1
|
Xie Z, Meng Z, Yang X, Duan Y, Wang Q, Liao C. Factor XIa Inhibitors in Anticoagulation Therapy: Recent Advances and Perspectives. J Med Chem 2023; 66:5332-5363. [PMID: 37037122 DOI: 10.1021/acs.jmedchem.2c02130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Factor XIa (FXIa) in the intrinsic pathway of the coagulation process has been proven to be an effective and safe target for anticoagulant discovery with limited or no bleeding. Numerous small-molecule FXIa inhibitors (SMFIs) with various scaffolds have been identified in the early stages of drug discovery. They have served as the foundation for the recent discovery of additional promising SMFIs with improved potency, selectivity, and pharmacokinetic profiles, some of which have entered clinical trials for the treatment of thrombosis. After reviewing the coagulation process and structure of FXIa, this perspective discusses the rational or structure-based design, discovery, structure-activity relationships, and development of SMFIs disclosed in recent years. Strategies for identifying more selective and druggable SMFIs are provided, paving the way for the design and discovery of more useful SMFIs for anticoagulation therapy.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Zhiwei Meng
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
2
|
Schubart A, Flohr S, Junt T, Eder J. Low-molecular weight inhibitors of the alternative complement pathway. Immunol Rev 2023; 313:339-357. [PMID: 36217774 PMCID: PMC10092480 DOI: 10.1111/imr.13143] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dysregulation of the alternative complement pathway predisposes individuals to a number of diseases. It can either be evoked by genetic alterations in or by stabilizing antibodies to important pathway components and typically leads to severe diseases such as paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, C3 glomerulopathy, and age-related macular degeneration. In addition, the alternative pathway may also be involved in many other diseases where its amplifying function for all complement pathways might play a role. To identify specific alternative pathway inhibitors that qualify as therapeutics for these diseases, drug discovery efforts have focused on the two central proteases of the pathway, factor B and factor D. Although drug discovery has been challenging for a number of reasons, potent and selective low-molecular weight (LMW) oral inhibitors have now been discovered for both proteases and several molecules are in clinical development for multiple complement-mediated diseases. While the clinical development of these inhibitors initially focuses on diseases with systemic and/or peripheral tissue complement activation, the availability of LMW inhibitors may also open up the prospect of inhibiting complement in the central nervous system where its activation may also play an important role in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Schubart
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stefanie Flohr
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Tobias Junt
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jörg Eder
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
3
|
Gavriilaki E, Papakonstantinou A, Agrios KA. Novel Insights into Factor D Inhibition. Int J Mol Sci 2022; 23:7216. [PMID: 35806224 PMCID: PMC9267021 DOI: 10.3390/ijms23137216] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 01/15/2023] Open
Abstract
Complement-mediated diseases or complementopathies, such as Paroxysmal nocturnal hemoglobinuria (PNH), cold agglutinin disease (CAD), and transplant-associated thrombotic microangiopathy (TA-TMA), demand advanced complement diagnostics and therapeutics be adopted in a vast field of medical specialties, such as hematology, transplantation, rheumatology, and nephrology. The miracle of complement inhibitors as "orphan drugs" has dramatically improved morbidity and mortality in patients with otherwise life-threatening complementopathies. Efficacy has been significantly improved by upstream inhibition in patients with PNH. Different molecules may exert diverse characteristics in vitro and in vivo. Further studies remain to show safety and efficacy of upstream inhibition in other complementopathies. In addition, cost and availability issues are major drawbacks of current treatments. Therefore, further developments are warranted to address the unmet clinical needs in the field of complementopathies. This state-of-the-art narrative review aims to delineate novel insights into factor D inhibition as a promising target for complementopathies.
Collapse
Affiliation(s)
- Eleni Gavriilaki
- Hematology Department, G Papanicolaou Hospital, 57010 Thessaloniki, Greece
| | - Anna Papakonstantinou
- Department of Urology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Konstantinos A. Agrios
- Department of Chemistry, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA
| |
Collapse
|
4
|
Chen J, Wang J, Hart DA, Ahmed AS, Ackermann PW. Complement factor D as a predictor of Achilles tendon healing and long-term patient outcomes. FASEB J 2022; 36:e22365. [PMID: 35596679 DOI: 10.1096/fj.202200200rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 11/11/2022]
Abstract
Dense connective tissue healing, such as tendon, is protracted leading to highly variable and unsatisfactory patient outcomes. Biomarkers prognostic of long-term clinical outcomes is, however, unknown. The present study was designed to investigate the proteomic profile of healing, identify potential biomarkers, and assess their association with the patient's long-term outcomes after ATR. Quantitative mass spectrometry analysis demonstrated 1423 proteins in healing and contralateral healthy Achilles tendons of 28 ATR patients. Comparing healing at 2 weeks and healthy protein profiles, we identified 821 overlapping, 390 upregulated, and 17 downregulated proteins. Upregulated proteins are related mainly to extracellular matrix organization and metabolism, while downregulated pathways were associated with exocytosis in immune modulation and thrombosis formation. Further proteomic profiling in relation to validated patient outcomes revealed the downregulated pro-inflammatory complement factor D (CFD) as the most reliable predictive biomarker of successful tendon healing. Our finding showed a comprehensive proteomic landscape and bioinformatics on human connective tissue, indicating subtype-specific and shared biological processes and proteins in healing and healthy Achilles tendons, as well as in tendons related to good and poor patient outcomes. Inflammatory protein CFD and serpin family B member 1 were finally identified as potential predictive biomarkers of effective healing outcomes when combined the proteomic profiles with a validated clinical database. Following the future elucidation of the mechanisms associated with the identified biomarkers as predictors of good outcomes, our findings could lead to improved prognostic accuracy and development of targeted treatments, thus improving the long-term healing outcomes for all patients.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jin Wang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.,Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - David A Hart
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, Canada
| | - Aisha S Ahmed
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Paul W Ackermann
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Aaron N, Costa S, Rosen CJ, Qiang L. The Implications of Bone Marrow Adipose Tissue on Inflammaging. Front Endocrinol (Lausanne) 2022; 13:853765. [PMID: 35360075 PMCID: PMC8962663 DOI: 10.3389/fendo.2022.853765] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/16/2022] [Indexed: 12/30/2022] Open
Abstract
Once considered an inert filler of the bone cavity, bone marrow adipose tissue (BMAT) is now regarded as a metabolically active organ that plays versatile roles in endocrine function, hematopoiesis, bone homeostasis and metabolism, and, potentially, energy conservation. While the regulation of BMAT is inadequately understood, it is recognized as a unique and dynamic fat depot that is distinct from peripheral fat. As we age, bone marrow adipocytes (BMAds) accumulate throughout the bone marrow (BM) milieu to influence the microenvironment. This process is conceivably signaled by the secretion of adipocyte-derived factors including pro-inflammatory cytokines and adipokines. Adipokines participate in the development of a chronic state of low-grade systemic inflammation (inflammaging), which trigger changes in the immune system that are characterized by declining fidelity and efficiency and cause an imbalance between pro-inflammatory and anti-inflammatory networks. In this review, we discuss the local effects of BMAT on bone homeostasis and the hematopoietic niche, age-related inflammatory changes associated with BMAT accrual, and the downstream effect on endocrine function, energy expenditure, and metabolism. Furthermore, we address therapeutic strategies to prevent BMAT accumulation and associated dysfunction during aging. In sum, BMAT is emerging as a critical player in aging and its explicit characterization still requires further research.
Collapse
Affiliation(s)
- Nicole Aaron
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Pharmacology, Columbia University, New York, NY, United States
| | - Samantha Costa
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | - Clifford J. Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
- *Correspondence: Clifford J. Rosen, ; Li Qiang,
| | - Li Qiang
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Pathology, Columbia University, New York, NY, United States
- *Correspondence: Clifford J. Rosen, ; Li Qiang,
| |
Collapse
|
6
|
Barratt J, Weitz I. Complement Factor D as a Strategic Target for Regulating the Alternative Complement Pathway. Front Immunol 2021; 12:712572. [PMID: 34566967 PMCID: PMC8458797 DOI: 10.3389/fimmu.2021.712572] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022] Open
Abstract
The complement system is central to first-line defense against invading pathogens. However, excessive complement activation and/or the loss of complement regulation contributes to the development of autoimmune diseases, systemic inflammation, and thrombosis. One of the three pathways of the complement system, the alternative complement pathway, plays a vital role in amplifying complement activation and pathway signaling. Complement factor D, a serine protease of this pathway that is required for the formation of C3 convertase, is the rate-limiting enzyme. In this review, we discuss the function of factor D within the alternative pathway and its implication in both healthy physiology and disease. Because the alternative pathway has a role in many diseases that are characterized by excessive or poorly mediated complement activation, this pathway is an enticing target for effective therapeutic intervention. Nonetheless, although the underlying disease mechanisms of many of these complement-driven diseases are quite well understood, some of the diseases have limited treatment options or no approved treatments at all. Therefore, in this review we explore factor D as a strategic target for advancing therapeutic control of pathological complement activation.
Collapse
Affiliation(s)
- Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- John Walls Renal Unit, University Hospitals of Leicester National Health Service (NHS) Trust, Leicester, United Kingdom
| | - Ilene Weitz
- Jane Anne Nohl Division of Hematology, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
7
|
Kim BJ, Mastellos DC, Li Y, Dunaief JL, Lambris JD. Targeting complement components C3 and C5 for the retina: Key concepts and lingering questions. Prog Retin Eye Res 2021; 83:100936. [PMID: 33321207 PMCID: PMC8197769 DOI: 10.1016/j.preteyeres.2020.100936] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Age-related macular degeneration (AMD) remains a major cause of legal blindness, and treatment for the geographic atrophy form of AMD is a significant unmet need. Dysregulation of the complement cascade is thought to be instrumental for AMD pathophysiology. In particular, C3 and C5 are pivotal components of the complement cascade and have become leading therapeutic targets for AMD. In this article, we discuss C3 and C5 in detail, including their roles in AMD, biochemical and structural aspects, locations of expression, and the functions of C3 and C5 fragments. Further, the article critically reviews developing therapeutics aimed at C3 and C5, underscoring the potential effects of broad inhibition of complement at the level of C3 versus more specific inhibition at C5. The relationships of complement biology to the inflammasome and microglia/macrophage activity are highlighted. Concepts of C3 and C5 biology will be emphasized, while we point out questions that need to be settled and directions for future investigations.
Collapse
Affiliation(s)
- Benjamin J Kim
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | - Yafeng Li
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua L Dunaief
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Lambris
- Department of Laboratory Medicine and Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Aaron N, Kraakman MJ, Zhou Q, Liu Q, Costa S, Yang J, Liu L, Yu L, Wang L, He Y, Fan L, Hirakawa H, Ding L, Lo J, Wang W, Zhao B, Guo E, Sun L, Rosen CJ, Qiang L. Adipsin promotes bone marrow adiposity by priming mesenchymal stem cells. eLife 2021; 10:69209. [PMID: 34155972 PMCID: PMC8219379 DOI: 10.7554/elife.69209] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/07/2021] [Indexed: 01/12/2023] Open
Abstract
Background Marrow adipose tissue (MAT) has been shown to be vital for regulating metabolism and maintaining skeletal homeostasis in the bone marrow (BM) niche. As a reflection of BM remodeling, MAT is highly responsive to nutrient fluctuations, hormonal changes, and metabolic disturbances such as obesity and diabetes mellitus. Expansion of MAT has also been strongly associated with bone loss in mice and humans. However, the regulation of BM plasticity remains poorly understood, as does the mechanism that links changes in marrow adiposity with bone remodeling. Methods We studied deletion of Adipsin, and its downstream effector, C3, in C57BL/6 mice as well as the bone-protected PPARγ constitutive deacetylation 2KR mice to assess BM plasticity. The mice were challenged with thiazolidinedione treatment, calorie restriction, or aging to induce bone loss and MAT expansion. Analysis of bone mineral density and marrow adiposity was performed using a μCT scanner and by RNA analysis to assess adipocyte and osteoblast markers. For in vitro studies, primary bone marrow stromal cells were isolated and subjected to osteoblastogenic or adipogenic differentiation or chemical treatment followed by morphological and molecular analyses. Clinical data was obtained from samples of a previous clinical trial of fasting and high-calorie diet in healthy human volunteers. Results We show that Adipsin is the most upregulated adipokine during MAT expansion in mice and humans in a PPARγ acetylation-dependent manner. Genetic ablation of Adipsin in mice specifically inhibited MAT expansion but not peripheral adipose depots, and improved bone mass during calorie restriction, thiazolidinedione treatment, and aging. These effects were mediated through its downstream effector, complement component C3, to prime common progenitor cells toward adipogenesis rather than osteoblastogenesis through inhibiting Wnt/β-catenin signaling. Conclusions Adipsin promotes new adipocyte formation and affects skeletal remodeling in the BM niche. Our study reveals a novel mechanism whereby the BM sustains its own plasticity through paracrine and endocrine actions of a unique adipokine. Funding This work was supported by the National Institutes of Health T32DK007328 (NA), F31DK124926 (NA), R01DK121140 (JCL), R01AR068970 (BZ), R01AR071463 (BZ), R01DK112943 (LQ), R24DK092759 (CJR), and P01HL087123 (LQ).
Collapse
Affiliation(s)
- Nicole Aaron
- Naomi Berrie Diabetes Cente, Columbia UniversityNew YorkUnited States,Department of Pharmacology, Columbia UniversityNew YorkUnited States
| | - Michael J Kraakman
- Naomi Berrie Diabetes Cente, Columbia UniversityNew YorkUnited States,Department of Medicine, Columbia UniversityNew YorkUnited States
| | - Qiuzhong Zhou
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical SchoolSingaporeSingapore
| | - Qiongming Liu
- Naomi Berrie Diabetes Cente, Columbia UniversityNew YorkUnited States,Department of Pathology and Cellular Biology, Columbia UniversityNew YorkUnited States
| | - Samantha Costa
- Center for Molecular Medicine, Maine Medical Center Research InstituteScarboroughUnited States,School of Medicine, Tufts UniversityBostonUnited States,Graduate School of Biomedical Science and Engineering, University of MaineOronoUnited States
| | - Jing Yang
- Naomi Berrie Diabetes Cente, Columbia UniversityNew YorkUnited States,Department of Pathology and Cellular Biology, Columbia UniversityNew YorkUnited States
| | - Longhua Liu
- Naomi Berrie Diabetes Cente, Columbia UniversityNew YorkUnited States,Department of Pathology and Cellular Biology, Columbia UniversityNew YorkUnited States
| | - Lexiang Yu
- Naomi Berrie Diabetes Cente, Columbia UniversityNew YorkUnited States,Department of Pathology and Cellular Biology, Columbia UniversityNew YorkUnited States
| | - Liheng Wang
- Naomi Berrie Diabetes Cente, Columbia UniversityNew YorkUnited States,Department of Medicine, Columbia UniversityNew YorkUnited States
| | - Ying He
- Naomi Berrie Diabetes Cente, Columbia UniversityNew YorkUnited States,Department of Pathology and Cellular Biology, Columbia UniversityNew YorkUnited States
| | - Lihong Fan
- Naomi Berrie Diabetes Cente, Columbia UniversityNew YorkUnited States,Department of Pathology and Cellular Biology, Columbia UniversityNew YorkUnited States
| | - Hiroyuki Hirakawa
- Department of Microbiology and Immunology, Columbia UniversityNew YorkUnited States,Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | - Lei Ding
- Department of Microbiology and Immunology, Columbia UniversityNew YorkUnited States,Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | - James Lo
- Weill Center for Metabolic Health, Cardiovascular Research Institute, and Division of Cardiology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Weidong Wang
- Department of Medicine, Division of Endocrinology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science CenterOklahoma CityUnited States
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, Department of Medicine, Weill Cornell Medical College; Graduate Program in Cell & Developmental Biology, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - Edward Guo
- Department of Biomedical Engineering, Columbia UniversityNew YorkUnited States
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical SchoolSingaporeSingapore
| | - Cliff J Rosen
- Center for Molecular Medicine, Maine Medical Center Research InstituteScarboroughUnited States
| | - Li Qiang
- Naomi Berrie Diabetes Cente, Columbia UniversityNew YorkUnited States,Department of Pathology and Cellular Biology, Columbia UniversityNew YorkUnited States
| |
Collapse
|
9
|
Targeting the Initiator Protease of the Classical Pathway of Complement Using Fragment-Based Drug Discovery. Molecules 2020; 25:molecules25174016. [PMID: 32899120 PMCID: PMC7504721 DOI: 10.3390/molecules25174016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/23/2022] Open
Abstract
The initiating protease of the complement classical pathway, C1r, represents an upstream and pathway-specific intervention point for complement-related autoimmune and inflammatory diseases. Yet, C1r-targeted therapeutic development is currently underrepresented relative to other complement targets. In this study, we developed a fragment-based drug discovery approach using surface plasmon resonance (SPR) and molecular modeling to identify and characterize novel C1r-binding small-molecule fragments. SPR was used to screen a 2000-compound fragment library for binding to human C1r. This led to the identification of 24 compounds that bound C1r with equilibrium dissociation constants ranging between 160–1700 µM. Two fragments, termed CMP-1611 and CMP-1696, directly inhibited classical pathway-specific complement activation in a dose-dependent manner. CMP-1611 was selective for classical pathway inhibition, while CMP-1696 also blocked the lectin pathway but not the alternative pathway. Direct binding experiments mapped the CMP-1696 binding site to the serine protease domain of C1r and molecular docking and molecular dynamics studies, combined with C1r autoactivation assays, suggest that CMP-1696 binds within the C1r active site. The group of structurally distinct fragments identified here, along with the structure–activity relationship profiling of two lead fragments, form the basis for future development of novel high-affinity C1r-binding, classical pathway-specific, small-molecule complement inhibitors.
Collapse
|
10
|
Velcicky J, Wilcken R, Cotesta S, Janser P, Schlapbach A, Wagner T, Piechon P, Villard F, Bouhelal R, Piller F, Harlfinger S, Stringer R, Fehlmann D, Kaupmann K, Littlewood-Evans A, Haffke M, Gommermann N. Discovery and Optimization of Novel SUCNR1 Inhibitors: Design of Zwitterionic Derivatives with a Salt Bridge for the Improvement of Oral Exposure. J Med Chem 2020; 63:9856-9875. [DOI: 10.1021/acs.jmedchem.0c01020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Juraj Velcicky
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Rainer Wilcken
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Simona Cotesta
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Philipp Janser
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Achim Schlapbach
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Trixie Wagner
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Philippe Piechon
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Frederic Villard
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Rochdi Bouhelal
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Fabian Piller
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | | | - Rowan Stringer
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | | | - Klemens Kaupmann
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | | | - Matthias Haffke
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Nina Gommermann
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| |
Collapse
|
11
|
Lorthiois E, Roache J, Barnes-Seeman D, Altmann E, Hassiepen U, Turner G, Duvadie R, Hornak V, Karki RG, Schiering N, Weihofen WA, Perruccio F, Calhoun A, Fazal T, Dedic D, Durand C, Dussauge S, Fettis K, Tritsch F, Dentel C, Druet A, Liu D, Kirman L, Lachal J, Namoto K, Bevan D, Mo R, Monnet G, Muller L, Zessis R, Huang X, Lindsley L, Currie T, Chiu YH, Fridrich C, Delgado P, Wang S, Hollis-Symynkywicz M, Berghausen J, Williams E, Liu H, Liang G, Kim H, Hoffmann P, Hein A, Ramage P, D’Arcy A, Harlfinger S, Renatus M, Ruedisser S, Feldman D, Elliott J, Sedrani R, Maibaum J, Adams CM. Structure-Based Design and Preclinical Characterization of Selective and Orally Bioavailable Factor XIa Inhibitors: Demonstrating the Power of an Integrated S1 Protease Family Approach. J Med Chem 2020; 63:8088-8113. [DOI: 10.1021/acs.jmedchem.0c00279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Edwige Lorthiois
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - James Roache
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - David Barnes-Seeman
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Eva Altmann
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Ulrich Hassiepen
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Gordon Turner
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Rohit Duvadie
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Viktor Hornak
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Rajeshri G. Karki
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Nikolaus Schiering
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Wilhelm A. Weihofen
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Francesca Perruccio
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Amy Calhoun
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Tanzina Fazal
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Darija Dedic
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Corinne Durand
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Solene Dussauge
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Kamal Fettis
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Fabien Tritsch
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Celine Dentel
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Adelaide Druet
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Donglei Liu
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Louise Kirman
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Julie Lachal
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Kenji Namoto
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Douglas Bevan
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Rose Mo
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Gabriela Monnet
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Lionel Muller
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Richard Zessis
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Xueming Huang
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Loren Lindsley
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Treeve Currie
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Yu-Hsin Chiu
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Cary Fridrich
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Peter Delgado
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Shuangxi Wang
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | | | - Joerg Berghausen
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Eric Williams
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Hong Liu
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Guiqing Liang
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Hyungchul Kim
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Peter Hoffmann
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Andreas Hein
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Paul Ramage
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Allan D’Arcy
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Stefanie Harlfinger
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Martin Renatus
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Simon Ruedisser
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - David Feldman
- Novartis Institutes for BioMedical Research, East Hanover, New Jersey 07396, United States
| | - Jason Elliott
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Richard Sedrani
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Juergen Maibaum
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Christopher M. Adams
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Cheng KJ, Hsieh CM, Nepali K, Liou JP. Ocular Disease Therapeutics: Design and Delivery of Drugs for Diseases of the Eye. J Med Chem 2020; 63:10533-10593. [PMID: 32482069 DOI: 10.1021/acs.jmedchem.9b01033] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ocular drug discovery field has evidenced significant advancement in the past decade. The FDA approvals of Rhopressa, Vyzulta, and Roclatan for glaucoma, Brolucizumab for wet age-related macular degeneration (wet AMD), Luxturna for retinitis pigmentosa, Dextenza (0.4 mg dexamethasone intracanalicular insert) for ocular inflammation, ReSure sealant to seal corneal incisions, and Lifitegrast for dry eye represent some of the major developments in the field of ocular therapeutics. A literature survey also indicates that gene therapy, stem cell therapy, and target discovery through genomic research represent significant promise as potential strategies to achieve tissue repair or regeneration and to attain therapeutic benefits in ocular diseases. Overall, the emergence of new technologies coupled with first-in-class entries in ophthalmology are highly anticipated to restructure and boost the future trends in the field of ophthalmic drug discovery. This perspective focuses on various aspects of ocular drug discovery and the recent advances therein. Recent medicinal chemistry campaigns along with a brief overview of the structure-activity relationships of the diverse chemical classes and developments in ocular drug delivery (ODD) are presented.
Collapse
Affiliation(s)
- Kuei-Ju Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan.,Department of Pharmacy, Taipei Municipal Wanfang Hospital, Taipei Medical University, No. 111, Section 3, Xing-Long Road, Taipei 11696, Taiwan
| | - Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
13
|
Mainolfi N, Ehara T, Karki RG, Anderson K, Mac Sweeney A, Liao SM, Argikar UA, Jendza K, Zhang C, Powers J, Klosowski DW, Crowley M, Kawanami T, Ding J, April M, Forster C, Serrano-Wu M, Capparelli M, Ramqaj R, Solovay C, Cumin F, Smith TM, Ferrara L, Lee W, Long D, Prentiss M, De Erkenez A, Yang L, Liu F, Sellner H, Sirockin F, Valeur E, Erbel P, Ostermeier D, Ramage P, Gerhartz B, Schubart A, Flohr S, Gradoux N, Feifel R, Vogg B, Wiesmann C, Maibaum J, Eder J, Sedrani R, Harrison RA, Mogi M, Jaffee BD, Adams CM. Discovery of 4-((2 S,4 S)-4-Ethoxy-1-((5-methoxy-7-methyl-1 H-indol-4-yl)methyl)piperidin-2-yl)benzoic Acid (LNP023), a Factor B Inhibitor Specifically Designed To Be Applicable to Treating a Diverse Array of Complement Mediated Diseases. J Med Chem 2020; 63:5697-5722. [PMID: 32073845 DOI: 10.1021/acs.jmedchem.9b01870] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The alternative pathway (AP) of the complement system is a key contributor to the pathogenesis of several human diseases including age-related macular degeneration, paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome (aHUS), and various glomerular diseases. The serine protease factor B (FB) is a key node in the AP and is integral to the formation of C3 and C5 convertase. Despite the prominent role of FB in the AP, selective orally bioavailable inhibitors, beyond our own efforts, have not been reported previously. Herein we describe in more detail our efforts to identify FB inhibitors by high-throughput screening (HTS) and leveraging insights from several X-ray cocrystal structures during optimization efforts. This work culminated in the discovery of LNP023 (41), which is currently being evaluated clinically in several diverse AP mediated indications.
Collapse
Affiliation(s)
- Nello Mainolfi
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Takeru Ehara
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Rajeshri G Karki
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Karen Anderson
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Aengus Mac Sweeney
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Sha-Mei Liao
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Upendra A Argikar
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Keith Jendza
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Chun Zhang
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - James Powers
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Daniel W Klosowski
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Maura Crowley
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Toshio Kawanami
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Jian Ding
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Myriam April
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Cornelia Forster
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Michael Serrano-Wu
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Michael Capparelli
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Rrezarta Ramqaj
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Catherine Solovay
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Frederic Cumin
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Thomas M Smith
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Luciana Ferrara
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Wendy Lee
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Debby Long
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Melissa Prentiss
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Andrea De Erkenez
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Louis Yang
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Fang Liu
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Holger Sellner
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Finton Sirockin
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Eric Valeur
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Paulus Erbel
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Daniela Ostermeier
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Paul Ramage
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Bernd Gerhartz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Anna Schubart
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Stefanie Flohr
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Nathalie Gradoux
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Roland Feifel
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Barbara Vogg
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Christian Wiesmann
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Jürgen Maibaum
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Jörg Eder
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Richard Sedrani
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Richard A Harrison
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Muneto Mogi
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Bruce D Jaffee
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Christopher M Adams
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| |
Collapse
|