1
|
Sun S, Chowdhury S, Hemeon I, Hasan A, Wilson MS, Bergeron P, Jia Q, Zenova AY, Grimwood ME, Gong W, Decker SM, Bichler P, Andrez JC, Focken T, Ngyuen T, Zhu J, White AD, Bankar G, Howard S, Chang E, Khakh K, Lin S, Dean R, Johnson JP, Chang JH, Hackos DH, McKerrall SJ, Sellers B, Ortwine DF, Cohen CJ, Safina BS, Sutherlin DP, Dehnhardt CM. Discovery of novel cyclopentane carboxylic acids as potent and selective inhibitors of Na V1.7. Bioorg Med Chem Lett 2025; 116:130033. [PMID: 39580005 DOI: 10.1016/j.bmcl.2024.130033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Discovery efforts leading to the identification of cyclopentane carboxylic acid 31, a potent inhibitor of NaV1.7 that showed high selectivity over NaV1.5 and exhibited robust analgesic effects in an inherited erythromelalgia (IEM) transgenic mouse assay, are described herein. Key design elements that culminated in the discovery of 31 include exploration of proline substituents, replacement of the proline warhead with cyclopentane carboxylic acid, that led to significantly boosted NaV1.7 potency, and replacement of the metabolically labile adamantane motif with the 2,6-dichlorobenzyl substituted piperidine system, that addressed metabolic instability and led to a significant improvement in PK.
Collapse
Affiliation(s)
- Shaoyi Sun
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada.
| | - Sultan Chowdhury
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Ivan Hemeon
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Abid Hasan
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Michael S Wilson
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | | | - Qi Jia
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Alla Y Zenova
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Mike E Grimwood
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Wei Gong
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Shannon M Decker
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Paul Bichler
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | | | - Thilo Focken
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Theresa Ngyuen
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | - Jiuxiang Zhu
- Chempartner, Building No. 5, 998 Halei Rd., Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai, PR China
| | - Andrew D White
- Chempartner, Building No. 5, 998 Halei Rd., Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai, PR China
| | - Girish Bankar
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Sarah Howard
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | - Elaine Chang
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Kuldip Khakh
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Sophia Lin
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Richard Dean
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - J P Johnson
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Jae H Chang
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | - David H Hackos
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | | | - Ben Sellers
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | - Dan F Ortwine
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | - Charles J Cohen
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Brian S Safina
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | | | | |
Collapse
|
2
|
Yu X, Zhao X, Li L, Huang Y, Cui C, Hu Q, Xu H, Yin B, Chen X, Zhao D, Qiu Y, Hou Y. Recent advances in small molecule Nav 1.7 inhibitors for cancer pain management. Bioorg Chem 2024; 150:107605. [PMID: 38971095 DOI: 10.1016/j.bioorg.2024.107605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
The dorsal root ganglion (DRG) is the primary neuron responsible for transmitting peripheral pain signals to the central nervous system and plays a crucial role in pain transduction. Modulation of DRG excitability is considered a viable approach for pain management. Neuronal excitability is intricately linked to the ion channels on the neurons. The small and medium-sized DRG neurons are chiefly engaged in pain conduction and have high levels of TTX-S sodium channels, with Nav1.7 accounting for approximately 80% of the current. Voltage-gated sodium channel (VGSC or Nav) blockers are vital targets for the management of central nervous system diseases, particularly chronic pain. VGSCs play a key role in controlling cellular excitability. Clinical research has shown that Nav1.7 plays a crucial role in pain sensation, and there is strong genetic evidence linking Nav1.7 and its encoding gene SCN9A gene to painful disorders in humans. Many studies have shown that Nav1.7 plays an important role in pain management. The role of Nav1.7 in pain signaling pathways makes it an attractive target for the potential development of new pain drugs. Meanwhile, understanding the architecture of Nav1.7 may help to develop the next generation of painkillers. This review provides updates on the recently reported molecular inhibitors targeting the Nav1.7 pathway, summarizes their structure-activity relationships (SARs), and discusses their therapeutic effects on painful diseases. Pharmaceutical chemists are working to improve the therapeutic index of Nav1.7 inhibitors, achieve better analgesic effects, and reduce side effects. We hope that this review will contribute to the development of novel Nav1.7 inhibitors as potential drugs.
Collapse
Affiliation(s)
- Xiaoquan Yu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xingyi Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Lingjun Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yufeng Huang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Chaoyang Cui
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Qiaoguan Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Haoyu Xu
- Yangtze River Pharmaceutical (Group) Co., Ltd., 1 South Yangtze River Road, Taizhou City, Jiangsu Province, 225321, China
| | - Bixi Yin
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd., 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Xiao Chen
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd., 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Dong Zhao
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd., 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Yue Qiu
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd., 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
3
|
Shu J, Wang Y, Guo W, Liu T, Cai S, Shi T, Hu W. Carbenoid-involved reactions integrated with scaffold-based screening generates a Nav1.7 inhibitor. Commun Chem 2024; 7:135. [PMID: 38866907 PMCID: PMC11169417 DOI: 10.1038/s42004-024-01213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
The discovery of selective Nav1.7 inhibitors is a promising approach for developing anti-nociceptive drugs. In this study, we present a novel oxindole-based readily accessible library (OREAL), which is characterized by readily accessibility, unique chemical space, ideal drug-like properties, and structural diversity. We used a scaffold-based approach to screen the OREAL and discovered compound C4 as a potent Nav1.7 inhibitor. The bioactivity characterization of C4 reveals that it is a selective Nav1.7 inhibitor and effectively reverses Paclitaxel-induced neuropathic pain (PINP) in rodent models. Preliminary toxicology study shows C4 is negative to hERG. The consistent results of molecular docking and molecular simulations further support the reasonability of the in-silico screening and show the insight of the binding mode of C4. Our discovery of C4 paves the way for pushing the Nav1.7-based anti-nociceptive drugs forward to the clinic.
Collapse
Affiliation(s)
- Jirong Shu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuwei Wang
- Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Weijie Guo
- Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Tao Liu
- Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Song Cai
- Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Taoda Shi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Wenhao Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
4
|
Becker J, Effraim PR, Dib-Hajj S, Rittner HL. Lessons learned in translating pain knowledge into practice. Pain Rep 2023; 8:e1100. [PMID: 37928204 PMCID: PMC10624476 DOI: 10.1097/pr9.0000000000001100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/05/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction During the past 2 decades, basic research deciphering the underlying mechanisms of nociception and chronic pain was thought to finally step beyond opioids and nonsteroidals and provide patients with new analgesics. But apart from calcitonin gene-related peptide antagonists, nothing arrived in hands of clinicians. Objectives To present existing evidence of 3 representative target molecules in the development of novel pain treatment that, so far, did not result in approved drugs. Methods This Clinical Update aligns with the 2022 IASP Global Year Translating Pain Knowledge into Practice and selectively reviews best available evidence and practice. Results We highlight 3 targets: a ion channel, a neuronal growth factor, and a neuropeptide to explore why these drug targets have been dropped in clinical phase II-III trials. Antibodies to nerve growth factor had very good effects in musculoskeletal pain but resulted into more patients requiring joint replacements. Blockers of NaV1.7 were often not effective enough-at least if patients were not stratified. Blockers of neurokinin receptor were similarly not successful enough. In general, failure was most often to the result of a lack of effect and to a lesser extend because of unexpected severe side effects. However, all studies and trials lead to an enormous move in the scientific community to better preclinical models and testing as well as revised methods to molecularly phenotype and stratify patients. Conclusion All stakeholders in the process can help in the future: better preclinical studies, phenotyping and stratifying patients, and participation in clinical trials to move the discovery of analgesics forward.
Collapse
Affiliation(s)
- Juliane Becker
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Philip R. Effraim
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Center for Neuroscience & Regeneration Research, Yale School of Medicine, New Haven, CT, USA
| | - Sulayman Dib-Hajj
- Department of Neurology, Center for Neuroscience & Regeneration Research, Yale School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Heike L. Rittner
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Kanyo R, Lamothe SM, Urrutia A, Goodchild SJ, Allison WT, Dean R, Kurata HT. Site and Mechanism of ML252 Inhibition of Kv7 Voltage-Gated Potassium Channels. FUNCTION 2023; 4:zqad021. [PMID: 37342413 PMCID: PMC10278987 DOI: 10.1093/function/zqad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 06/22/2023] Open
Abstract
Kv7 (KCNQ) voltage-gated potassium channels are critical regulators of neuronal excitability and are candidate targets for development of antiseizure medications. Drug discovery efforts have identified small molecules that modulate channel function and reveal mechanistic insights into Kv7 channel physiological roles. While Kv7 channel activators have therapeutic benefits, inhibitors are useful for understanding channel function and mechanistic validation of candidate drugs. In this study, we reveal the mechanism of a Kv7.2/Kv7.3 inhibitor, ML252. We used docking and electrophysiology to identify critical residues involved in ML252 sensitivity. Most notably, Kv7.2[W236F] or Kv7.3[W265F] mutations strongly attenuate ML252 sensitivity. This tryptophan residue in the pore is also required for sensitivity to certain activators, including retigabine and ML213. We used automated planar patch clamp electrophysiology to assess competitive interactions between ML252 and different Kv7 activator subtypes. A pore-targeted activator (ML213) weakens the inhibitory effects of ML252, whereas a distinct activator subtype (ICA-069673) that targets the voltage sensor does not prevent ML252 inhibition. Using transgenic zebrafish larvae expressing an optical reporter (CaMPARI) to measure neural activity in-vivo, we demonstrate that Kv7 inhibition by ML252 increases neuronal excitability. Consistent with in-vitro data, ML213 suppresses ML252 induced neuronal activity, while the voltage-sensor targeted activator ICA-069673 does not prevent ML252 actions. In summary, this study establishes a binding site and mechanism of action of ML252, classifying this poorly understood drug as a pore-targeted Kv7 channel inhibitor that binds to the same tryptophan residue as commonly used pore-targeted Kv7 activators. ML213 and ML252 likely have overlapping sites of interaction in the pore Kv7.2 and Kv7.3 channels, resulting in competitive interactions. In contrast, the VSD-targeted activator ICA-069673 does not prevent channel inhibition by ML252.
Collapse
Affiliation(s)
- Richard Kanyo
- Dept. of Pharmacology, Alberta Diabetes Institute, University of Alberta, 9-70 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| | - Shawn M Lamothe
- Dept. of Pharmacology, Alberta Diabetes Institute, University of Alberta, 9-70 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| | - Arturo Urrutia
- Dept. of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Samuel J Goodchild
- Dept. of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - W Ted Allison
- Dept. of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Richard Dean
- Dept. of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | | |
Collapse
|
6
|
Kitano Y, Shinozuka T. Inhibition of Na V1.7: the possibility of ideal analgesics. RSC Med Chem 2022; 13:895-920. [PMID: 36092147 PMCID: PMC9384491 DOI: 10.1039/d2md00081d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/25/2022] [Indexed: 08/03/2023] Open
Abstract
The selective inhibition of NaV1.7 is a promising strategy for developing novel analgesic agents with fewer adverse effects. Although the potent selective inhibition of NaV1.7 has been recently achieved, multiple NaV1.7 inhibitors failed in clinical development. In this review, the relationship between preclinical in vivo efficacy and NaV1.7 coverage among three types of voltage-gated sodium channel (VGSC) inhibitors, namely conventional VGSC inhibitors, sulphonamides and acyl sulphonamides, is discussed. By demonstrating the PK/PD discrepancy of preclinical studies versus in vivo models and clinical results, the potential reasons behind the disconnect between preclinical results and clinical outcomes are discussed together with strategies for developing ideal analgesic agents.
Collapse
Affiliation(s)
- Yutaka Kitano
- R&D Division, Daiichi Sankyo Co., Ltd. 1-2-58 Hiromachi Shinagawa-ku Tokyo 140-8710 Japan
| | - Tsuyoshi Shinozuka
- R&D Division, Daiichi Sankyo Co., Ltd. 1-2-58 Hiromachi Shinagawa-ku Tokyo 140-8710 Japan
| |
Collapse
|
7
|
Melnykov KP, Tavlui O, Skreminskiy A, Kuchkovska YO, Grygorenko OO. Impact of Fluoroalkyl Substituents on the Physicochemical Properties of Saturated Heterocyclic Amines. Chemistry 2022; 28:e202201601. [DOI: 10.1002/chem.202201601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Kostiantyn P. Melnykov
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Olha Tavlui
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | | | - Yuliya O. Kuchkovska
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Current address: Biozentrum University of Basel Spitalstrasse 41 4056 Basel Switzerland
| | - Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
8
|
A Drug Discovery Approach for an Effective Pain Therapy through Selective Inhibition of Nav1.7. Int J Mol Sci 2022; 23:ijms23126793. [PMID: 35743236 PMCID: PMC9223482 DOI: 10.3390/ijms23126793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/10/2022] Open
Abstract
Chronic pain is a widespread disorder affecting millions of people and is insufficiently addressed by current classes of analgesics due to significant long-term or high dosage side effects. A promising approach that was recently proposed involves the systemic inhibition of the voltage-gated sodium channel Nav1.7, capable of cancelling pain perception completely. Notwithstanding numerous attempts, currently no drugs have been approved for the inhibition of Nav1.7. The task is complicated by the difficulty of creating a selective drug for Nav1.7, and avoiding binding to the many human paralogs performing fundamental physiological functions. In our work, we obtained a promising set of ligands with up to 5-40-fold selectivity and reaching 5.2 nanomolar binding affinity by employing a proper treatment of the problem and an innovative differential in silico screening procedure to discriminate for affinity and selectivity against the Nav paralogs. The absorption, distribution, metabolism, and excretion (ADME) properties of our top-scoring ligands were also evaluated, with good to excellent results. Additionally, our study revealed that the top-scoring ligand is a stereoisomer of an already-approved drug. These facts could reduce the time required to bring a new effective and selective Nav1.7 inhibitor to the market.
Collapse
|
9
|
Subbaiah MAM, Meanwell NA. Bioisosteres of the Phenyl Ring: Recent Strategic Applications in Lead Optimization and Drug Design. J Med Chem 2021; 64:14046-14128. [PMID: 34591488 DOI: 10.1021/acs.jmedchem.1c01215] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The benzene moiety is the most prevalent ring system in marketed drugs, underscoring its historic popularity in drug design either as a pharmacophore or as a scaffold that projects pharmacophoric elements. However, introspective analyses of medicinal chemistry practices at the beginning of the 21st century highlighted the indiscriminate deployment of phenyl rings as an important contributor to the poor physicochemical properties of advanced molecules, which limited their prospects of being developed into effective drugs. This Perspective deliberates on the design and applications of bioisosteric replacements for a phenyl ring that have provided practical solutions to a range of developability problems frequently encountered in lead optimization campaigns. While the effect of phenyl ring replacements on compound properties is contextual in nature, bioisosteric substitution can lead to enhanced potency, solubility, and metabolic stability while reducing lipophilicity, plasma protein binding, phospholipidosis potential, and inhibition of cytochrome P450 enzymes and the hERG channel.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka 560099, India
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
10
|
Beckley JT, Pajouhesh H, Luu G, Klas S, Delwig A, Monteleone D, Zhou X, Giuvelis D, Meng ID, Yeomans DC, Hunter JC, Mulcahy JV. Antinociceptive properties of an isoform-selective inhibitor of Nav1.7 derived from saxitoxin in mouse models of pain. Pain 2021; 162:1250-1261. [PMID: 33086288 PMCID: PMC9359086 DOI: 10.1097/j.pain.0000000000002112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
ABSTRACT The voltage-gated sodium channel Nav1.7 is highly expressed in nociceptive afferents and is critically involved in pain signal transmission. Nav1.7 is a genetically validated pain target in humans because loss-of-function mutations cause congenital insensitivity to pain and gain-of-function mutations cause severe pain syndromes. Consequently, pharmacological inhibition has been investigated as an analgesic therapeutic strategy. We describe a small molecule Nav1.7 inhibitor, ST-2530, that is an analog of the naturally occurring sodium channel blocker saxitoxin. When evaluated against human Nav1.7 by patch-clamp electrophysiology using a protocol that favors the resting state, the Kd of ST-2530 was 25 ± 7 nM. ST-2530 exhibited greater than 500-fold selectivity over human voltage-gated sodium channel isoforms Nav1.1-Nav1.6 and Nav1.8. Although ST-2530 had lower affinity against mouse Nav1.7 (Kd = 250 ± 40 nM), potency was sufficient to assess analgesic efficacy in mouse pain models. A 3-mg/kg dose administered subcutaneously was broadly analgesic in acute pain models using noxious thermal, mechanical, and chemical stimuli. ST-2530 also reversed thermal hypersensitivity after a surgical incision on the plantar surface of the hind paw. In the spared nerve injury model of neuropathic pain, ST-2530 transiently reversed mechanical allodynia. These analgesic effects were demonstrated at doses that did not affect locomotion, motor coordination, or olfaction. Collectively, results from this study indicate that pharmacological inhibition of Nav1.7 by a small molecule agent with affinity for the resting state of the channel is sufficient to produce analgesia in a range of preclinical pain models.
Collapse
Affiliation(s)
- Jacob T Beckley
- SiteOne Therapeutics, 351 Evergreen Drive, Suite B-1, Bozeman, MT 59715
| | - Hassan Pajouhesh
- SiteOne Therapeutics, 280 Utah Avenue, Suite 250, South San Francisco, CA 94080
| | - George Luu
- SiteOne Therapeutics, 280 Utah Avenue, Suite 250, South San Francisco, CA 94080
| | - Sheri Klas
- SiteOne Therapeutics, 351 Evergreen Drive, Suite B-1, Bozeman, MT 59715
| | - Anton Delwig
- SiteOne Therapeutics, 280 Utah Avenue, Suite 250, South San Francisco, CA 94080
| | - Dennis Monteleone
- SiteOne Therapeutics, 280 Utah Avenue, Suite 250, South San Francisco, CA 94080
| | - Xiang Zhou
- SiteOne Therapeutics, 280 Utah Avenue, Suite 250, South San Francisco, CA 94080
| | - Denise Giuvelis
- University of New England, Center for Excellence in the Neurosciences, Biddeford, ME 04005
| | - Ian D Meng
- University of New England, Center for Excellence in the Neurosciences, Biddeford, ME 04005
| | | | - John C Hunter
- SiteOne Therapeutics, 280 Utah Avenue, Suite 250, South San Francisco, CA 94080
| | - John V Mulcahy
- SiteOne Therapeutics, 280 Utah Avenue, Suite 250, South San Francisco, CA 94080
| |
Collapse
|
11
|
Structural Pharmacology of Voltage-Gated Sodium Channels. J Mol Biol 2021; 433:166967. [PMID: 33794261 DOI: 10.1016/j.jmb.2021.166967] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium (NaV) channels initiate and propagate action potentials in excitable tissues to mediate key physiological processes including heart contraction and nervous system function. Accordingly, NaV channels are major targets for drugs, toxins and disease-causing mutations. Recent breakthroughs in cryo-electron microscopy have led to the visualization of human NaV1.1, NaV1.2, NaV1.4, NaV1.5 and NaV1.7 channel subtypes at high-resolution. These landmark studies have greatly advanced our structural understanding of channel architecture, ion selectivity, voltage-sensing, electromechanical coupling, fast inactivation, and the molecular basis underlying NaV channelopathies. NaV channel structures have also been increasingly determined in complex with toxin and small molecule modulators that target either the pore module or voltage sensor domains. These structural studies have provided new insights into the mechanisms of pharmacological action and opportunities for subtype-selective NaV channel drug design. This review will highlight the structural pharmacology of human NaV channels as well as the potential use of engineered and chimeric channels in future drug discovery efforts.
Collapse
|
12
|
Safina BS, McKerrall SJ, Sun S, Chen CA, Chowdhury S, Jia Q, Li J, Zenova AY, Andrez JC, Bankar G, Bergeron P, Chang JH, Chang E, Chen J, Dean R, Decker SM, DiPasquale A, Focken T, Hemeon I, Khakh K, Kim A, Kwan R, Lindgren A, Lin S, Maher J, Mezeyova J, Misner D, Nelkenbrecher K, Pang J, Reese R, Shields SD, Sojo L, Sheng T, Verschoof H, Waldbrook M, Wilson MS, Xie Z, Young C, Zabka TS, Hackos DH, Ortwine DF, White AD, Johnson JP, Robinette CL, Dehnhardt CM, Cohen CJ, Sutherlin DP. Discovery of Acyl-sulfonamide Na v1.7 Inhibitors GDC-0276 and GDC-0310. J Med Chem 2021; 64:2953-2966. [PMID: 33682420 DOI: 10.1021/acs.jmedchem.1c00049] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nav1.7 is an extensively investigated target for pain with a strong genetic link in humans, yet in spite of this effort, it remains challenging to identify efficacious, selective, and safe inhibitors. Here, we disclose the discovery and preclinical profile of GDC-0276 (1) and GDC-0310 (2), selective Nav1.7 inhibitors that have completed Phase 1 trials. Our initial search focused on close-in analogues to early compound 3. This resulted in the discovery of GDC-0276 (1), which possessed improved metabolic stability and an acceptable overall pharmacokinetics profile. To further derisk the predicted human pharmacokinetics and enable QD dosing, additional optimization of the scaffold was conducted, resulting in the discovery of a novel series of N-benzyl piperidine Nav1.7 inhibitors. Improvement of the metabolic stability by blocking the labile benzylic position led to the discovery of GDC-0310 (2), which possesses improved Nav selectivity and pharmacokinetic profile over 1.
Collapse
Affiliation(s)
- Brian S Safina
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven J McKerrall
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shaoyi Sun
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Chien-An Chen
- Chempartner, Building No. 5, 998 Halei Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, P.R. China
| | - Sultan Chowdhury
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Qi Jia
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Jun Li
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Alla Y Zenova
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Jean-Christophe Andrez
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Girish Bankar
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Philippe Bergeron
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jae H Chang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Elaine Chang
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Jun Chen
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Richard Dean
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Shannon M Decker
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Antonio DiPasquale
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thilo Focken
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Ivan Hemeon
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Kuldip Khakh
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Amy Kim
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rainbow Kwan
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Andrea Lindgren
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Sophia Lin
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Jonathan Maher
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Janette Mezeyova
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Dinah Misner
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Karen Nelkenbrecher
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Jodie Pang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rebecca Reese
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shannon D Shields
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Luis Sojo
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Tao Sheng
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Henry Verschoof
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Matthew Waldbrook
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Michael S Wilson
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Zhiwei Xie
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Clint Young
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Tanja S Zabka
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - David H Hackos
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel F Ortwine
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Andrew D White
- Chempartner, Building No. 5, 998 Halei Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, P.R. China
| | - J P Johnson
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - C Lee Robinette
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Christoph M Dehnhardt
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Charles J Cohen
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Daniel P Sutherlin
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
13
|
Zhang Y, Wang L, Peng D, Zhang Q, Yang Q, Li J, Li D, Tang D, Chen M, Liang S, Liu Y, Wang S, Liu Z. Engineering of highly potent and selective HNTX-III mutant against hNa v1.7 sodium channel for treatment of pain. J Biol Chem 2021; 296:100326. [PMID: 33493520 PMCID: PMC7988488 DOI: 10.1016/j.jbc.2021.100326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/23/2022] Open
Abstract
Human voltage-gated sodium channel Nav1.7 (hNav1.7) is involved in the generation and conduction of neuropathic and nociceptive pain signals. Compelling genetic and preclinical studies have validated that hNav1.7 is a therapeutic target for the treatment of pain; however, there is a dearth of currently available compounds capable of targeting hNav1.7 with high potency and specificity. Hainantoxin-III (HNTX-III) is a 33-residue polypeptide from the venom of the spider Ornithoctonus hainana. It is a selective antagonist of neuronal tetrodotoxin-sensitive voltage-gated sodium channels. Here, we report the engineering of improved potency and Nav selectivity of hNav1.7 inhibition peptides derived from the HNTX-III scaffold. Alanine scanning mutagenesis showed key residues for HNTX-III interacting with hNav1.7. Site-directed mutagenesis analysis indicated key residues on hNav1.7 interacting with HNTX-III. Molecular docking was conducted to clarify the binding interface between HNTX-III and Nav1.7 and guide the molecular engineering process. Ultimately, we obtained H4 [K0G1-P18K-A21L-V] based on molecular docking of HNTX-III and hNav1.7 with a 30-fold improved potency (IC50 0.007 ± 0.001 μM) and >1000-fold selectivity against Nav1.4 and Nav1.5. H4 also showed robust analgesia in the acute and chronic inflammatory pain model and neuropathic pain model. Thus, our results provide further insight into peptide toxins that may prove useful in guiding the development of inhibitors with improved potency and selectivity for Nav subtypes with robust analgesia.
Collapse
Affiliation(s)
- Yunxiao Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Li Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Dezheng Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Qingfeng Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Qiuchu Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jiayan Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Dan Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Dongfang Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Minzhi Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yu Liu
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China.
| | - Sheng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Pajouhesh H, Beckley JT, Delwig A, Hajare HS, Luu G, Monteleone D, Zhou X, Ligutti J, Amagasu S, Moyer BD, Yeomans DC, Du Bois J, Mulcahy JV. Discovery of a selective, state-independent inhibitor of Na V1.7 by modification of guanidinium toxins. Sci Rep 2020; 10:14791. [PMID: 32908170 PMCID: PMC7481244 DOI: 10.1038/s41598-020-71135-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
The voltage-gated sodium channel isoform NaV1.7 is highly expressed in dorsal root ganglion neurons and is obligatory for nociceptive signal transmission. Genetic gain-of-function and loss-of-function NaV1.7 mutations have been identified in select individuals, and are associated with episodic extreme pain disorders and insensitivity to pain, respectively. These findings implicate NaV1.7 as a key pharmacotherapeutic target for the treatment of pain. While several small molecules targeting NaV1.7 have been advanced to clinical development, no NaV1.7-selective compound has shown convincing efficacy in clinical pain applications. Here we describe the discovery and characterization of ST-2262, a NaV1.7 inhibitor that blocks the extracellular vestibule of the channel with an IC50 of 72 nM and greater than 200-fold selectivity over off-target sodium channel isoforms, NaV1.1-1.6 and NaV1.8. In contrast to other NaV1.7 inhibitors that preferentially inhibit the inactivated state of the channel, ST-2262 is equipotent in a protocol that favors the resting state of the channel, a protocol that favors the inactivated state, and a high frequency protocol. In a non-human primate study, animals treated with ST-2262 exhibited reduced sensitivity to noxious heat. These findings establish the extracellular vestibule of the sodium channel as a viable receptor site for the design of selective ligands targeting NaV1.7.
Collapse
Affiliation(s)
- H Pajouhesh
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - J T Beckley
- SiteOne Therapeutics, Bozeman, MT, 59715, USA
| | - A Delwig
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - H S Hajare
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - G Luu
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - D Monteleone
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - X Zhou
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - J Ligutti
- Neuroscience Department, Amgen Research, Thousand Oaks, CA, 91320, USA
| | - S Amagasu
- Neuroscience Department, Amgen Research, Thousand Oaks, CA, 91320, USA
| | - B D Moyer
- Neuroscience Department, Amgen Research, Thousand Oaks, CA, 91320, USA
| | - D C Yeomans
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, 94305, USA
| | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - J V Mulcahy
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA.
| |
Collapse
|
15
|
Chandra S, Wang Z, Tao X, Chen O, Luo X, Ji RR, Bortsov AV. Computer-aided Discovery of a New Nav1.7 Inhibitor for Treatment of Pain and Itch. Anesthesiology 2020; 133:611-627. [PMID: 32788559 DOI: 10.1097/aln.0000000000003427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Voltage-gated sodium channel Nav1.7 has been validated as a perspective target for selective inhibitors with analgesic and anti-itch activity. The objective of this study was to discover new candidate compounds with Nav1.7 inhibitor properties. The authors hypothesized that their approach would yield at least one new compound that inhibits sodium currents in vitro and exerts analgesic and anti-itch effects in mice. METHODS In silico structure-based similarity search of 1.5 million compounds followed by docking to the Nav1.7 voltage sensor of Domain 4 and molecular dynamics simulation was performed. Patch clamp experiments in Nav1.7-expressing human embryonic kidney 293 cells and in mouse and human dorsal root ganglion neurons were conducted to test sodium current inhibition. Formalin-induced inflammatory pain model, paclitaxel-induced neuropathic pain model, histamine-induced itch model, and mouse lymphoma model of chronic itch were used to confirm in vivo activity of the selected compound. RESULTS After in silico screening, nine compounds were selected for experimental assessment in vitro. Of those, four compounds inhibited sodium currents in Nav1.7-expressing human embryonic kidney 293 cells by 29% or greater (P < 0.05). Compound 9 (3-(1-benzyl-1H-indol-3-yl)-3-(3-phenoxyphenyl)-N-(2-(pyrrolidin-1-yl)ethyl)propanamide, referred to as DA-0218) reduced sodium current by 80% with a 50% inhibition concentration of 0.74 μM (95% CI, 0.35 to 1.56 μM), but had no effects on Nav1.5-expressing human embryonic kidney 293 cells. In mouse and human dorsal root ganglion neurons, DA-0218 reduced sodium currents by 17% (95% CI, 6 to 28%) and 22% (95% CI, 9 to 35%), respectively. The inhibition was greatly potentiated in paclitaxel-treated mouse neurons. Intraperitoneal and intrathecal administration of the compound reduced formalin-induced phase II inflammatory pain behavior in mice by 76% (95% CI, 48 to 100%) and 80% (95% CI, 68 to 92%), respectively. Intrathecal administration of DA-0218 produced acute reduction in paclitaxel-induced mechanical allodynia, and inhibited histamine-induced acute itch and lymphoma-induced chronic itch. CONCLUSIONS This study's computer-aided drug discovery approach yielded a new Nav1.7 inhibitor that shows analgesic and anti-pruritic activity in mouse models.
Collapse
Affiliation(s)
- Sharat Chandra
- From the Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina (S.C., Z.W., X.T., O.C., X.L., R.-R.J., A.V.B.) the Departments of Cell Biology (O.C., R.-R.J.) Neurobiology (R.-R.J.), Duke University Medical Center, Durham, North Carolina
| | | | | | | | | | | | | |
Collapse
|
16
|
Ramdas V, Talwar R, Kanoje V, Loriya RM, Banerjee M, Patil P, Joshi AA, Datrange L, Das AK, Walke DS, Kalhapure V, Khan T, Gote G, Dhayagude U, Deshpande S, Shaikh J, Chaure G, Pal RR, Parkale S, Suravase S, Bhoskar S, Gupta RV, Kalia A, Yeshodharan R, Azhar M, Daler J, Mali V, Sharma G, Kishore A, Vyawahare R, Agarwal G, Pareek H, Budhe S, Nayak A, Warude D, Gupta PK, Joshi P, Joshi S, Darekar S, Pandey D, Wagh A, Nigade PB, Mehta M, Patil V, Modi D, Pawar S, Verma M, Singh M, Das S, Gundu J, Nemmani K, Bock MG, Sharma S, Bakhle D, Kamboj RK, Palle VP. Discovery of Potent, Selective, and State-Dependent Na V1.7 Inhibitors with Robust Oral Efficacy in Pain Models: Structure-Activity Relationship and Optimization of Chroman and Indane Aryl Sulfonamides. J Med Chem 2020; 63:6107-6133. [PMID: 32368909 DOI: 10.1021/acs.jmedchem.0c00361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Voltage-gated sodium channel NaV1.7 is a genetically validated target for pain. Identification of NaV1.7 inhibitors with all of the desired properties to develop as an oral therapeutic for pain has been a major challenge. Herein, we report systematic structure-activity relationship (SAR) studies carried out to identify novel sulfonamide derivatives as potent, selective, and state-dependent NaV1.7 inhibitors for pain. Scaffold hopping from benzoxazine to chroman and indane bicyclic system followed by thiazole replacement on sulfonamide led to identification of lead molecules with significant improvement in solubility, selectivity over NaV1.5, and CYP2C9 inhibition. The lead molecules 13, 29, 32, 43, and 51 showed a favorable pharmacokinetics (PK) profile across different species and robust efficacy in veratridine and formalin-induced inflammatory pain models in mice. Compound 51 also showed significant effects on the CCI-induced neuropathic pain model. The profile of 51 indicated that it has the potential for further evaluation as a therapeutic for pain.
Collapse
Affiliation(s)
- Vidya Ramdas
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rashmi Talwar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Vijay Kanoje
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rajesh M Loriya
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Moloy Banerjee
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Pradeep Patil
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Advait Arun Joshi
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Laxmikant Datrange
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Amit Kumar Das
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Deepak Sahebrao Walke
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Vaibhav Kalhapure
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Talha Khan
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Ganesh Gote
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Usha Dhayagude
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Shreyas Deshpande
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Javed Shaikh
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Ganesh Chaure
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Ravindra R Pal
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Santosh Parkale
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sachin Suravase
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Smita Bhoskar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rajesh V Gupta
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Anil Kalia
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rajesh Yeshodharan
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Mahammad Azhar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Jagadeesh Daler
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Vinod Mali
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Geetika Sharma
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Amitesh Kishore
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rupali Vyawahare
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Gautam Agarwal
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Himani Pareek
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sagar Budhe
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Arun Nayak
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Dnyaneshwar Warude
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Praveen Kumar Gupta
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Parag Joshi
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sneha Joshi
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sagar Darekar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Dilip Pandey
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Akshaya Wagh
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Prashant B Nigade
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Maneesh Mehta
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Vinod Patil
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Dipak Modi
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Shashikant Pawar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Mahip Verma
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Minakshi Singh
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sudipto Das
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Jayasagar Gundu
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Kumar Nemmani
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Mark G Bock
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sharad Sharma
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Dhananjay Bakhle
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rajender Kumar Kamboj
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Venkata P Palle
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| |
Collapse
|
17
|
Kong W, Tu X, Huang W, Yang Y, Xie Z, Huang Z. Prediction and Optimization of NaV1.7 Sodium Channel Inhibitors Based on Machine Learning and Simulated Annealing. J Chem Inf Model 2020; 60:2739-2753. [DOI: 10.1021/acs.jcim.9b01180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Weikaixin Kong
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Lu,
Haidian district, Beijing 100191, China
| | - Xinyu Tu
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Lu,
Haidian district, Beijing 100191, China
| | - Weiran Huang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Lu,
Haidian district, Beijing 100191, China
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhengwei Xie
- Peking University International Cancer Institute and Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Lu, Haidian district, Beijing 100191, China
| | - Zhuo Huang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Lu,
Haidian district, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Lu,
Haidian district, Beijing 100191, China
| |
Collapse
|
18
|
Shinozuka T, Kobayashi H, Suzuki S, Tanaka K, Karanjule N, Hayashi N, Tsuda T, Tokumaru E, Inoue M, Ueda K, Kimoto H, Domon Y, Takahashi S, Kubota K, Yokoyama T, Shimizugawa A, Koishi R, Fujiwara C, Asano D, Sakakura T, Takasuna K, Abe Y, Watanabe T, Kitano Y. Discovery of DS-1971a, a Potent, Selective NaV1.7 Inhibitor. J Med Chem 2020; 63:10204-10220. [DOI: 10.1021/acs.jmedchem.0c00259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tsuyoshi Shinozuka
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hiroyuki Kobayashi
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Sayaka Suzuki
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kyosuke Tanaka
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Narayan Karanjule
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Noriyuki Hayashi
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Toshifumi Tsuda
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Eri Tokumaru
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Masahiro Inoue
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kiyono Ueda
- R&D Division, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Hiroko Kimoto
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yuki Domon
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Sakiko Takahashi
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kazufumi Kubota
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tomihisa Yokoyama
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Akiko Shimizugawa
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Ryuta Koishi
- R&D Division, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Chie Fujiwara
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Daigo Asano
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tomoko Sakakura
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kiyoshi Takasuna
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yasuyuki Abe
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Toshiyuki Watanabe
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yutaka Kitano
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
19
|
Larsen MA, Hennessy ET, Deem MC, Lam YH, Saurí J, Sather AC. A Modular and Diastereoselective 5 + 1 Cyclization Approach to N-(Hetero)Aryl Piperidines. J Am Chem Soc 2019; 142:726-732. [DOI: 10.1021/jacs.9b13114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Matthew A. Larsen
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Elisabeth T. Hennessy
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Madeleine C. Deem
- Department of Process Research and Development, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Yu-hong Lam
- Computational and Structural Chemistry, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Josep Saurí
- Analytical Research and Development, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Aaron C. Sather
- Department of Process Research and Development, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| |
Collapse
|
20
|
Focken T, Burford K, Grimwood ME, Zenova A, Andrez JC, Gong W, Wilson M, Taron M, Decker S, Lofstrand V, Chowdhury S, Shuart N, Lin S, Goodchild SJ, Young C, Soriano M, Tari PK, Waldbrook M, Nelkenbrecher K, Kwan R, Lindgren A, de Boer G, Lee S, Sojo L, DeVita RJ, Cohen CJ, Wesolowski SS, Johnson JP, Dehnhardt CM, Empfield JR. Identification of CNS-Penetrant Aryl Sulfonamides as Isoform-Selective Na V1.6 Inhibitors with Efficacy in Mouse Models of Epilepsy. J Med Chem 2019; 62:9618-9641. [PMID: 31525968 DOI: 10.1021/acs.jmedchem.9b01032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonselective antagonists of voltage-gated sodium (NaV) channels have been long used for the treatment of epilepsies. The efficacy of these drugs is thought to be due to the block of sodium channels on excitatory neurons, primarily NaV1.6 and NaV1.2. However, these currently marketed drugs require high drug exposure and suffer from narrow therapeutic indices. Selective inhibition of NaV1.6, while sparing NaV1.1, is anticipated to provide a more effective and better tolerated treatment for epilepsies. In addition, block of NaV1.2 may complement the anticonvulsant activity of NaV1.6 inhibition. We discovered a novel series of aryl sulfonamides as CNS-penetrant, isoform-selective NaV1.6 inhibitors, which also displayed potent block of NaV1.2. Optimization focused on increasing selectivity over NaV1.1, improving metabolic stability, reducing active efflux, and addressing a pregnane X-receptor liability. We obtained compounds 30-32, which produced potent anticonvulsant activity in mouse seizure models, including a direct current maximal electroshock seizure assay.
Collapse
Affiliation(s)
- Thilo Focken
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Kristen Burford
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Michael E Grimwood
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Alla Zenova
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Jean-Christophe Andrez
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Wei Gong
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Michael Wilson
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Matt Taron
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Shannon Decker
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Verner Lofstrand
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Sultan Chowdhury
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Noah Shuart
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Sophia Lin
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Samuel J Goodchild
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Clint Young
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Maegan Soriano
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Parisa K Tari
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Matthew Waldbrook
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Karen Nelkenbrecher
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Rainbow Kwan
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Andrea Lindgren
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Gina de Boer
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Stephanie Lee
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Luis Sojo
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Robert J DeVita
- RJD Medicinal Chemistry and Drug Discovery Consulting LLC , Westfield , New Jersey 07090 , United States
| | - Charles J Cohen
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Steven S Wesolowski
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - J P Johnson
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Christoph M Dehnhardt
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - James R Empfield
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| |
Collapse
|