:13280-13303. [PMID: 37683104 DOI: 10.1021/acs.jmedchem.3c01264] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
We report herein the discovery and extensive characterization of ARD-1676, a highly potent and orally efficacious PROTAC degrader of the androgen receptor (AR). ARD-1676 was designed using a new class of AR ligands and a novel cereblon ligand. It has DC50 values of 0.1 and 1.1 nM in AR+ VCaP and LNCaP cell lines, respectively, and IC50 values of 11.5 and 2.8 nM in VCaP and LNCaP cell lines, respectively. ARD-1676 effectively induces degradation of a broad panel of clinically relevant AR mutants. ARD-1676 has an oral bioavailability of 67, 44, 31, and 99% in mice, rats, dogs, and monkeys, respectively. Oral administration of ARD-1676 effectively reduces the level of AR protein in the VCaP tumor tissue in mice and inhibits tumor growth in the VCaP mouse xenograft tumor model without any sign of toxicity. ARD-1676 is a highly promising development candidate for the treatment of AR+ human prostate cancer.
Collapse
Affiliation(s)
- Weiguo Xiang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lijie Zhao
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xin Han
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tianfeng Xu
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Steven Kregel
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mi Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bukeyan Miao
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chong Qin
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mingliang Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianfeng Lu
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Longchuan Bai
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chao-Yie Yang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul D Kirchhoff
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John Takyi-Williams
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lu Wang
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mark Ator
- Oncopia Therapeutics Inc, 2 West Liberty Blvd., Malvern, Pennsylvania 19355, United States
| | - Robert Mckean
- Oncopia Therapeutics Inc, 2 West Liberty Blvd., Malvern, Pennsylvania 19355, United States
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Wang A, Luo X, Meng X, Lu Z, Chen K, Yang Y. Discovery of a Novel Bifunctional Steroid Analog, YXG-158, as an Androgen Receptor Degrader and CYP17A1 Inhibitor for the Treatment of Enzalutamide-Resistant Prostate Cancer. J Med Chem 2023; 66:9972-9991. [PMID: 37458396 DOI: 10.1021/acs.jmedchem.3c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The androgen/androgen receptor (AR) signaling pathway plays an important role in castration-resistant prostate cancer (CRPC). Bifunctional agents that simultaneously degrade AR and inhibit androgen synthesis are expected to block the androgen/AR signaling pathway more thoroughly, demonstrating the promising therapeutic potential for CRPC, even enzalutamide-resistant CRPC. Herein, a series of steroid analogs were designed, synthesized, and identified as selective AR degraders, among which YXG-158 (23-h) was the most potent antitumor compound with dual functions of AR degradation and CYP17A1 inhibition. In addition, 23-h abrogated the hERG inhibition and exhibited excellent PK profiles. In vivo, 23-h effectively inhibited the growth of hormone-sensitive organs in the Hershberger assay and exhibited robust antitumor efficacy both in enzalutamide-sensitive (LNCaP/AR) and enzalutamide-resistant (C4-2b-ENZ) xenograft models. Thus, 23-h was chosen as a preclinical candidate for the treatment of enzalutamide-resistant prostate cancer.
Collapse
Affiliation(s)
- Ao Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xianggang Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xin Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhengyu Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kaixian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| |
Collapse
|
12
|
Nevola R, Tortorella G, Rosato V, Rinaldi L, Imbriani S, Perillo P, Mastrocinque D, La Montagna M, Russo A, Di Lorenzo G, Alfano M, Rocco M, Ricozzi C, Gjeloshi K, Sasso FC, Marfella R, Marrone A, Kondili LA, Esposito N, Claar E, Cozzolino D. Gender Differences in the Pathogenesis and Risk Factors of Hepatocellular Carcinoma. BIOLOGY 2023; 12:984. [PMID: 37508414 PMCID: PMC10376683 DOI: 10.3390/biology12070984] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Several chronic liver diseases are characterized by a clear gender disparity. Among them, hepatocellular carcinoma (HCC) shows significantly higher incidence rates in men than in women. The different epidemiological distribution of risk factors for liver disease and HCC only partially accounts for these gender differences. In fact, the liver is an organ with recognized sexual dysmorphism and is extremely sensitive to the action of androgens and estrogens. Sex hormones act by modulating the risk of developing HCC and influencing its aggressiveness, response to treatments, and prognosis. Furthermore, androgens and estrogens are able to modulate the action of other factors and cofactors of liver damage (e.g., chronic HBV infection, obesity), significantly influencing their carcinogenic power. The purpose of this review is to examine the factors related to the different gender distribution in the incidence of HCC as well as the pathophysiological mechanisms involved, with particular reference to the central role played by sex hormones.
Collapse
Affiliation(s)
- Riccardo Nevola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Valerio Rosato
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | | | | | - Marco La Montagna
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Antonio Russo
- Department of Mental Health and Public Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Giovanni Di Lorenzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Carmen Ricozzi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Klodian Gjeloshi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Aldo Marrone
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | | | | | - Ernesto Claar
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
| | - Domenico Cozzolino
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
13
|
Chang X, Zhang D, Qu F, Xie Y, Chen T, Zhang Y, Du Q, Bian J, Li Z, Wang J, Xu X. Discovery of thiohydantoin based antagonists of androgen receptor with efficient degradation for the treatment of prostate cancer. Eur J Med Chem 2023; 257:115490. [PMID: 37209451 DOI: 10.1016/j.ejmech.2023.115490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/22/2023]
Abstract
Prostate cancer (PC) is one of the most prevalent cancers in men worldwide, and androgen receptor (AR) is a well-validated drug target for the treatment of PC. However, PC often exhibits resistance to AR antagonists over time. Thus, it is urgent to identify novel and effective drugs for PC treatment. A series of novel thiohydantoin based AR antagonists with efficient degradation against AR were designed, synthesized, and evaluated. Based on our previous SAR and further structural optimization, a tool molecule 26h was discovered with dual mechanisms including improved antagonistic activity and potent degradation (AR-fl and AR-V7). Moreover, 26h can also effectively block AR nuclear translocation and inhibit AR/AR-V7 heterodimerization, thereby inhibiting downstream gene transcription. Importantly, 26h displayed potent robust efficacy in LNCaP (TGI: 70.70%) and 22Rv1 (TGI: 78.89%) xenograft models. This provides new design strategies and advantageous potential compounds for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Xiujin Chang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Di Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Fangui Qu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Youquan Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Tian Chen
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yuqing Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China
| | - Jinlei Bian
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zhiyu Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jubo Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Xi Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
14
|
Hwang DJ, He Y, Ponnusamy S, Thiyagarajan T, Mohler ML, Narayanan R, Miller DD. Metabolism-Guided Selective Androgen Receptor Antagonists: Design, Synthesis, and Biological Evaluation for Activity against Enzalutamide-Resistant Prostate Cancer. J Med Chem 2023; 66:3372-3392. [PMID: 36825758 PMCID: PMC10243532 DOI: 10.1021/acs.jmedchem.2c01858] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
A major challenge for new drug discovery in the area of androgen receptor (AR) antagonists lies in predicting the druggable properties that will enable small molecules to retain their potency and stability during further studies in vitro and in vivo. Indole (compound 8) is a first-in-class AR antagonist with very high potency (IC50 = 0.085 μM) but is metabolically unstable. During the metabolic studies described herein, we synthesized new small molecules that exhibit significantly improved stability while retaining potent antagonistic activity for an AR. This structure-activity relationship (SAR) study of more than 50 compounds classified with three classes (Class I, II, and III) and discovered two compounds (32c and 35i) that are potent AR antagonists (e.g., IC50 = 0.021 μM, T1/2 = 120 min for compound 35i). The new antagonists exhibited improved in vivo pharmacokinetics (PK) with high efficacy antiandrogen activity in Hershberger and antiandrogen Enz-Res tumor xenograft models that overexpress AR (LNCaP-AR).
Collapse
Affiliation(s)
- Dong-Jin Hwang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Yali He
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Suriyan Ponnusamy
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Thirumagal Thiyagarajan
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Michael L Mohler
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ramesh Narayanan
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
15
|
Racial Differences in Androgen Receptor (AR) and AR Splice Variants (AR-SVs) Expression in Treatment-Naïve Androgen-Dependent Prostate Cancer. Biomedicines 2023; 11:biomedicines11030648. [PMID: 36979627 PMCID: PMC10044992 DOI: 10.3390/biomedicines11030648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Androgen receptor splice variants (AR-SVs) contribute to the aggressive growth of castration-resistant prostate cancer (CRPC). AR-SVs, including AR-V7, are expressed in ~30% of CRPC, but minimally in treatment-naïve primary prostate cancer (PCa). Compared to Caucasian American (CA) men, African American (AA) men are more likely to be diagnosed with aggressive/potentially lethal PCa and have shorter disease-free survival. Expression of a truncated AR in an aggressively growing patient-derived xenograft developed with a primary PCa specimen from an AA patient led us to hypothesize that the expression of AR-SVs could be an indicator of aggressive growth both in PCa progression and at the CRPC stage in AA men. Tissue microarrays (TMAs) were created from formalin-fixed paraffin-embedded (FFPE) prostatectomy tumor blocks from 118 AA and 115 CA treatment-naïve PCa patients. TMAs were stained with AR-V7-speicifc antibody and with antibodies binding to the N-terminus domain (NTD) and ligand-binding domain (LBD) of the AR. Since over 20 AR-SVs have been identified, and most AR-SVs do not as yet have a specific antibody, we considered a 2.0-fold or greater difference in the NTD vs. LBD staining as indication of potential AR-SV expression. Two AA, but no CA, patient tumors stained positively for AR-V7. AR staining with NTD and LBD antibodies was robust in most patients, with 21% of patients staining at least 2-fold more for NTD than LBD, indicating that AR-SVs other than AR-V7 are expressed in primary treatment-naïve PCa. About 24% of the patients were AR-negative, and race differences in AR expression were not statistically significant. These results indicate that AR-SVs are not restricted to CRPC, but also are expressed in primary PCa at higher rate than previously reported. Future investigation of the relative expression of NTD vs. LBD AR-SVs could guide the use of newly developed treatments targeting the NTD earlier in the treatment paradigm.
Collapse
|
16
|
Ji Y, Zhang R, Han X, Zhou J. Targeting the N-terminal domain of the androgen receptor: The effective approach in therapy of CRPC. Eur J Med Chem 2023; 247:115077. [PMID: 36587421 DOI: 10.1016/j.ejmech.2022.115077] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
The androgen receptor (AR) is dominant in prostate cancer (PCa) pathology. Current therapeutic agents for advanced PCa include androgen synthesis inhibitors and AR antagonists that bind to the hormone binding pocket (HBP) at the ligand binding domain (LBD). However, AR amplification, AR splice variants (AR-Vs) expression, and intra-tumoral de novo synthesis of androgens result in the reactivation of AR signalling. The AR N-terminal domain (NTD) plays an essential role in AR transcriptional activity. The AR inhibitor targeting NTD could potentially block the activation of both full-length AR and AR-Vs, thus overcoming major resistance mechanisms to current treatments. This review discusses the progress of research in various NTD inhibitors and provides new insight into the development of AR-NTD inhibitors.
Collapse
Affiliation(s)
- Yang Ji
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Rongyu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Xiaoli Han
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China.
| |
Collapse
|
17
|
Wu M, Zhang R, Zhang Z, Zhang N, Li C, Xie Y, Xia H, Huang F, Zhang R, Liu M, Li X, Cen S, Zhou J. Selective androgen receptor degrader (SARD) to overcome antiandrogen resistance in castration-resistant prostate cancer. eLife 2023; 12:70700. [PMID: 36656639 PMCID: PMC9901937 DOI: 10.7554/elife.70700] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
In patients with castration-resistant prostate cancer (CRPC), clinical resistances such as androgen receptor (AR) mutation, AR overexpression, and AR splice variants (ARVs) limit the effectiveness of second-generation antiandrogens (SGAs). Several strategies have been implemented to develop novel antiandrogens to circumvent the occurring resistance. Here, we found and identified a bifunctional small molecule Z15, which is both an effective AR antagonist and a selective AR degrader. Z15 could directly interact with the ligand-binding domain (LBD) and activation function-1 region of AR, and promote AR degradation through the proteasome pathway. In vitro and in vivo studies showed that Z15 efficiently suppressed AR, AR mutants and ARVs transcription activity, downregulated mRNA and protein levels of AR downstream target genes, thereby overcoming AR LBD mutations, AR amplification, and ARVs-induced SGAs resistance in CRPC. In conclusion, our data illustrate the synergistic importance of AR antagonism and degradation in advanced prostate cancer treatment.
Collapse
Affiliation(s)
- Meng Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical SciencesBeijingChina
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Rongyu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal UniversityJinhuaChina
| | - Zixiong Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical SciencesBeijingChina
| | - Ning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical SciencesBeijingChina
| | - Chenfan Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal UniversityJinhuaChina
| | - Yongli Xie
- Institute of Medicinal Biotechnology, Chinese Academy of Medical SciencesBeijingChina
| | - Haoran Xia
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Fangjiao Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal UniversityJinhuaChina
| | - Ruoying Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal UniversityJinhuaChina
| | - Ming Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical SciencesBeijingChina
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical SciencesBeijingChina
| | - Jinming Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical SciencesBeijingChina
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal UniversityJinhuaChina
| |
Collapse
|
18
|
Ha S, Luo G, Xiang H. A Comprehensive Overview of Small-Molecule Androgen Receptor Degraders: Recent Progress and Future Perspectives. J Med Chem 2022; 65:16128-16154. [PMID: 36459083 DOI: 10.1021/acs.jmedchem.2c01487] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Prostate cancer (PC), the second most prevalent malignancy in men worldwide, has been proven to depend on the aberrant activation of androgen receptor (AR) signaling. Long-term androgen deprivation for the treatment of PC inevitably leads to castration-resistant prostate cancer (CRPC) in which AR remains a crucial oncogenic driver. Thus, there is an urgent need to develop new strategies to address this unmet medical need. Targeting AR for degradation has recently been in a vigorous development stage, and accumulating clinical studies have highlighted the benefits of AR degraders in CRPC patients. Herein, we provide a comprehensive summary of small-molecule AR degraders with diverse mechanisms of action including proteolysis-targeting chimeras (PROTACs), selective AR degraders (SARDs), hydrophobic tags (HyT), and other AR degraders with distinct mechanisms. Accordingly, their structure-activity relationships, biomedical applications, and therapeutic values are also dissected to provide insights into the future development of promising AR degradation-based therapeutics for CRPC.
Collapse
Affiliation(s)
- Si Ha
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
19
|
Constitutively Active Androgen Receptor in Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms232213768. [PMID: 36430245 PMCID: PMC9699340 DOI: 10.3390/ijms232213768] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant type of liver cancer and a leading cause of cancer-related death globally. It is also a sexually dimorphic disease with a male predominance both in HCC and in its precursors, non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH). The role of the androgen receptor (AR) in HCC has been well documented; however, AR-targeted therapies have failed to demonstrate efficacy in HCC. Building upon understandings of AR in prostate cancer (PCa), this review examines the role of AR in HCC, non-androgen-mediated mechanisms of induced AR expression, the existence of AR splice variants (AR-SV) in HCC and concludes by surveying current AR-targeted therapeutic approaches in PCa that show potential for efficacy in HCC in light of AR-SV expression.
Collapse
|
20
|
Sengupta M, Pluciennik A, Merry DE. The role of ubiquitination in spinal and bulbar muscular atrophy. Front Mol Neurosci 2022; 15:1020143. [PMID: 36277484 PMCID: PMC9583669 DOI: 10.3389/fnmol.2022.1020143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative and neuromuscular genetic disease caused by the expansion of a polyglutamine-encoding CAG tract in the androgen receptor (AR) gene. The AR is an important transcriptional regulator of the nuclear hormone receptor superfamily; its levels are regulated in many ways including by ubiquitin-dependent degradation. Ubiquitination is a post-translational modification (PTM) which plays a key role in both AR transcriptional activity and its degradation. Moreover, the ubiquitin-proteasome system (UPS) is a fundamental component of cellular functioning and has been implicated in diseases of protein misfolding and aggregation, including polyglutamine (polyQ) repeat expansion diseases such as Huntington's disease and SBMA. In this review, we discuss the details of the UPS system, its functions and regulation, and the role of AR ubiquitination and UPS components in SBMA. We also discuss aspects of the UPS that may be manipulated for therapeutic effect in SBMA.
Collapse
Affiliation(s)
| | | | - Diane E. Merry
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
21
|
Wang A, Luo X, Wang Y, Meng X, Lu Z, Yang Y. Design, Synthesis, and Biological Evaluation of Androgen Receptor Degrading and Antagonizing Bifunctional Steroidal Analogs for the Treatment of Advanced Prostate Cancer. J Med Chem 2022; 65:12460-12481. [PMID: 36070471 DOI: 10.1021/acs.jmedchem.2c01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) with high mortality has seriously threatened men's health. Bifunctional agents simultaneously degrade and antagonize androgen receptor (AR), display robust AR signaling pathway blockade, and show the therapeutic prospect for mCRPC. Herein, systemic structural modifications on the C-3, C-6, and C-17 positions of galeterone led to the discovery of 67-b with the dual functions of AR antagonism and degradation. In vitro, 67-b exhibited excellent antiproliferative activity and potent AR degradation activity in different PCa cells (LNCaP and 22RV1), as well as outstanding antagonistic activity against wild-type and mutant (W741L, T877A, and F876L) ARs. In vivo, 67-b effectively inhibited the growth of hormone-sensitive organs in the Hershberger assay and exhibited tumor regression in the enzalutamide-resistant (c4-2b-ENZ) xenograft model. These results confirmed 67-b to be a promising AR degrader and antagonist for the treatment of mCRPC patients.
Collapse
Affiliation(s)
- Ao Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xianggang Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yawan Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Xin Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhengyu Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
22
|
Avgeris I, Pliatsika D, Nikolaropoulos SS, Fousteris MA. Targeting androgen receptor for prostate cancer therapy: From small molecules to PROTACs. Bioorg Chem 2022; 128:106089. [PMID: 35973305 DOI: 10.1016/j.bioorg.2022.106089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 12/13/2022]
Abstract
Prostate cancer (PCa) remains a serious type of cancer for men worldwide. The majority of new PCa cases are associated with androgen receptor (AR) hyperactivity. Various AR-targeting molecules that suppress its activity have been discovered. In this review, we present the already marketed antiandrogens and a selection of structurally and chemically interesting AR-targeting compounds, from a pharmacochemical perspective. Focus has been placed on the applied design approaches, structural evolution and structure-activity relationships of the most prominent compound classes. Passing from the traditional steroidal AR antagonists to the modern AR-targeting proteolysis targeting chimeras (PROTACs), we intend to provide a comprehensive overview on AR-targeting molecules for PCa treatment.
Collapse
Affiliation(s)
- Ioannis Avgeris
- Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Patras, Patras GR-26500, Greece
| | - Dimanthi Pliatsika
- Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Patras, Patras GR-26500, Greece
| | - Sotiris S Nikolaropoulos
- Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Patras, Patras GR-26500, Greece
| | - Manolis A Fousteris
- Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Patras, Patras GR-26500, Greece.
| |
Collapse
|
23
|
Abstract
The androgen receptor (AR) plays a key role in the maintenance of muscle and bone and the support of male sexual-related functions, as well as in the progression of prostate cancer. Accordingly, AR-targeted therapies have been developed for the treatment of related human diseases and conditions. AR agonists are an important class of drugs in the treatment of bone loss and muscle atrophy. AR antagonists have also been developed for the treatment of prostate cancer, including metastatic castration-resistant prostate cancer (mCRPC). Additionally, selective AR degraders (SARDs) have been reported. More recently, heterobifunctional degrader molecules of AR have been developed, and four such compounds are now in clinical development for the treatment of human prostate cancer. This review attempts to summarize the different types of compounds designed to target AR and the current frontiers of research on this important therapeutic target.
Collapse
Affiliation(s)
- Weiguo Xiang
- Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
24
|
Targeting a splicing-mediated drug resistance mechanism in prostate cancer by inhibiting transcriptional regulation by PKCβ1. Oncogene 2022; 41:1536-1549. [PMID: 35087237 PMCID: PMC8913362 DOI: 10.1038/s41388-022-02179-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 11/08/2022]
Abstract
The androgen receptor (AR) is a central driver of aggressive prostate cancer. After initial treatment with androgen receptor signaling inhibitors (ARSi), reactivation of AR signaling leads to resistance. Alternative splicing of AR mRNA yields the AR-V7 splice variant, which is currently an undruggable mechanism of ARSi resistance: AR-V7 lacks a ligand binding domain, where hormones and anti-androgen antagonists act, but still activates AR signaling. We reveal PKCβ as a druggable regulator of transcription and splicing at the AR genomic locus. We identify a clinical PKCβ inhibitor in combination with an FDA-approved anti-androgen as an approach for repressing AR genomic locus expression, including expression of AR-V7, while antagonizing full-length AR. PKCβ inhibition reduces total AR gene expression, thus reducing AR-V7 protein levels and sensitizing prostate cancer cells to current anti-androgen therapies. We demonstrate that this combination may be a viable therapeutic strategy for AR-V7-positive prostate cancer.
Collapse
|
25
|
Kumar S, Patil MT, Salunke DB. Indole based prostate cancer agents. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Cancer weakens the immune system which fails to fight against the rapidly growing cells. Among the various types of cancers, prostate cancer (PCa) is causing greater number of deaths in men after lung cancer, demanding advancement to prevent, detect and treat PCa. Several small molecule heterocycles and few peptides are being used as oncological drugs targeting PCa. Heterocycles are playing crucial role in the development of novel cancer chemotherapeutics as well as immunotherapeutics. Indole skeleton, being a privileged structure has been extensively used for the discovery of novel anticancer agents and the application of indole derivatives against breast cancer is well documented. The present article highlights the usefulness of indole linked heterocyclic compounds as well as the fused indole derivatives against prostate cancer.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry and Centre for Advanced Studies in Chemistry , Panjab University , Chandigarh , 160014 , India
- Department of Chemistry , J. C. Bose University of Science and Technology, YMCA , Faridabad 121006 , Haryana , India
| | - Madhuri T. Patil
- Mehr Chand Mahajan DAV College for Women , Sector 36A , Chandigarh 160036 , India
| | - Deepak B. Salunke
- Department of Chemistry and Centre for Advanced Studies in Chemistry , Panjab University , Chandigarh , 160014 , India
- National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials , Panjab University , Chandigarh 160014 , India
| |
Collapse
|
26
|
Xiang W, Zhao L, Han X, Qin C, Miao B, McEachern D, Wang Y, Metwally H, Kirchhoff PD, Wang L, Matvekas A, He M, Wen B, Sun D, Wang S. Discovery of ARD-2585 as an Exceptionally Potent and Orally Active PROTAC Degrader of Androgen Receptor for the Treatment of Advanced Prostate Cancer. J Med Chem 2021; 64:13487-13509. [PMID: 34473519 PMCID: PMC8855934 DOI: 10.1021/acs.jmedchem.1c00900] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report herein the discovery of exceptionally potent and orally bioavailable PROTAC AR degraders with ARD-2585 being the most promising compound. ARD-2585 achieves DC50 values of ≤0.1 nM in the VCaP cell line with AR gene amplification and in the LNCaP cell line carrying an AR mutation. It potently inhibits cell growth with IC50 values of 1.5 and 16.2 nM in the VCaP and LNCaP cell lines, respectively, and achieves excellent pharmacokinetics and 51% of oral bioavailability in mice. It is more efficacious than enzalutamide in inhibition of VCaP tumor growth and does not cause any sign of toxicity in mice. ARD-2585 is a promising AR degrader for extensive investigations for the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Weiguo Xiang
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lijie Zhao
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xin Han
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chong Qin
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bukeyan Miao
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yu Wang
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hoda Metwally
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul D Kirchhoff
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lu Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Aleksas Matvekas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Miao He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
27
|
He Y, Hwang DJ, Ponnusamy S, Thiyagarajan T, Mohler ML, Narayanan R, Miller DD. Exploration and Biological Evaluation of Basic Heteromonocyclic Propanamide Derivatives as SARDs for the Treatment of Enzalutamide-Resistant Prostate Cancer. J Med Chem 2021; 64:11045-11062. [PMID: 34269581 DOI: 10.1021/acs.jmedchem.1c00439] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A series of propanamide derivatives were designed, synthesized, and pharmacologically characterized as selective androgen receptor degraders (SARDs) and pan-antagonists that exert a broad-scope androgen receptor (AR) antagonism. Incorporating different basic heteromonocyclic B-ring structural elements in the common A-ring-linkage-B-ring nonsteroidal antiandrogen general pharmacophore contributed to a novel scaffold of small molecules with SARD and pan-antagonist activities even compared to our recently published AF-1 binding SARDs such as UT-69 (11), UT-155 (12), and UT-34 (13). Compound 26f exhibited inhibitory and degradation effects in vitro in a wide array of wtAR, point mutant, and truncation mutant-driven prostate cancers (PCs). Further, 26f inhibited tumor cell growth in a xenograft model composed of enzalutamide-resistant (EnzR) LNCaP cells. These results demonstrate an advancement toward the development of novel SARDs and pan-antagonists with efficacy against EnzR prostate cancers.
Collapse
Affiliation(s)
- Yali He
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Suriyan Ponnusamy
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Thirumagal Thiyagarajan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Michael L Mohler
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ramesh Narayanan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
28
|
Henley MJ, Koehler AN. Advances in targeting 'undruggable' transcription factors with small molecules. Nat Rev Drug Discov 2021; 20:669-688. [PMID: 34006959 DOI: 10.1038/s41573-021-00199-0] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Transcription factors (TFs) represent key biological players in diseases including cancer, autoimmunity, diabetes and cardiovascular disease. However, outside nuclear receptors, TFs have traditionally been considered 'undruggable' by small-molecule ligands due to significant structural disorder and lack of defined small-molecule binding pockets. Renewed interest in the field has been ignited by significant progress in chemical biology approaches to ligand discovery and optimization, especially the advent of targeted protein degradation approaches, along with increasing appreciation of the critical role a limited number of collaborators play in the regulation of key TF effector genes. Here, we review current understanding of TF-mediated gene regulation, discuss successful targeting strategies and highlight ongoing challenges and emerging approaches to address them.
Collapse
Affiliation(s)
- Matthew J Henley
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,The Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Angela N Koehler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,The Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
29
|
Mukhamejanova Z, Tong Y, Xiang Q, Xu F, Pang J. Recent Advances in the Design and Development of Anticancer Molecules based on PROTAC Technology. Curr Med Chem 2021; 28:1304-1327. [PMID: 32164504 DOI: 10.2174/0929867327666200312112412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/24/2020] [Accepted: 03/05/2020] [Indexed: 11/22/2022]
Abstract
PROTAC (Proteolysis Targeting Chimera) degraders based on protein knockdown technology are now suggested as a novel option for the treatment of various diseases. Over the last couple of years, the application of PROTAC technology has spread in a wide range of disorders, and plenty of PROTAC molecules with high potency have been reported. Mostly developing for anticancer therapy, these molecules showed high selectivities to target proteins, the ability to significantly induce degradation of oncoproteins, good in vitro and in vivo results. In this review, we summarized the recent development of PROTAC technology in the anticancer therapy field, including molecular design, types of targeted proteins, in vitro and in vivo results. Additionally, we also discuss the prospects and challenges for the application of candidates based on PROTAC strategy in clinical trials.
Collapse
Affiliation(s)
| | - Yichen Tong
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qi Xiang
- Institute of Biomedicine & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Fang Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiyan Pang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
30
|
Zhang R, Huang C, Xiao X, Zhou J. Improving Strategies in the Development of Protein-Downregulation-Based Antiandrogens. ChemMedChem 2021; 16:2021-2033. [PMID: 33554455 DOI: 10.1002/cmdc.202100033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 12/20/2022]
Abstract
The androgen receptor (AR) plays a crucial role in the occurrence and development of prostate cancer (PCa), and its signaling pathway remains active in castration-resistant prostate cancer (CRPC) patients. The resistance against antiandrogen drugs in current clinical use is a major challenge for the treatment of PCa, and thus the development of new generations of antiandrogens is under high demand. Recently, strategies for downregulating the AR have attracted significant attention, given its potential in the discovery and development of new antiandrogens, including G-quadruplex stabilizers, ROR-γ inhibitors, AR-targeting proteolysis targeting chimeras (PROTACs), and other selective AR degraders (SARDs), which are able to overcome current resistance mechanisms such as acquired AR mutations, the expression of AR variable splices, or overexpression of AR. This review summarizes the various strategies for downregulating the AR protein, at either the mRNA or protein level, thus providing new ideas for the development of promising antiandrogen drugs.
Collapse
Affiliation(s)
- Rongyu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China.,Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Chenchao Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Xiaohui Xiao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China.,Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China.,Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| |
Collapse
|
31
|
An Overview of Next-Generation Androgen Receptor-Targeted Therapeutics in Development for the Treatment of Prostate Cancer. Int J Mol Sci 2021; 22:ijms22042124. [PMID: 33672769 PMCID: PMC7924596 DOI: 10.3390/ijms22042124] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/31/2022] Open
Abstract
Traditional endocrine therapy for prostate cancer (PCa) has been directed at suppression of the androgen receptor (AR) signaling axis since Huggins et al. discovered that diethylstilbestrol (DES; an estrogen) produced chemical castration and PCa tumor regression. Androgen deprivation therapy (ADT) still remains the first-line PCa therapy. Insufficiency of ADT over time leads to castration-resistant PCa (CRPC) in which the AR axis is still active, despite castrate levels of circulating androgens. Despite the approval and use of multiple generations of competitive AR antagonists (antiandrogens), antiandrogen resistance emerges rapidly in CRPC due to several mechanisms, mostly converging in the AR axis. Recent evidence from multiple groups have defined noncompetitive or noncanonical direct binding sites on AR that can be targeted to inhibit the AR axis. This review discusses new developments in the PCa treatment paradigm that includes the next-generation molecules to noncanonical sites, proteolysis targeting chimera (PROTAC), or noncanonical N-terminal domain (NTD)-binding of selective AR degraders (SARDs). A few lead compounds targeting each of these novel noncanonical sites or with SARD activity are discussed. Many of these ligands are still in preclinical development, and a few early clinical leads have emerged, but successful late-stage clinical data are still lacking. The breadth and diversity of targets provide hope that optimized noncanonical inhibitors and/or SARDs will be able to overcome antiandrogen-resistant CRPC.
Collapse
|
32
|
Zhang Z, Connolly PJ, Lim HK, Pande V, Meerpoel L, Teleha C, Branch JR, Ondrus J, Hickson I, Bush T, Luistro L, Packman K, Bischoff JR, Ibrahim S, Parrett C, Chong Y, Gottardis MM, Bignan G. Discovery of JNJ-63576253: A Clinical Stage Androgen Receptor Antagonist for F877L Mutant and Wild-Type Castration-Resistant Prostate Cancer (mCRPC). J Med Chem 2021; 64:909-924. [PMID: 33470111 DOI: 10.1021/acs.jmedchem.0c01563] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Persistent androgen receptor (AR) activation drives therapeutic resistance to second-generation AR pathway inhibitors and contributes to the progression of advanced prostate cancer. One resistance mechanism is point mutations in the ligand binding domain of AR that can transform antagonists into agonists. The AR F877L mutation, identified in patients treated with enzalutamide or apalutamide, confers resistance to both enzalutamide and apalutamide. Compound 4 (JNJ-pan-AR) was identified as a pan-AR antagonist with potent activity against wild-type and clinically relevant AR mutations including F877L. Metabolite identification studies revealed a latent bioactivation pathway associated with 4. Subsequent lead optimization of 4 led to amelioration of this pathway and nomination of 5 (JNJ-63576253) as a clinical stage, next-generation AR antagonist for the treatment of castration-resistant prostate cancer (CRPC).
Collapse
Affiliation(s)
- Zhuming Zhang
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Peter J Connolly
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Heng Keang Lim
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Vineet Pande
- Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Lieven Meerpoel
- Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Christopher Teleha
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Jonathan R Branch
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Janine Ondrus
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Ian Hickson
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Tammy Bush
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Leopoldo Luistro
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Kathryn Packman
- Janssen Research and Development, Cambridge, Massachusetts 02142, United States
| | - James R Bischoff
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Salam Ibrahim
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | | | - Yolanda Chong
- Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Marco M Gottardis
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Gilles Bignan
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
33
|
He Y, Hwang DJ, Ponnusamy S, Thiyagarajan T, Mohler ML, Narayanan R, Miller DD. Pyrazol-1-yl-propanamides as SARD and Pan-Antagonists for the Treatment of Enzalutamide-Resistant Prostate Cancer. J Med Chem 2020; 63:12642-12665. [PMID: 33095584 DOI: 10.1021/acs.jmedchem.0c00943] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report herein the design, synthesis, and pharmacological characterization of a library of novel aryl pyrazol-1-yl-propanamides as selective androgen receptor degraders (SARDs) and pan-antagonists that exert broad-scope AR antagonism. Pharmacological evaluation demonstrated that introducing a pyrazole moiety as the B-ring structural element in the common A-ring-linkage-B-ring nonsteroidal antiandrogens' general pharmacophore allowed the development of a new scaffold of small molecules with unique SARD and pan-antagonist activities even compared to our recently published AF-1 binding SARDs such as UT-155 (9) and UT-34 (10). Novel B-ring pyrazoles exhibited potent AR antagonist activities, including promising distribution, metabolism, and pharmacokinetic properties, and broad-spectrum AR antagonist properties, including potent in vivo antitumor activity. 26a was able to induce an 80% tumor growth inhibition of xenografts derived from the enzalutamide-resistant (Enz-R) VCaP cell line. These results represent an advancement toward the development of novel AR antagonists for the treatment of Enz-R prostate cancer.
Collapse
Affiliation(s)
- Yali He
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Suriyan Ponnusamy
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Thirumagal Thiyagarajan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Michael L Mohler
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ramesh Narayanan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
34
|
Xie H, Liang JJ, Wang YL, Hu TX, Wang JY, Yang RH, Yan JK, Zhang QR, Xu X, Liu HM, Ke Y. The design, synthesis and anti-tumor mechanism study of new androgen receptor degrader. Eur J Med Chem 2020; 204:112512. [PMID: 32736229 DOI: 10.1016/j.ejmech.2020.112512] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/15/2022]
Abstract
Targeted protein degradation using small molecules is a novel strategy for drug development. In order to solve the problem of drug resistance in the treatment of prostate cancer, proteolysis-targeting chimeras (PROTAC) was introduced into the design of anti-prostate cancer derivatives. In this work, we synthesized two series of selective androgen receptor degraders (SARDs) containing the hydrophobic degrons with different linker, and then investigated the structure-activity relationships of these hybrid compounds. Most of the synthesized compounds exhibited moderate to good activity against all the cancer cell lines selected. Among them, compound A9 displayed potent inhibitory activity against LNCaP prostate cancer cell line with IC50 values of 1.75 μM, as well as excellent AR degradation activity. Primary mechanism studies elucidated compound A9 arrested cell cycle at G0/G1 phase and induced a mild apoptotic response in LNCaP cells. Further study indicated that the degradation of AR was mediated through proteasome-mediated process. For all these reasons, compound A9 held promising potential as anti-proliferative agent for the development of highly efficient SARDs for drug-resistance prostate cancer therapies.
Collapse
Affiliation(s)
- Hang Xie
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China
| | - Jian-Jia Liang
- School of Pharmacy, Wuhan University, Wuhan, Hubei, 430072, PR China.
| | - Ya-Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China
| | - Tian-Xing Hu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China
| | - Jin-Yi Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China
| | - Rui-Hua Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China
| | - Jun-Ke Yan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China
| | - Qiu-Rong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China
| | - Xia Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China.
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China.
| |
Collapse
|
35
|
Suzdalev KF, Vikrishchuk NI, Tsiryulnik SA. Three-Component Reaction of 1-(Oxyran-2-ylmethyl)-1H-indole-3-carbaldehyde with CH-Acids and Amines. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220040027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Luan H, Xu P, Meng Y, Li Z, Bian J. A critical update on the strategies towards modulators targeting androgen receptors. Bioorg Med Chem 2020; 28:115554. [PMID: 32546299 DOI: 10.1016/j.bmc.2020.115554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022]
Abstract
Prostate cancer is the most common carcinoma of the male urinary system in developed countries. Androgen deprivation therapy has been commonly used in the treatment of prostate cancer for decades, but most patients will inevitably develop into more aggressive castration-resistant prostate cancer. Therefore, novel strategies are urgent to address this resistance mechanism. In this review, we discussed some new strategies for targeting androgen receptors through degradation pathways as potential treatments for prostate cancer.
Collapse
Affiliation(s)
- Hongyu Luan
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Pengfei Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Ying Meng
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
37
|
Hanan EJ, Liang J, Wang X, Blake RA, Blaquiere N, Staben ST. Monomeric Targeted Protein Degraders. J Med Chem 2020; 63:11330-11361. [DOI: 10.1021/acs.jmedchem.0c00093] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Narayanan R. Therapeutic targeting of the androgen receptor (AR) and AR variants in prostate cancer. Asian J Urol 2020; 7:271-283. [PMID: 32742927 PMCID: PMC7385518 DOI: 10.1016/j.ajur.2020.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/24/2019] [Accepted: 06/20/2019] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) accounted for over 300 000 deaths world-wide in 2018. Most of the PCa deaths occurred due to the aggressive castration-resistant PCa (CRPC). Since the androgen receptor (AR) and its ligands contribute to the continued growth of androgen-dependent PCa (ADPCa) and CRPC, AR has become a well-characterized and pivotal therapeutic-target. Although AR signaling was identified as therapeutic-target in PCa over five-decades ago, there remains several practical issues such as lack of antagonist-bound AR crystal structure, stabilization of the AR in the presence of agonists due to N-terminus and C-terminus interaction, unfavorable large-molecule accommodation of the ligand-binding domain (LBD), and generation of AR splice variants that lack the LBD that impede the discovery of highly potent fail-safe drugs. This review summarizes the AR-signaling pathway targeted therapeutics currently used in PCa and the approaches that could be used in future AR-targeted drug development of potent next-generation molecules. The review also outlines the discovery of molecules that bind to domains other than the LBD and those that inhibit both the full length and splice variant of ARs.
Collapse
|
39
|
Lu C, Brown LC, Antonarakis ES, Armstrong AJ, Luo J. Androgen receptor variant-driven prostate cancer II: advances in laboratory investigations. Prostate Cancer Prostatic Dis 2020; 23:381-397. [PMID: 32139878 PMCID: PMC7725416 DOI: 10.1038/s41391-020-0217-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023]
Abstract
Background: The androgen receptor (AR) is a key prostate cancer drug target.
Suppression of AR signaling mediated by the full-length AR (AR-FL) is the
therapeutic goal of all existing AR-directed therapies. AR-targeting agents
impart therapeutic benefit, but lead to AR aberrations that underlie disease
progression and therapeutic resistance. Among the AR aberrations specific to
castration-resistant prostate cancer (CRPC), AR variants (AR-Vs) have
emerged as important indicators of disease progression and therapeutic
resistance. Methods: We conducted a systemic review of the literature focusing on recent
laboratory studies on AR-Vs following our last review article published in
2016. Topics ranged from measurement and detection, molecular origin,
regulation, genomic function, and preclinical therapeutic targeting of
AR-Vs. We provide expert opinions and perspectives on these topics. Results: Transcript sequences for 22 AR-Vs have been reported in the
literature. Different AR-Vs may arise through different mechanisms, and can
be regulated by splicing factors and dictated by genomic rearrangements, but
a low-androgen environment is a prerequisite for generation of AR-Vs. The
unique transcript structures allowed development of in-situ and in-solution
measurement and detection methods, including mRNA and protein detection, in
both tissue and blood specimens. AR variant-7 (AR-V7) remains the main
measurement target and the most extensively characterized AR-V. Although
AR-V7 co-exists with AR-FL, genomic functions mediated by AR-V7 do not
require the presence of AR-FL. The distinct cistromes and transcriptional
programs directed by AR-V7 and their co-regulators are consistent with
genomic features of progressive disease in a low-androgen environment.
Preclinical development of AR-V-directed agents currently focuses on
suppression of mRNA expression and protein degradation as well as targeting
of the amino-terminal domain. Conclusions: Current literature continues to support AR-Vs as biomarkers and
therapeutic targets in prostate cancer. Laboratory investigations reveal
both challenges and opportunities in targeting AR-Vs to overcome resistance
to current AR-directed therapies.
Collapse
Affiliation(s)
- Changxue Lu
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Landon C Brown
- Departments of Medicine, Surgery, and Pharmacology and Cancer Biology, Divisions of Medical Oncology and Urology, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC, USA
| | - Emmanuel S Antonarakis
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Departments of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew J Armstrong
- Departments of Medicine, Surgery, and Pharmacology and Cancer Biology, Divisions of Medical Oncology and Urology, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC, USA
| | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Departments of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
40
|
Armstrong JF, Faccenda E, Harding SD, Pawson AJ, Southan C, Sharman JL, Campo B, Cavanagh DR, Alexander SPH, Davenport AP, Spedding M, Davies JA. The IUPHAR/BPS Guide to PHARMACOLOGY in 2020: extending immunopharmacology content and introducing the IUPHAR/MMV Guide to MALARIA PHARMACOLOGY. Nucleic Acids Res 2020; 48:D1006-D1021. [PMID: 31691834 PMCID: PMC7145572 DOI: 10.1093/nar/gkz951] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/03/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022] Open
Abstract
The IUPHAR/BPS Guide to PHARMACOLOGY (www.guidetopharmacology.org) is an open-access, expert-curated database of molecular interactions between ligands and their targets. We describe significant updates made over the seven releases during the last two years. The database is notably enhanced through the continued linking of relevant pharmacology with key immunological data types as part of the IUPHAR Guide to IMMUNOPHARMACOLOGY (www.guidetoimmunopharmacology.org) and by a major new extension, the IUPHAR/MMV Guide to Malaria PHARMACOLOGY (www.guidetomalariapharmacology.org). The latter has been constructed in partnership with the Medicines for Malaria Venture, an organization dedicated to identifying, developing and delivering new antimalarial therapies that are both effective and affordable. This is in response to the global challenge of over 200 million cases of malaria and 400 000 deaths worldwide, with the majority in the WHO Africa Region. It provides new pharmacological content, including molecular targets in the malaria parasite, interaction data for ligands with antimalarial activity, and establishes curation of data from screening assays, used routinely in antimalarial drug discovery, against the whole organism. A dedicated portal has been developed to provide quick and focused access to these new data.
Collapse
Affiliation(s)
- Jane F Armstrong
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Elena Faccenda
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Simon D Harding
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Adam J Pawson
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Christopher Southan
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Joanna L Sharman
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Brice Campo
- Medicines for Malaria Venture, Post Box 1826, 1215 Geneva 15, Switzerland
| | - David R Cavanagh
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, UK
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - Jamie A Davies
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | | |
Collapse
|
41
|
Thakur A, Singh A, Kaur N, Ojha R, Nepali K. Steering the antitumor drug discovery campaign towards structurally diverse indolines. Bioorg Chem 2020; 94:103436. [DOI: 10.1016/j.bioorg.2019.103436] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
|
42
|
Ji YL, He XH, Li G, Ai YY, Li HP, Peng C, Han B. Substrate-directed chemo- and regioselective synthesis of polyfunctionalized trifluoromethylarenes via organocatalytic benzannulation. Org Chem Front 2020. [DOI: 10.1039/c9qo01436e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Highly chemo- and regioselective substrate-directed benzannulation of trisubstituted CF3-alkenes and 2-benzylidenemalononitriles or 2-nitroallylic acetates has been achieved via Michael-initiated [4 + 2] or Rauhut–Currier-initiated [3 + 3] annulation.
Collapse
Affiliation(s)
- Yan-Ling Ji
- Hospital of Chengdu University of Traditional Chinese Medicine
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu
| | - Xiang-Hong He
- Hospital of Chengdu University of Traditional Chinese Medicine
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu
| | - Guo Li
- Hospital of Chengdu University of Traditional Chinese Medicine
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu
| | - Yue-Yan Ai
- Hospital of Chengdu University of Traditional Chinese Medicine
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu
| | - He-Ping Li
- Hospital of Chengdu University of Traditional Chinese Medicine
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu
| | - Cheng Peng
- Hospital of Chengdu University of Traditional Chinese Medicine
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu
| | - Bo Han
- Hospital of Chengdu University of Traditional Chinese Medicine
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu
| |
Collapse
|
43
|
Ponnusamy S, He Y, Hwang DJ, Thiyagarajan T, Houtman R, Bocharova V, Sumpter BG, Fernandez E, Johnson D, Du Z, Pfeffer LM, Getzenberg RH, McEwan IJ, Miller DD, Narayanan R. Orally Bioavailable Androgen Receptor Degrader, Potential Next-Generation Therapeutic for Enzalutamide-Resistant Prostate Cancer. Clin Cancer Res 2019; 25:6764-6780. [PMID: 31481513 DOI: 10.1158/1078-0432.ccr-19-1458] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/01/2019] [Accepted: 08/22/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Androgen receptor (AR)-targeting prostate cancer drugs, which are predominantly competitive ligand-binding domain (LBD)-binding antagonists, are inactivated by common resistance mechanisms. It is important to develop next-generation mechanistically distinct drugs to treat castration- and drug-resistant prostate cancers. EXPERIMENTAL DESIGN Second-generation AR pan antagonist UT-34 was selected from a library of compounds and tested in competitive AR binding and transactivation assays. UT-34 was tested using biophysical methods for binding to the AR activation function-1 (AF-1) domain. Western blot, gene expression, and proliferation assays were performed in various AR-positive enzalutamide-sensitive and -resistant prostate cancer cell lines. Pharmacokinetic and xenograft studies were performed in immunocompromised rats and mice. RESULTS UT-34 inhibits the wild-type and LBD-mutant ARs comparably and inhibits the in vitro proliferation and in vivo growth of enzalutamide-sensitive and -resistant prostate cancer xenografts. In preclinical models, UT-34 induced the regression of enzalutamide-resistant tumors at doses when the AR is degraded; but, at lower doses, when the AR is just antagonized, it inhibits, without shrinking, the tumors. This indicates that degradation might be a prerequisite for tumor regression. Mechanistically, UT-34 promotes a conformation that is distinct from the LBD-binding competitive antagonist enzalutamide and degrades the AR through the ubiquitin proteasome mechanism. UT-34 has a broad safety margin and exhibits no cross-reactivity with G-protein-coupled receptor kinase and nuclear receptor family members. CONCLUSIONS Collectively, UT-34 exhibits the properties necessary for a next-generation prostate cancer drug.
Collapse
Affiliation(s)
- Suriyan Ponnusamy
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Yali He
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | | | - Rene Houtman
- PamGene International, Den Bosch, the Netherlands
| | | | | | - Elias Fernandez
- Biochemistry and Cell & Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | - Daniel Johnson
- Molecular Bioinformatics Core, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ziyun Du
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Lawrence M Pfeffer
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee
| | | | - Iain J McEwan
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Duane D Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ramesh Narayanan
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee.
- West Cancer Center, Memphis, Tennessee
| |
Collapse
|
44
|
Alniss HY, Witzel II, Semreen MH, Panda PK, Mishra YK, Ahuja R, Parkinson JA. Investigation of the Factors That Dictate the Preferred Orientation of Lexitropsins in the Minor Groove of DNA. J Med Chem 2019; 62:10423-10440. [DOI: 10.1021/acs.jmedchem.9b01534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hasan Y. Alniss
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Ini-Isabée Witzel
- Core Technology Platform, New York University of Abu Dhabi, P.O. Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Mohammad H. Semreen
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Pritam Kumar Panda
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala Sweden
| | - Yogendra Kumar Mishra
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
| | - Rajeev Ahuja
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala Sweden
- Department of Materials and Engineering, Royal Institute of Technology (KTH), SE-10044 Stockholm Sweden
| | - John A. Parkinson
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|