1
|
Mishra VK, Khanna A, Tiwari G, Tyagi R, Sagar R. Recent developments on the synthesis of biologically active glycohybrids. Bioorg Chem 2024; 145:107172. [PMID: 38340475 DOI: 10.1016/j.bioorg.2024.107172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The exploration of hybridization emerges as a potent tool in advancing drug discovery research, with a significant emphasis on carbohydrate-containing hybrid scaffolds. Evidence indicates that linking carbohydrate molecules to privileged bioactive scaffolds enhances the bioactivity of drug molecules. This synergy results in a diverse range of activities, making carbohydrate scaffolds pivotal for synthesizing compound libraries with significant functional and structural diversity. Beyond their synthesis utility, these scaffolds offer applications in screening bioactive molecules, presenting alternative avenues for drug development. This comprehensive review spanning 2015 to 2023 focuses on synthesized glycohybrid molecules, revealing their bioactivity in areas such as anti-microbial, anti-cancer, anti-diabetic, anti-inflammatory activities, enzyme inhibition and pesticides. Numerous novel glycohybrids surpass positive control drugs in biological activity. This focused study not only highlights the diverse bioactivities of glycohybrids but also underscores their promising role in innovative drug development strategies.
Collapse
Affiliation(s)
- Vinay Kumar Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005
| | - Ashish Khanna
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005
| | - Ghanshyam Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, 110067 New Delhi
| | - Ram Sagar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005; Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, 110067 New Delhi.
| |
Collapse
|
2
|
Regier J, Bolshan Y. Synthesis of C,N-Glycosides via Brønsted Acid-Catalyzed Azidation of exo-Glycals. J Org Chem 2024; 89:141-151. [PMID: 38110245 DOI: 10.1021/acs.joc.3c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The reaction of exo-glycals with azidotrimethylsilane in the presence of a Brønsted acid leads to the generation of the corresponding C,N-glycosyl azides. The majority of these glycosylation reactions proceed at room temperature with short reaction times. In addition, the targeted products were obtained in high yields with exclusive diastereoselectivity to the α-anomer in pyranose-based derivatives. Carbohydrate units based on mannose, galactose, arabinose, and ribose were also shown to proceed in high yields.
Collapse
Affiliation(s)
- Jeffery Regier
- TLC Pharmaceutical Standards, Newmarket, Ontario L3Y 7B6, Canada
| | - Yuri Bolshan
- Faculty of Science, Ontario Tech University, Oshawa, Ontario L1G 0C5, Canada
| |
Collapse
|
3
|
Wang Y, Li S, Yan Z, Guo Y, Zhang L. Computational insights into novel inhibitor indole-heterocycle specific against glycogen phosphorylase isoenzymes interaction mechanism. Future Med Chem 2023; 15:913-922. [PMID: 37395076 DOI: 10.4155/fmc-2023-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Background: Glycogen phosphorylase (GP) is a potential drug target. As the three subtypes of GP are highly conserved, it is difficult to research their specificity. However, compound 1 inhibits the GP subtypes differently and was studied to aid in designing specific inhibitors. Results: Molecular docking showed that the ligands in GP subtype complexes had some differences in spatial conformation and binding modes, stabilized by polar and nonpolar interactions. The results were confirmed through kinetic experiments, with affinities of -85.230 (brain GP), -73.809 (liver GP) and -66.061 kJ/mol (muscle GP). Conclusion: The study provides insight into the possible reasons for differences in compound 1's inhibitory activity against the GP subtypes and offers guidance in designing target molecules for regulating selectivity among the subtypes.
Collapse
Affiliation(s)
- Youde Wang
- Key Laboratory of Traditional Chinese Medicine Research & Development of Hebei Province, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, 067000, China
| | - Shuai Li
- Key Laboratory of Traditional Chinese Medicine Research & Development of Hebei Province, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, 067000, China
| | - Zhiwei Yan
- Key Laboratory of Traditional Chinese Medicine Research & Development of Hebei Province, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, 067000, China
| | - Yachun Guo
- Department of Pathogen Biology, Chengde Medical University, Chengde, Hebei, 067000, China
| | - Liying Zhang
- Key Laboratory of Traditional Chinese Medicine Research & Development of Hebei Province, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, 067000, China
| |
Collapse
|
4
|
Long-term pharmacokinetic and pharmacological evaluations of a novel indole-benzazepinone derivative on obese Type 2 diabetes mellitus. Future Med Chem 2022; 14:1495-1506. [DOI: 10.4155/fmc-2022-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Owing to the chronic nature of Type 2 diabetes mellitus, antidiabetic drugs must have long-lasting efficacy. Compound 1 has a good inhibitory effect on acute hyperglycemia, but its long-term hypoglycemic effect has not been evaluated. Results: Preliminary prediction and in vitro experimental pharmacokinetic results support the use of compound 1 for long-term in vivo experiments. Long-term experiments demonstrated that compound 1 significantly reduces blood glucose, improves the oral glucose tolerance of obese mice and has a positive effect on body weight, free fatty acid, hepatocyte steatosis and inflammatory cell infiltration. Conclusion: These findings lay a good foundation for the further exploration and development of novel glycogen phosphorylase inhibitors.
Collapse
|
5
|
Batista VF, Pinto DCGA, Silva AMS. Recent in vivo advances of spirocyclic scaffolds for drug discovery. Expert Opin Drug Discov 2022; 17:603-618. [PMID: 35333138 DOI: 10.1080/17460441.2022.2055544] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Spirocyclic scaffolds are an exceptional tool in drug design, allowing fine-tuning of a molecule's conformational and physicochemical properties. As it expands and diversifies, so does the number of therapeutics that contain this core. Several spirocyclic drugs are already marketed, and considerably more have shown promising results. AREAS COVERED This review addresses recent in vivo studies (2017-2021) on applying spirocyclic compounds to treat various diseases, mainly grouped within neurological, infectious, and metabolic diseases and cancer. An emphasis is given on the influence of the spiro-structure on activity and consequent structure-activity study. In vivo results and their significance in the future progression towards clinical trials are also presented. EXPERT OPINION Spirocyclic compounds present an exciting opportunity as an unexplored chemical space in medicinal chemistry. However, their development is hindered by their complexity and synthesis challenges. Furthermore, a clear preference is still seen for readily available spirocyclic compounds involving amine or amide bonds. Nevertheless, these are temporary as high-throughput synthesis, and computational techniques allow fast optimization studies. In our opinion, the field of spirocyclic chemistry will continue to thrive and contribute to drug development, improving activity and selectivity on emergent ailments, such as cancer, metabolic, infectious, and neurological diseases.
Collapse
Affiliation(s)
- Vasco F Batista
- Laqv-requimte & Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Diana C G A Pinto
- Laqv-requimte & Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Artur M S Silva
- Laqv-requimte & Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
6
|
Kim KH. Outliers in SAR and QSAR: 4. effects of allosteric protein-ligand interactions on the classical quantitative structure-activity relationships. Mol Divers 2022; 26:3057-3092. [PMID: 35192113 DOI: 10.1007/s11030-021-10365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/10/2021] [Indexed: 11/26/2022]
Abstract
Effects of allosteric interactions on the classical structure-activity relationship (SAR) and quantitative SAR (QSAR) have been investigated. Apprehending the outliers in SAR and QSAR studies can improve the quality, predictability, and use of QSAR in designing unknown compounds in drug discovery research. We explored allosteric protein-ligand interactions as a possible source of outliers in SAR/QSAR. We used glycogen phosphorylase as an example of a protein that has an allosteric site. Examination of the ligand-bound x-ray crystal structures of glycogen phosphorylase revealed that many inhibitors bound at more than one binding site. The results of QSAR analyses of the inhibitors included a QSAR that recognized an outlier bound at a distinctive allosteric binding site. The case provided an example of constructive use of QSAR identifying outliers with alternative binding modes. Other allosteric QSARs that captured our attention were the inverted parabola/bilinear QSARs. The x-ray crystal structures and the QSAR analyses indicated that the inverted parabola QSARs could be associated with the conformational changes in the allosteric interactions. Our results showed that the normal parabola, as well as the inverted parabola QSARs, can describe the allosteric interactions. Examination of the ligand-bound X-ray crystal structures of glycogen phosphorylase revealed that many inhibitors bound at more than one binding site. The results of QSAR analyses of the inhibitors included a QSAR that recognized an outlier bound at a distinctive allosteric binding site.
Collapse
|
7
|
Kim KH. Outliers in SAR and QSAR: 3. Importance of considering the role of water molecules in protein-ligand interactions and quantitative structure-activity relationship studies. J Comput Aided Mol Des 2021; 35:371-396. [PMID: 33712973 DOI: 10.1007/s10822-021-00377-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/05/2021] [Indexed: 11/30/2022]
Abstract
It is frequently mentioned that QSARs have not generally lived up to expectations, especially in cases where high predictability is expected yet failed to deliver satisfactory results. Even though outliers can provide an increased opportunity in drug discovery research, outliers in SAR and QSAR can contort predictions and affect the accuracy if proper attention is not given. The percentages of outliers in QSARs have not changed appreciably over the last decade. In our previous studies, we suggested two possible sources of outliers in SAR and QSAR. In this paper, we suggest an additional possible source of outliers in QSAR. We presented several literature examples that show one or more water molecules that play a critical role in protein-ligand binding interactions as observed in their crystal structures. These examples illustrate that failing to account for the effects of water molecules in protein-ligand interactions could mislead interpretation and possibly yield outliers in SAR and QSAR. Examples include cases where QSAR, considering the role of water molecules in protein-ligand crystal structures, provided deeper insight into the understanding and interpretation of the developed QSAR.
Collapse
|
8
|
La Ferla B, D’Orazio G. Pyranoid Spirosugars as Enzyme Inhibitors. Curr Org Synth 2021; 18:3-22. [DOI: 10.2174/1570179417666200924152648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
Background:
Pyranoid spirofused sugar derivatives represent a class of compounds with a significant
impact in the literature. From the structural point of view, the rigidity inferred by the spirofused entity has made
these compounds object of interest mainly as enzymatic inhibitors, in particular, carbohydrate processing enzymes.
Among them glycogen phosphorylase and sodium glucose co-transporter 2 are important target enzymes
for diverse pathological states. Most of the developed compounds present the spirofused entity at the C1 position
of the sugar moiety; nevertheless, spirofused entities can also be found at other sugar ring positions. The main
spirofused entities encountered are spiroacetals/thioacetals, spiro-hydantoin and derivatives, spiro-isoxazolines,
spiro-aminals, spiro-lactams, spiro-oxathiazole and spiro-oxazinanone, but also others are present.
Objectives:
The present review focuses on the most explored synthetic strategies for the preparation of this class
of compounds, classified according to the position and structure of the spirofused moiety on the pyranoid scaffold.
Moreover, the structures are correlated to their main biological activities or to their role as chiral auxiliaries.
Conclusion:
It is clear from the review that, among the different derivatives, the spirofused structures at position
C1 of the pyranoid scaffold are the most represented and possess the most relevant enzymatic inhibitor activities.
Nevertheless, great efforts have been devoted to the introduction of the spirofused entity also in the other positions,
mainly for the preparation of biologically active compounds but also for the synthesis of chiral auxiliaries
useful in asymmetric reactions; examples of such auxiliaries are the spirofused chiral 1,3-oxazolidin-2-ones and
1,3-oxazolidine-2-thiones.
Collapse
Affiliation(s)
- Barbara La Ferla
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Giuseppe D’Orazio
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
9
|
Keel KL, Tepe J. The preparation of (4H)-imidazol-4-ones and their application in the total synthesis of natural products. Org Chem Front 2020; 7:3284-3311. [PMID: 33796321 DOI: 10.1039/d0qo00764a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
(4H)-Imidazol-4-ones are an important scaffold for a variety of applications, including natural products, medicine, agriculture, and other applications. Over the years, there have been a number of preparations published for the synthesis of imidazol-4-ones. This review discusses the progress made on the synthesis of imidazol-4-ones, and their application towards the total synthesis of a range of imidazol-4-one containing natural products. Emphasis is made on areas of the field that still need progress.
Collapse
|
10
|
Goyard D, Kónya B, Czifrák K, Larini P, Demontrond F, Leroy J, Balzarin S, Tournier M, Tousch D, Petit P, Duret C, Maurel P, Docsa T, Gergely P, Somsák L, Praly JP, Azay-Milhau J, Vidal S. Glucose-based spiro-oxathiazoles as in vivo anti-hyperglycemic agents through glycogen phosphorylase inhibition. Org Biomol Chem 2020; 18:931-940. [PMID: 31922157 DOI: 10.1039/c9ob01190k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The design of glycogen phosphorylase (GP) inhibitors targeting the catalytic site of the enzyme is a promising strategy for a better control of hyperglycaemia in the context of type 2 diabetes. Glucopyranosylidene-spiro-heterocycles have been demonstrated as potent GP inhibitors, and more specifically spiro-oxathiazoles. A new synthetic route has now been elaborated through 1,3-dipolar cycloaddition of an aryl nitrile oxide to a glucono-thionolactone affording in one step the spiro-oxathiazole moiety. The thionolactone was obtained from the thermal rearrangement of a thiosulfinate precursor according to Fairbanks' protocols, although with a revisited outcome and also rationalised with DFT calculations. The 2-naphthyl substituted glucose-based spiro-oxathiazole 5h, identified as one of the most potent GP inhibitors (Ki = 160 nM against RMGPb) could be produced on the gram-scale from this strategy. Further evaluation in vitro using rat and human hepatocytes demonstrated that compound 5h is a anti-hyperglycaemic drug candidates performing slightly better than DAB used as a positive control. Investigation in Zucker fa/fa rat model in acute and subchronic assays further confirmed the potency of compound 5h since it lowered blood glucose levels by ∼36% at 30 mg kg-1 and ∼43% at 60 mg kg-1. The present study is one of the few in vivo investigations for glucose-based GP inhibitors and provides data in animal models for such drug candidates.
Collapse
Affiliation(s)
- David Goyard
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Bâtiment Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France.
| | - Bálint Kónya
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary
| | - Katalin Czifrák
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary
| | - Paolo Larini
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Bâtiment Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France.
| | - Fanny Demontrond
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Bâtiment Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France.
| | - Jérémy Leroy
- Montpellier University, EA7288, Biocommunication in cardiometabolism (BC2M), Montpellier, France
| | - Sophie Balzarin
- Montpellier University, EA7288, Biocommunication in cardiometabolism (BC2M), Montpellier, France
| | - Michel Tournier
- Montpellier University, EA7288, Biocommunication in cardiometabolism (BC2M), Montpellier, France
| | - Didier Tousch
- Montpellier University, EA7288, Biocommunication in cardiometabolism (BC2M), Montpellier, France
| | - Pierre Petit
- Montpellier University, EA7288, Biocommunication in cardiometabolism (BC2M), Montpellier, France
| | - Cédric Duret
- INSERM U1040, Montpellier, France and Montpellier University, UMR-1040, Montpellier, France
| | - Patrick Maurel
- INSERM U1040, Montpellier, France and Montpellier University, UMR-1040, Montpellier, France
| | - Tibor Docsa
- Institute of Medical Chemistry, University of Debrecen, POB 7, Nagyerdei krt. 98, H-4012 Debrecen, Hungary
| | - Pál Gergely
- Institute of Medical Chemistry, University of Debrecen, POB 7, Nagyerdei krt. 98, H-4012 Debrecen, Hungary
| | - László Somsák
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary
| | - Jean-Pierre Praly
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Bâtiment Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France.
| | - Jacqueline Azay-Milhau
- Montpellier University, EA7288, Biocommunication in cardiometabolism (BC2M), Montpellier, France
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Bâtiment Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France.
| |
Collapse
|
11
|
Kánya N, Kun S, Batta G, Somsák L. Glycosylation with ulosonates under Mitsunobu conditions: scope and limitations. NEW J CHEM 2020. [DOI: 10.1039/d0nj03044a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitsunobu reactions on highly hindered tertiary type hydroxy groups of ulosonates: from 47 NuH compounds O-, N-, and S-nucleophiles gave the corresponding ulosidonates in 30–78% yields, while C-nucleophiles were unreactive.
Collapse
Affiliation(s)
- Nándor Kánya
- Department of Organic Chemistry
- University of Debrecen
- H-4002 Debrecen
- Hungary
| | - Sándor Kun
- Department of Organic Chemistry
- University of Debrecen
- H-4002 Debrecen
- Hungary
| | - Gyula Batta
- Department of Organic Chemistry
- University of Debrecen
- H-4002 Debrecen
- Hungary
| | - László Somsák
- Department of Organic Chemistry
- University of Debrecen
- H-4002 Debrecen
- Hungary
| |
Collapse
|
12
|
Kyriakis E, Karra AG, Papaioannou O, Solovou T, Skamnaki VT, Liggri PGV, Zographos SE, Szennyes E, Bokor É, Kun S, Psarra AMG, Somsák L, Leonidas DD. The architecture of hydrogen and sulfur σ-hole interactions explain differences in the inhibitory potency of C-β-d-glucopyranosyl thiazoles, imidazoles and an N-β-d glucopyranosyl tetrazole for human liver glycogen phosphorylase and offer new insights to structure-based design. Bioorg Med Chem 2019; 28:115196. [PMID: 31767404 DOI: 10.1016/j.bmc.2019.115196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 01/10/2023]
Abstract
C-Glucopyranosyl imidazoles, thiazoles, and an N-glucopyranosyl tetrazole were assessed in vitro and ex vivo for their inhibitory efficiency against isoforms of glycogen phosphorylase (GP; a validated pharmacological target for the development of anti-hyperglycaemic agents). Imidazoles proved to be more potent inhibitors than the corresponding thiazoles or the tetrazole. The most potent derivative has a 2-naphthyl substituent, a Ki value of 3.2 µM for hepatic glycogen phosphorylase, displaying also 60% inhibition of GP activity in HepG2 cells, compared to control vehicle treated cells, at 100 μM. X-Ray crystallography studies of the protein - inhibitor complexes revealed the importance of the architecture of inhibitor associated hydrogen bonds or sulfur σ-hole bond interactions to Asn284 OD1, offering new insights to structure-based design efforts. Moreover, while the 2-glucopyranosyl-tetrazole seems to bind differently from the corresponding 1,2,3-triazole compound, the two inhibitors are equipotent.
Collapse
Affiliation(s)
- Efthimios Kyriakis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Aikaterini G Karra
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Olga Papaioannou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Theodora Solovou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Vassiliki T Skamnaki
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Panagiota G V Liggri
- Department of Organic Chemistry, University of Debrecen, H-4002 POB 400 Debrecen, Hungary; Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Spyros E Zographos
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Eszter Szennyes
- Department of Organic Chemistry, University of Debrecen, H-4002 POB 400 Debrecen, Hungary
| | - Éva Bokor
- Department of Organic Chemistry, University of Debrecen, H-4002 POB 400 Debrecen, Hungary
| | - Sándor Kun
- Department of Organic Chemistry, University of Debrecen, H-4002 POB 400 Debrecen, Hungary
| | - Anna-Maria G Psarra
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece.
| | - László Somsák
- Department of Organic Chemistry, University of Debrecen, H-4002 POB 400 Debrecen, Hungary.
| | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece.
| |
Collapse
|