1
|
Goto T, Shirai S, Kawasaki-Takasuka T, Agou T, Yamazaki T. I 2-mediated convenient ring-opening of simple gem-difluorocyclopropanes. Org Biomol Chem 2025. [PMID: 40035559 DOI: 10.1039/d5ob00128e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
We previously reported an efficient method for the ring-opening 1,3-difunctionalization of gem-difluorinated cyclopropanes (F2CPs) using KBr in the presence of ceric ammonium nitrate or potassium persulfate, resulting in the formation of 3-bromo-2,2-difluoropropanes with a bromine atom or a hydroxy group at the 1 position by the highly regioselective cyclopropane bond cleavage. In spite of the usefulness of this process, the concern of the use of these irritant oxidants and the insufficient reactivity of Br incorporated at the 1 position allowed us to modify this system to find out that the environmentally friendly as well as easy-to-handle reagent, an iodine molecule, works quite efficiently, enabling the successful introduction of not only a hydroxy group but also alkoxy, sulfenyl, and aryl groups at the 1 position of products.
Collapse
Affiliation(s)
- Toshihito Goto
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, Japan.
| | - Sakuya Shirai
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, Japan.
| | - Tomoko Kawasaki-Takasuka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, Japan.
| | - Tomohiro Agou
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo, Japan
| | - Takashi Yamazaki
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, Japan.
| |
Collapse
|
2
|
Bernús M, Núñez GD, Hartley WC, Guasch M, Mestre J, Besora M, Carbó JJ, Boutureira O. Impact of Fluorine Pattern on Lipophilicity and Acid-Base Properties of 2-(Thiofluoroalkyl)pyridines: Insights from Experiments and Statistical Modeling. J Med Chem 2025; 68:4787-4800. [PMID: 39960109 DOI: 10.1021/acs.jmedchem.4c03045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Lipophilicity and acid-base properties are two key aspects of the optimization of a compound in drug discovery. Using 19F NMR, we experimentally determined the log D7.4 of a wide array of 2-thiofluoroalkyl (SRF) and 2-sulfonyl fluoroalkyl (SO2RF) substituted pyridines and the pKa values of their protonated counterparts. Statistical modeling based on constitutional and DFT descriptors provided further insights into the structure-property relationship, explaining the experimental observations and predicting log D7.4 values. Our results highlight the influence of fluorination topology in SRF fragments and demonstrate the dual effect of fluorine on molecular polarity, increasing the hydrophobic surface and the polarity of the sulfur moiety. By analyzing methyl- and ethyl-derived fragments, we found a gradient in log D7.4 values influenced by the oxidation state of the sulfur atom and fluorination pattern. Our findings emphasize the context-dependent impact of fluorination and offer insights to better understand the impact of thiofluoroalkyl chains on these physicochemical properties.
Collapse
Affiliation(s)
- Miguel Bernús
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Gonzalo D Núñez
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Will C Hartley
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Marc Guasch
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Jordi Mestre
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Maria Besora
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Jorge J Carbó
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Omar Boutureira
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
3
|
Melnykov KP, Liashuk OS, Holovach S, Shatnia V, Horbenko A, Lesyk D, Melnyk V, Skrypnik D, Beshtynarska A, Borysko P, Viniichuk O, Grygorenko OO. Physicochemical and Biological Evaluation of gem-Difluorinated Saturated Oxygen Heterocycles as Bioisosteres for Drug Discovery. Chemistry 2025; 31:e202404390. [PMID: 39660537 DOI: 10.1002/chem.202404390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/12/2024]
Abstract
A comprehensive study on the physicochemical properties of gem-fluorinated O-heterocyclic substituents is reported. Systematic additive effects of introducing O- and gem-CF2 group introduction on acidic properties (pKa) of the corresponding carboxylic acids/protonated primary amines were demonstrated. The impact of the O/CF2 moieties on lipophilicity (LogP) was found to be complex; significant mutual influence of the corresponding polar moieties governed the compound's overall properties in this case. Biological evaluation of MAPK kinase inhibitors incorporating the title substituents demonstrated their utility as promising fragments for bioisosteric replacements in drug discovery campaigns.
Collapse
Affiliation(s)
- Kostiantyn P Melnykov
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Oleksandr S Liashuk
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Serhii Holovach
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademik Kukhar Street 5, Kyїv, 02660, Ukraine
| | - Valeriia Shatnia
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Beresteiskyi Avenue 37, Kyїv, 03056, Ukraine
| | - Artur Horbenko
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- V. I. Vernadsky Institute of General and Inorganic Chemistry, National Academy of Sciences of Ukraine, Akademik Palladin Street 32/34, Kyїv, 03142, Ukraine
| | - Dmytro Lesyk
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Varvara Melnyk
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Daniil Skrypnik
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Anna Beshtynarska
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Petro Borysko
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Oleksandr Viniichuk
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| |
Collapse
|
4
|
Liu X, Kou Y, Wu H, Liu TX, Liu Q, Zhang Z, Zhang X, Zhang G. Inverse conjugate additions of acrylic amides and esters with F/Cl/O/N-nucleophiles and CF 3+ reagents. SCIENCE ADVANCES 2025; 11:eadt2715. [PMID: 39937903 DOI: 10.1126/sciadv.adt2715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/10/2025] [Indexed: 02/14/2025]
Abstract
The conjugate additions of nucleophiles to conjugate acceptors are among the most powerful hetero-carbon bond formation reactions. The conjugate addition normally occurs via a β-nucleophilic addition, resulting in the formation of a stabilized α-carbanion intermediate that can be subsequently quenched by electrophiles or protons. Nevertheless, the inverse conjugate addition involving an α-specific nucleophilic addition remains less explored because of the electronic mismatch. In this research, we disclosed an α-specific nucleophilic addition of the nucleophiles including Py·HF, TBACl, HOR, H2O, H218O, RCO2H, and pyrazole to conjugate acceptors concurrent with a trifluoromethylation. This umpolung and inversely regioselective conjugate addition, enabled by a visible light-induced redox photocatalysis, occurred via an unusual α-nucleophilic addition other than the normal β-nucleophilic addition to efficiently generate diverse α-functionalized CF3-containing amides/esters. The broad substrate scope, excellent functional-group tolerance, and versatile late-stage derivatizations as well as the biologically and functionally important CF3-containing products demonstrated the potential applications of this protocol in materials, agrochemicals, and pharmaceutical chemistry.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering. Henan Normal University, 46 East of Construction Road, Xinxiang 453007, Henan, China
| | - Yuan Kou
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering. Henan Normal University, 46 East of Construction Road, Xinxiang 453007, Henan, China
| | - Hao Wu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering. Henan Normal University, 46 East of Construction Road, Xinxiang 453007, Henan, China
| | - Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering. Henan Normal University, 46 East of Construction Road, Xinxiang 453007, Henan, China
| | - Qingfeng Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering. Henan Normal University, 46 East of Construction Road, Xinxiang 453007, Henan, China
| | - Zhiguo Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering. Henan Normal University, 46 East of Construction Road, Xinxiang 453007, Henan, China
| | - Xingjie Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering. Henan Normal University, 46 East of Construction Road, Xinxiang 453007, Henan, China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering. Henan Normal University, 46 East of Construction Road, Xinxiang 453007, Henan, China
| |
Collapse
|
5
|
Wang L, Chen CC, Chapple D, Wong AAWL, Kurkowska S, Lau WS, Uribe CF, Bénard F, Lin KS. Synthesis and Evaluation of 68Ga- and 177Lu-Labeled [diF-Pro 14]Bombesin(6-14) Analogs for Detection and Radioligand Therapy of Gastrin-Releasing Peptide Receptor-Expressing Cancer. Pharmaceuticals (Basel) 2025; 18:234. [PMID: 40006047 PMCID: PMC11859184 DOI: 10.3390/ph18020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Overexpressed in various solid tumors, the gastrin-releasing peptide receptor (GRPR) is a promising target for cancer diagnosis and therapy. However, the high pancreas uptake of the current clinically evaluated GRPR-targeted radiopharmaceuticals limits their applications. In this study, we replaced the Pro14 residue in our previously reported GRPR-targeted LW02056 and ProBOMB5 with 4,4-difluoroproline (diF-Pro) to obtain an agonist LW02060 (DOTA-Pip-[D-Phe6,Tle10,NMe-His12,diF-Pro14]Bombesin(6-14)) and an antagonist LW02080 (DOTA-Pip-[D-Phe6,NMe-Gly11,Leu13(ψ)diF-Pro14]Bombesin(6-14)), respectively. Methods/Results: The binding affinities (Ki) of Ga-LW02060, Ga-LW02080, Lu-LW02060, and Lu-LW02080 were measured by in vitro competition binding assays using PC-3 cells and were found to be 5.57 ± 2.47, 21.7 ± 6.69, 8.00 ± 2.61, and 32.1 ± 8.14 nM, respectively. The 68Ga- and 177Lu-labeled ligands were obtained in 36-75% decay-corrected radiochemical yields with >95% radiochemical purity. PET imaging, SPECT imaging, and ex vivo biodistribution studies were conducted in PC-3 tumor-bearing mice. Both [68Ga]Ga-LW02060 and [68Ga]Ga-LW02080 enabled clear tumor visualization in PET images at 1 h post-injection (pi). Tumor uptake values of [68Ga]Ga-LW02060 and [68Ga]Ga-LW02080 at 1 h pi were 16.8 ± 2.70 and 7.36 ± 1.33 %ID/g, respectively, while their pancreas uptake values were 3.12 ± 0.89 and 0.38 ± 0.04 %ID/g, respectively. Compared to [177Lu]Lu-LW02080, [177Lu]Lu-LW02060 showed higher tumor uptake at all time points (1, 4, 24, 72, and 120 h pi). However, fast tumor clearance was observed for both [177Lu]Lu-LW02060 and [177Lu]Lu-LW02080. Conclusions: Our data demonstrate that [68Ga]Ga-LW02060 is promising for clinical translation for the detection of GRPR-expressing tumor lesions. However, further optimizations are needed for [177Lu]Lu-LW02060 and [177Lu]Lu-LW02080 to prolong tumor retention for therapeutic applications.
Collapse
Affiliation(s)
- Lei Wang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (L.W.); (C.-C.C.); (D.C.); (A.A.W.L.W.); (W.S.L.); (F.B.)
| | - Chao-Cheng Chen
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (L.W.); (C.-C.C.); (D.C.); (A.A.W.L.W.); (W.S.L.); (F.B.)
| | - Devon Chapple
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (L.W.); (C.-C.C.); (D.C.); (A.A.W.L.W.); (W.S.L.); (F.B.)
| | - Antonio A. W. L. Wong
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (L.W.); (C.-C.C.); (D.C.); (A.A.W.L.W.); (W.S.L.); (F.B.)
| | - Sara Kurkowska
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.K.); (C.F.U.)
- Department of Nuclear Medicine, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Wing Sum Lau
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (L.W.); (C.-C.C.); (D.C.); (A.A.W.L.W.); (W.S.L.); (F.B.)
| | - Carlos F. Uribe
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.K.); (C.F.U.)
- Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, BC V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (L.W.); (C.-C.C.); (D.C.); (A.A.W.L.W.); (W.S.L.); (F.B.)
- Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, BC V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (L.W.); (C.-C.C.); (D.C.); (A.A.W.L.W.); (W.S.L.); (F.B.)
- Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, BC V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
6
|
Wang W, Wang R, An L, Li L, Xiong H, Li D, Dong F, Lei J, Wang M, Yang Z, Wang H, Ling X, Fountzilas C, Li F, Li Q. Design, synthesis and investigation of biological activity and mechanism of fluoroaryl-substituted derivatives at the FL118 position 7. Eur J Med Chem 2025; 283:117143. [PMID: 39647420 DOI: 10.1016/j.ejmech.2024.117143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/15/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Addition of fluorine atoms into chemical compounds is a validated strategy to enhance their physical, chemical and biological properties. In this study, FL118, a novel camptothecin-related small molecule known for its unique mechanism of action and superior antitumor efficacy, was utilized as a foundational drug platform. By replacing the hydrogen atom at position 7 of FL118 with a fluoroaryl group, a diverse array of FL118 derivatives were synthesized. Our investigations revealed that the majority of these newly synthesized compounds exhibited improved cytotoxicity compared to FL118, with some demonstrating enhanced in vivo antitumor efficacy. Among these derivatives, compound 7h stood out and was subjected to detailed analysis. Compound 7h demonstrated a remarkable ability to inhibit colorectal cancer (CRC) cell colony formation and cell migration, while also promoting reactive oxygen species (ROS) production and CRC cell apoptosis. Notably, our studies unveiled that the presence of DDX5 could modulate Topoisomerase I (Top1) activity, a process effectively reversed by a low concentration of 7h, but not SN38. Moreover, only 7h was able to decrease DDX5 expression, SN38 was not. Molecular docking studies further supported the binding of 7h to DDX5. Interestingly, although both 7h and SN38 exhibited similar inhibitory effects on Top1 activity, only 7h, and not SN38, could inhibit DDX5. These findings not only pave the way for deeper mechanistic explorations of FL118 and its derivatives in cancer research but also position the identified compound 7h as a promising candidate for further development.
Collapse
Affiliation(s)
- Wenchao Wang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ruojiong Wang
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lianhao An
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lei Li
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Haonan Xiong
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dan Li
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fangze Dong
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junrong Lei
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mengke Wang
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhikun Yang
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hong Wang
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiang Ling
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA; Canget BioTekpharma LLC, Buffalo, NY, 14203, USA
| | - Christos Fountzilas
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| | - Qingyong Li
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
7
|
Paolella ME, Honeycutt DS, Lipka BM, Goldberg JM, Wang F. Quantifying the ability of the CF 2H group as a hydrogen bond donor. Beilstein J Org Chem 2025; 21:189-199. [PMID: 39877859 PMCID: PMC11773185 DOI: 10.3762/bjoc.21.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
The CF2H group can act as a hydrogen bond donor, serving as a potential surrogate for OH or SH groups but with a weaker hydrogen bond donation ability. Here, we describe a series of CF2H group-containing moieties that facilitate hydrogen bond interactions. We survey hydrogen bond donation ability using several established methods, including 1H NMR-based hydrogen bond acidity determination, UV-vis spectroscopy titration with Reichardt's dye, and 1H NMR titration using tri-n-butylphosphine oxide as a hydrogen bond acceptor. Our experiments reveal that the direct attachment of the CF2H group to cationic aromatic systems significantly enhances its hydrogen bond donation ability, a result consistent with theoretical calculations. We anticipate that this chemistry will be valuable for designing functional molecules for chemical biology and medicinal chemistry applications.
Collapse
Affiliation(s)
- Matthew E Paolella
- Department of Chemistry, University of Rhode Island, 140 Flagg Rd, Kingston, RI 02881, USA
| | - Daniel S Honeycutt
- Department of Chemistry, University of Rhode Island, 140 Flagg Rd, Kingston, RI 02881, USA
| | - Bradley M Lipka
- Department of Chemistry, University of Rhode Island, 140 Flagg Rd, Kingston, RI 02881, USA
| | - Jacob M Goldberg
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Fang Wang
- Department of Chemistry, University of Rhode Island, 140 Flagg Rd, Kingston, RI 02881, USA
| |
Collapse
|
8
|
Liu P, He Y, Jiang CH, Ren WR, Jin RX, Zhang T, Chen WX, Nie X, Wang XS. CF 2H-synthon enables asymmetric radical difluoroalkylation for synthesis of chiral difluoromethylated amines. Nat Commun 2025; 16:599. [PMID: 39799146 PMCID: PMC11724884 DOI: 10.1038/s41467-025-55912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
The difluoromethyl group is a crucial fluorinated moiety with distinctive biological properties, and the synthesis of chiral CF₂H-containing analogs has been recognized as a powerful strategy in drug design. To date, the most established method for accessing enantioenriched difluoromethyl compounds involves the enantioselective functionalization of nucleophilic and electrophilic CF₂H synthons. However, this approach is limited by lower reactivity and reduced enantioselectivity. Leveraging the unique fluorine effect, we design and synthesize a radical CF₂H synthon by incorporating isoindolinone into alkyl halides for asymmetric radical transformation. Here, we report an efficient strategy for the asymmetric construction of carbon stereocenters featuring a difluoromethyl group via nickel-catalyzed Negishi cross-coupling. This approach demonstrates mild reaction conditions and excellent enantioselectivity. Given that optically pure difluoromethylated amines and isoindolinones are key structural motifs in bioactive compounds, this strategy offers a practical solution for the efficient synthesis of CF₂H-containing chiral drug-like molecules.
Collapse
Affiliation(s)
- Peng Liu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Yan He
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Chen-Hui Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Wei-Ran Ren
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Ruo-Xing Jin
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Ting Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Wang-Xuan Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Xuan Nie
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xi-Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
9
|
Rajabalinia S, Lotfian H, Hoford S, Wang M, Siegler MA, Lectka T, Dudding T. FON: An Innovative Fluorinated Group via Hydroetherification-Type Reactivity. Org Lett 2025; 27:191-196. [PMID: 39690433 DOI: 10.1021/acs.orglett.4c04160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
An efficient strategy for preparing the novel O-difluoroalkylhydroxylamine fluorinated functional group, coined FON, is reported. This analogue of medicinally important β-phenethyl ether scaffolds in uniting gem-difluoro and N-O moieties is synthesized in one step via chemo- and regioselectivity metal-free hydroetherification-type additions. As shown, this unique mode of reactivity is realized for a diverse substrate scope and applied to gram-scale synthesis and site-selective deuterium incorporation. Lastly, a mechanistic understanding with implications in Brønsted acid catalysis is offered.
Collapse
Affiliation(s)
- Sanaz Rajabalinia
- Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Hedieh Lotfian
- Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Sabrina Hoford
- Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Muyuan Wang
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street,Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street,Baltimore, Maryland 21218, United States
| | - Thomas Lectka
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street,Baltimore, Maryland 21218, United States
| | - Travis Dudding
- Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
10
|
Cui G, Fan Y, Yang Y, Ma Y, Deng H, Wang P, Zhu Y, Li J, Wei J, Zhang Y. Discovery of N-Trifluoromethylated Noscapines as Novel and Potent Agents for the Treatment of Glioblastoma. J Med Chem 2025; 68:247-260. [PMID: 39688535 DOI: 10.1021/acs.jmedchem.4c01786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The search for new and effective chemotherapeutic agents for the treatment of glioblastoma (GBM) represents an unmet need in drug discovery. Herein, a class of novel N-trifluoromethylated noscapines has been disclosed. Among them, 9'-bromo-N-trifluoromethyl noscapine 15c displayed superior in vitro anti-GBM potency. Unexpectedly, in contrast with the general N-trifluoromethyl amines, these compounds exhibited good hydrolytic stability and further investigation of this distinct stability revealed a novel strategy for the structure modification of tetrahydroisoquinoline alkaloids, where N-methyl could be bioisosterically replaced with trifluoromethyl. Furthermore, 15c showed excellent BBB permeability and good in vivo anti-GBM activity and could efficiently suppress the migration of GBM cells, while no apparent toxicity was observed, thus representing an attractive lead for further drug discovery. Further mechanistic studies revealed that 15c exhibited an ability to induce G2/M-phase arrest in GBM cells associated with the disruption of tubulin polymerization, which is consistent with the mechanism of action of noscapine.
Collapse
Affiliation(s)
- Guangwei Cui
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yuhang Fan
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yue Yang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yiwen Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Haiyang Deng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Pan Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yuxin Zhu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinlian Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yongqiang Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
11
|
Cao J, Veytia-Bucheli JI, Liang L, Wouters J, Silva-Rosero I, Bussmann J, Gauthier C, De Bolle X, Groleau MC, Déziel E, Vincent SP. Exploring fluorinated heptose phosphate analogues as inhibitors of HldA and HldE, key enzymes in the biosynthesis of lipopolysaccharide. Bioorg Chem 2024; 153:107767. [PMID: 39241584 DOI: 10.1016/j.bioorg.2024.107767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
The growing threat of bacterial resistance to antibiotics has led to the rise of anti-virulence strategies as a promising approach. These strategies aim to disarm bacterial pathogens and improve their clearance by the host immune system. Lipopolysaccharide, a key virulence factor in Gram-negative bacteria, has been identified as a potential target for anti-virulence agents. In this study, we focus on inhibiting HldA and HldE, bacterial enzymes from the heptose biosynthesis pathway, which plays a key role in lipopolysaccharide biosynthesis. We present the synthesis of two fluorinated non-hydrolysable heptose phosphate analogues. Additionally, the inhibitory activity of a family of eight heptose phosphate analogues against HldA and HldE was assessed. This evaluation revealed inhibitors with affinities in the low μM range, with the most potent compound showing inhibition constant values of 15.4 μM for HldA and 16.9 μM for HldE. The requirement for a phosphate group at the C-7 position was deemed essential for inhibitory activity, while the presence of a hydroxy anomeric group was found to be beneficial, a phenomenon rationalized through computational modeling. Additionally, the introduction of a single fluorine atom α to the phosphonate moiety conferred a slight advantage for inhibition. These findings suggest that mimicking the structure of d-glycero-β-d-manno-heptose 1,7-bisphosphate, the product of the phosphorylation step in heptose biosynthesis, could be a promising strategy to disrupt this biosynthetic pathway. In terms of the in vivo effects, these heptose phosphate analogues neither demonstrated significant LPS-disrupting effects nor exhibited growth inhibitory activity on their own. Additionally, they did not alter the susceptibility of bacteria to hydrophobic antibiotics. The highly charged nature of these molecules may hinder their ability to penetrate the bacterial cell wall. To overcome this limitation, alternative strategies such as incorporating protecting groups that facilitate their entry and can subsequently be cleaved within the bacterial cytoplasm could be explored.
Collapse
Affiliation(s)
- Jun Cao
- Department of Chemistry, Laboratoire de Chimie Bio-Organique (CBO)-Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - José Ignacio Veytia-Bucheli
- Department of Chemistry, Laboratoire de Chimie Bio-Organique (CBO)-Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Lina Liang
- Department of Chemistry, Laboratoire de Chimie Bio-Organique (CBO)-Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Johan Wouters
- Department of Chemistry, Laboratoire de Chimie Biologique Structurale (CBS)-NARILIS, UNamur, 5000 Namur, Belgium
| | - Isabella Silva-Rosero
- Department of Chemistry, Laboratoire de Chimie Biologique Structurale (CBS)-NARILIS, UNamur, 5000 Namur, Belgium
| | - Julie Bussmann
- Department of Chemistry, Laboratoire de Chimie Bio-Organique (CBO)-Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Charles Gauthier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), H7V 1B7 Laval, Canada; Unité Mixte de Recherche INRS-UQAC, INRS Centre AFSB, Université du Québec à Chicoutimi, G7H 2B1 Chicoutimi, Canada
| | - Xavier De Bolle
- Unité de Recherche en Biologie des Micro-organismes (URBM)-NARILIS, UNamur, 5000 Namur, Belgium
| | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), H7V 1B7 Laval, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), H7V 1B7 Laval, Canada
| | - Stéphane P Vincent
- Department of Chemistry, Laboratoire de Chimie Bio-Organique (CBO)-Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium.
| |
Collapse
|
12
|
Zhou T, Zhang ZW, Nie J, Kwong FY, Ma JA, Cheung CW. Metallaphotocatalytic triple couplings for modular synthesis of elaborate N-trifluoroalkyl anilines. Nat Commun 2024; 15:9926. [PMID: 39548078 PMCID: PMC11568185 DOI: 10.1038/s41467-024-53828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024] Open
Abstract
The integration of trifluoromethyl groups and three-dimensional quaternary carbon moieties into organic molecules has emerged as a prominent strategy in medicinal chemistry to augment drug efficacy. Although trifluoromethyl (hetero)aromatic amines and derivatives are prevalent frameworks in pharmaceuticals, the development of trifluoromethyl-embedded, intricately structured alkyl amine scaffolds for medicinal research remains a significant challenge. Herein, we present a metallaphotoredox multicomponent amination strategy employing 3,3,3-trifluoropropene, nitroarenes, tertiary alkylamines, and carboxylic acids. This synthetic pathway offers notable advantages, including the accessibility and cost-effectiveness of starting materials, high levels of chemo- and regioselectivity, and modularity. Furthermore, this approach enables the synthesis of a broad spectrum of aniline compounds featuring both trifluoromethyl group and distal quaternary carbon motifs along the aliphatic chains. The accelerated access to such elaborate N-trifluoroalkyl anilines likely involves three sequential radical-mediated coupling events, providing insightful implications for the retrosynthesis of potential compounds in organic synthesis and drug discovery.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. of China
| | - Zhong-Wei Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. of China
| | - Jing Nie
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. of China
| | - Fuk Yee Kwong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, P. R. of China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. of China.
| | - Chi Wai Cheung
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. of China.
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, P. R. of China.
| |
Collapse
|
13
|
Ortalli S, Ford J, Szpera R, Stoessel B, Trabanco AA, Tredwell M, Gouverneur V. 18F-Difluoromethyl(ene) Motifs via Oxidative Fluorodecarboxylation with [ 18F]Fluoride. Org Lett 2024; 26:9368-9372. [PMID: 39441191 PMCID: PMC11536415 DOI: 10.1021/acs.orglett.4c03611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Herein, we report that α-fluorocarboxylic acids undergo manganese-mediated oxidative 18F-fluorodecarboxylation with [18F]fluoride affording biologically relevant 18F-difluoromethyl(ene)-containing molecules. This no-carrier added process provides a solution to a known challenge in radiochemistry and expands the radiochemical space available for positron emission tomography (PET) ligand discovery. Scalability on a fully automated radiosynthetic platform is exemplified with the production of [18F]4,4-difluoropiperidine that, we demonstrate, is amenable to postlabeling functionalization including N-heteroarylation and amide as well as sulfonamide bond formation.
Collapse
Affiliation(s)
- Sebastiano Ortalli
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Joseph Ford
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Robert Szpera
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Barbara Stoessel
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Andrés A. Trabanco
- Global
Discovery Chemistry, Therapeutics Discovery, Johnson & Johnson Innovative Medicine, Janssen-Cilag, S.A., E-45007 Toledo, Spain
| | - Matthew Tredwell
- Wales
Research and Diagnostic PET Imaging Centre, Cardiff University, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, United
Kingdom
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Véronique Gouverneur
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
14
|
Das S, McIvor C, Greener A, Suwita C, Argent SP, O'Duill ML. 2,2-Difluoroethylation of Heteroatom Nucleophiles via a Hypervalent Iodine Strategy. Angew Chem Int Ed Engl 2024; 63:e202410954. [PMID: 38900650 DOI: 10.1002/anie.202410954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024]
Abstract
The 2,2-difluoroethyl group is an important lipophilic hydrogen bond donor in medicinal chemistry, but its incorporation into small molecules is often challenging. Herein, we demonstrate electrophilic 2,2-difluoroethylation of thiol, amine and alcohol nucleophiles with a hypervalent iodine reagent, (2,2-difluoro-ethyl)(aryl)iodonium triflate, via a proposed ligand coupling mechanism. This transformation offers a complementary strategy to existing 2,2-difluoroethylation methods and allows access to a wide range of 2,2-difluoroethylated nucleophiles, including the drugs Captopril, Normorphine and Mefloquine.
Collapse
Affiliation(s)
- Suman Das
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| | - Charlotte McIvor
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| | - Andrew Greener
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| | - Charlotte Suwita
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| | - Stephen P Argent
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| | - Miriam L O'Duill
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| |
Collapse
|
15
|
Ma X, Wang S, Tang Z, Huang J, Jia T, Zhao X, Zhao D. Visible light-induced Mallory reaction of tertiary benzanilides via iminium intermediates. Chem Sci 2024:d4sc03907f. [PMID: 39364068 PMCID: PMC11446310 DOI: 10.1039/d4sc03907f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024] Open
Abstract
The Mallory reaction, which involves the photocyclization of stilbenes/diarylethenes and their analogues into polycyclic aromatics, is of significant synthetic importance. However, its application to tertiary benzanilides has not been explored to date. Besides, most of the reported Mallory reactions require ultraviolet irradiation. In this study, we show the first Mallory reaction of tertiary benzanilides promoted by visible light via iminium intermediates formed in situ from tertiary benzanilide, Tf2O (triflic anhydride) and pyridine. UV/vis absorption spectroscopy combined with density functional theory (DFT) calculations revealed that the formation of the iminium intermediate decreased the HOMO-LUMO energy gap, thereby enhancing visible light absorption. This study provides a rapid and practical approach for the preparation of the phenanthridinone skeleton and provides a new idea for the design of new visible light photoswitches.
Collapse
Affiliation(s)
- Xiaoqiang Ma
- State Key Laboratory of Anti-infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 China
| | - Si Wang
- State Key Laboratory of Anti-infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 China
| | - Zhanyong Tang
- State Key Laboratory of Anti-infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 China
| | - Jialin Huang
- State Key Laboratory of Anti-infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 China
| | - Tianhao Jia
- State Key Laboratory of Anti-infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 China
| | - Xingda Zhao
- State Key Laboratory of Anti-infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 China
| | - Depeng Zhao
- State Key Laboratory of Anti-infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 China
| |
Collapse
|
16
|
Minneci M, Misevicius M, Rozas I. Searching for "Greener" Bioequivalents of CF 3 to Lower its Environmental Impact. Chemistry 2024; 30:e202401954. [PMID: 38958040 DOI: 10.1002/chem.202401954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/04/2024]
Abstract
Considering the broad use of the trifluoromethyl functional group (-CF3) in medicinal chemistry and taking into account the recent concerns on the negative environmental effects of CF3 containing compounds, we are searching for "greener" alternatives. Thus, different chemical groups (i. e. iodide, fluoride, cyclopropyl, isopropyl, cyclobutyl, 3-oxetyl, 2-oxetyl, methylsulfide, pentafluorosulfide, methylsulfonyl and sulfonamide) have been considered as potential bioequivalents of -CF3 aiming to use them in compounds with therapeutic interest instead of the polyfluoride functionality. Different structural (molecular surface and volume) and physicochemical (electronic and lipophilic) aspects of the bioequivalent functionalities proposed have been theoretically calculated and compared to those of -CF3. Additionally, the corresponding phenyl derivatives carrying these functionalities have been purchased or prepared and their experimental lipophilicity (i. e. LogP) measured using shake-flask experiments and UV-vis spectroscopy.
Collapse
Affiliation(s)
- Marco Minneci
- School of Chemistry, Trinity College Dublin, TBSI, 152-160 Pearse Street, Dublin, D02 R590, Ireland
| | - Matas Misevicius
- School of Chemistry, Trinity College Dublin, TBSI, 152-160 Pearse Street, Dublin, D02 R590, Ireland
| | - Isabel Rozas
- School of Chemistry, Trinity College Dublin, TBSI, 152-160 Pearse Street, Dublin, D02 R590, Ireland
| |
Collapse
|
17
|
Yeffet D, Columbus I, Parvari G, Eichen Y, Saphier S, Ghindes-Azaria L, Redy-Keisar O, Amir D, Drug E, Gershonov E, Binyamin I, Cohen Y, Karton-Lifshin N, Zafrani Y. Addressing the Opioids Lipophilicity Challenge via a Straightforward and Simultaneous 1H NMR-Based log P/ D Determination, Both Separately and in Mixtures. J Med Chem 2024; 67:12399-12409. [PMID: 39013123 DOI: 10.1021/acs.jmedchem.4c01153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
A systematic study of trends in the lipophilicity of prominent representatives of the opioid family, including natural, semisynthetic, synthetic, and endogenous neuropeptide opioids, is described. This was enabled by a straightforward 1H NMR-based logP/D determination method developed for compounds holding at least one aromatic hydrogen atom. Moreover, the new method enables a direct simultaneous logD determination of opioid mixtures, overcoming the high sensitivity of this family to the measurement conditions, which is critical when a determination of the exact ΔlogD values of matched pairs is required. Interpretation of the experimental ΔlogD7.4 values of selected matched pairs, focusing inter alia on the 3-OMe and 14-OMe motifs in morphinan opioids, is suggested with the aid of DFT calculations and may be useful for the discovery of new opioid therapeutics.
Collapse
Affiliation(s)
- Dina Yeffet
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Ishay Columbus
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Galit Parvari
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Yoav Eichen
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Sigal Saphier
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Lee Ghindes-Azaria
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Orit Redy-Keisar
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Dafna Amir
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Eyal Drug
- Department of Analytical Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Eytan Gershonov
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Iris Binyamin
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Yoram Cohen
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Naama Karton-Lifshin
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | - Yossi Zafrani
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| |
Collapse
|
18
|
Charlesworth NG, Arunprasath D, Graham MA, Argent SP, Datsenko OP, Mykhailiuk PK, Denton RM. Modular synthesis of cyclic β-difluoroamines. Chem Commun (Camb) 2024; 60:7701-7704. [PMID: 38896427 DOI: 10.1039/d4cc00640b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Fluorine-containing saturated nitrogen heterocycles are very attractive structures in medicinal and biological chemistry because fluorine can be used to tune conformation as well as key properties such as basicity and bioavailability. At present cyclic fluorinated amines are accessed using hazardous reagents such as DAST or by lengthy synthesis routes. Here we report a modular two-step synthesis of cyclic β-fluoroalkyl amines using a photoredox-catalysed cyclisation/hydrogen atom transfer reaction of bromodifluoroethylamines.
Collapse
Affiliation(s)
- Natalie G Charlesworth
- School of Chemistry, GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, 6 Triumph Road, Nottingham NG7 2GA, UK.
| | - Dhanarajan Arunprasath
- School of Chemistry, GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, 6 Triumph Road, Nottingham NG7 2GA, UK.
| | - Mark A Graham
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, UK
| | - Stephen P Argent
- School of Chemistry, GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, 6 Triumph Road, Nottingham NG7 2GA, UK.
| | | | - Pavel K Mykhailiuk
- Enamine Ltd, Winston Churchill Str. 78, 02094 Kyiv, Ukraine
- Chemistry Department, Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine
| | - Ross M Denton
- School of Chemistry, GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, 6 Triumph Road, Nottingham NG7 2GA, UK.
| |
Collapse
|
19
|
Atkins AP, Dean AC, Lennox AJJ. Benzylic C(sp 3)-H fluorination. Beilstein J Org Chem 2024; 20:1527-1547. [PMID: 39015617 PMCID: PMC11250007 DOI: 10.3762/bjoc.20.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
The selective fluorination of C(sp3)-H bonds is an attractive target, particularly for pharmaceutical and agrochemical applications. Consequently, over recent years much attention has been focused on C(sp3)-H fluorination, and several methods that are selective for benzylic C-H bonds have been reported. These protocols operate via several distinct mechanistic pathways and involve a variety of fluorine sources with distinct reactivity profiles. This review aims to give context to these transformations and strategies, highlighting the different tactics to achieve fluorination of benzylic C-H bonds.
Collapse
Affiliation(s)
| | - Alice C Dean
- University of Bristol, School of Chemistry, Bristol, BS8 1TS, U.K.
| | | |
Collapse
|
20
|
Ford J, Ortalli S, Gouverneur V. The 18F-Difluoromethyl Group: Challenges, Impact and Outlook. Angew Chem Int Ed Engl 2024; 63:e202404957. [PMID: 38640422 DOI: 10.1002/anie.202404957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
The difluoromethyl functionality has proven useful in drug discovery, as it can modulate the properties of bioactive molecules. For PET imaging, this structural motif has been largely underexploited in (pre)clinical radiotracers due to a lack of user-friendly radiosynthetic routes. This Minireview provides an overview of the challenges facing radiochemists and summarises the efforts made to date to access 18F-difluoromethyl-containing radiotracers. Two distinct approaches have prevailed, the first of which relies on 18F-fluorination. A second approach consists of a 18F-difluoromethylation process, which uses 18F-labelled reagents capable of releasing key reactive intermediates such as the [18F]CF2H radical or [18F]difluorocarbene. Finally, we provide an outlook for future directions in the radiosynthesis of [18F]CF2H compounds and their application in tracer radiosynthesis.
Collapse
Affiliation(s)
- Joseph Ford
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Sebastiano Ortalli
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Véronique Gouverneur
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| |
Collapse
|
21
|
Hu DD, Nie TM, Xiao X, Li K, Li YB, Gao Q, Bi YX, Wang XS. Enantioselective Construction of C-SCF 3 Stereocenters via Nickel Catalyzed Asymmetric Negishi Coupling Reaction. Angew Chem Int Ed Engl 2024; 63:e202400308. [PMID: 38299744 DOI: 10.1002/anie.202400308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
The construction of the SCF3-containing 1,1-diaryl tertiary carbon stereocenters with high enantioselectivities is reported via a nickel-catalyzed asymmetric C-C coupling strategy. This method demonstrates simple operations, mild conditions and excellent functional group tolerance, with newly designed SCF3-containing synthon, which can be easily obtained from commercially available benzyl bromide and trifluoromethylthio anion in a two-step manner. Further substrate exploration indicated that the reaction system could be extended to diverse perfluoroalkyl sulfide (SC2F5, SC3F7, SC4F9, SCF2CO2Et)-substituted 1,1-diaryl compounds with excellent enantioselectivities. The synthetic utility of this transformation was further demonstrated by convenient derivatization to optical SCF3-containing analogues of bioactive compounds without an apparent decrease in enantioselectivity.
Collapse
Affiliation(s)
- Duo-Duo Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Tian-Mei Nie
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Kuiliang Li
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Yuan-Bo Li
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Qian Gao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yu-Xiang Bi
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi-Sheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
22
|
Xie X, Dong S, Hong K, Huang J, Xu X. Catalytic Asymmetric Difluoroalkylation Using In Situ Generated Difluoroenol Species as the Privileged Synthon. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307520. [PMID: 38318687 PMCID: PMC11005710 DOI: 10.1002/advs.202307520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Indexed: 02/07/2024]
Abstract
A robust and practical difluoroalkylation synthon, α,α-difluoroenol species, which generated in situ from trifluoromethyl diazo compounds and water in the presence of dirhodium complex, is disclosed. As compared to the presynthesized difluoroenoxysilane and in situ formed difluoroenolate under basic conditions, this difluoroenol intermediate displayed versatile reactivity, resulting in dramatically improved enantioselectivity under mild conditions. As demonstrated in catalytic asymmetric aldol reaction and Mannich reactions with ketones or imines in the presence of chiral organocatalysts, quinine-derived urea, and chiral phosphoric acid (CPA), respectively, this relay catalysis strategy provides an effective platform for applying asymmetric fluorination chemistry. Moreover, this method features a novel 1,2-difunctionalization process via installation of a carbonyl motif and an alkyl group on two vicinal carbons, which is a complementary protocol to the metal carbene gem-difunctionalization reaction.
Collapse
Affiliation(s)
- Xiongda Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Shanliang Dong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Kemiao Hong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jingjing Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Xinfang Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
23
|
He M, Piscelli BA, Cormanich RA, O’Hagan D. Conformational Analysis Explores the Role of Electrostatic Nonclassical CF···HC Hydrogen Bonding Interactions in Selectively Halogenated Cyclohexanes. J Org Chem 2024; 89:4009-4018. [PMID: 38441063 PMCID: PMC10949234 DOI: 10.1021/acs.joc.3c02868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
The conformational equilibria of selectively halogenated cyclohexanes are explored both experimentally (VT-NMR) for 1,1,4,-trifluorocyclohexane 7 and by computational analysis (M06-2X/aug-cc-pVTZ level), with the latter approach extending to a wider range of more highly fluorinated cyclohexanes. Perhaps unexpectedly, 7ax is preferred over the 7eq conformation by ΔG = 1.06 kcal mol-1, contradicting the accepted norm for substituents on cyclohexanes. The axial preference is stronger again in 1,1,3,3,4,5,5,-heptafluorocyclohexane 9 (ΔG = 2.73 kcal mol-1) as the CF2 groups further polarize the isolated CH2 hydrogens. Theoretical decomposition of electrostatic and hyperconjugative effects by natural bond orbital analysis indicated that nonclassical hydrogen bonding (NCHB) between the C-4 fluorine and the diaxial hydrogens at C-2 and C-6 in cyclohexane 7 and 9 largely accounts for the observed bias. The study extended to changing fluorine (F) for chlorine (Cl) and bromine (Br) at the pseudoanomeric position in the cyclohexanes. Although these halogens do not become involved in NCHBs, they polarize the geminal -CHX- hydrogen at the pseudoanomeric position to a greater extent than fluorine, and consequent electrostatic interactions influence conformer stabilities.
Collapse
Affiliation(s)
- Mengfan He
- School
of Chemistry, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom
| | - Bruno A. Piscelli
- Instituto
de Química, Universidade Estadual
de Campinas (UNICAMP), Monteiro Lobato Street, Campinas, Sao Paulo 13083-862, Brazil
| | - Rodrigo A. Cormanich
- Instituto
de Química, Universidade Estadual
de Campinas (UNICAMP), Monteiro Lobato Street, Campinas, Sao Paulo 13083-862, Brazil
| | - David O’Hagan
- School
of Chemistry, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom
| |
Collapse
|
24
|
Henary E, Casa S, Dost TL, Sloop JC, Henary M. The Role of Small Molecules Containing Fluorine Atoms in Medicine and Imaging Applications. Pharmaceuticals (Basel) 2024; 17:281. [PMID: 38543068 PMCID: PMC10975950 DOI: 10.3390/ph17030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 04/01/2024] Open
Abstract
The fluorine atom possesses many intrinsic properties that can be beneficial when incorporated into small molecules. These properties include the atom's size, electronegativity, and ability to block metabolic oxidation sites. Substituents that feature fluorine and fluorine-containing groups are currently prevalent in drugs that lower cholesterol, relieve asthma, and treat anxiety disorders, as well as improve the chemical properties of various medications and imaging agents. The dye scaffolds (fluorescein/rhodamine, coumarin, BODIPY, carbocyanine, and squaraine dyes) reported will address the incorporation of the fluorine atom in the scaffold and the contribution it provides to its application as an imaging agent. It is also important to recognize radiolabeled fluorine atoms used for PET imaging in the early detection of diseases. This review will discuss the many benefits of incorporating fluorine atoms into small molecules and give examples of fluorinated molecules used in the pharmaceutical industry and imaging techniques.
Collapse
Affiliation(s)
- Emily Henary
- School of Science and Technology, Georgia Gwinnett College, 1000 University Center Lane, Lawrenceville, GA 30043, USA; (E.H.); (J.C.S.)
| | - Stefanie Casa
- Department of Chemistry, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA; (S.C.); (T.L.D.)
| | - Tyler L. Dost
- Department of Chemistry, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA; (S.C.); (T.L.D.)
| | - Joseph C. Sloop
- School of Science and Technology, Georgia Gwinnett College, 1000 University Center Lane, Lawrenceville, GA 30043, USA; (E.H.); (J.C.S.)
| | - Maged Henary
- Department of Chemistry, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA; (S.C.); (T.L.D.)
- Center for Diagnostics and Therapeutics, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA
| |
Collapse
|
25
|
Ryabukhin SV, Bondarenko DV, Trofymchuk SA, Lega DA, Volochnyuk DM. Aza-Heterocyclic Building Blocks with In-Ring CF 2 -Fragment. CHEM REC 2024; 24:e202300283. [PMID: 37873869 DOI: 10.1002/tcr.202300283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Indexed: 10/25/2023]
Abstract
Modern organic chemistry is a titan supporting and reinforcing pharmaceutical, agricultural, food and material science products. Over the past decades, the organic compounds market has been evolving to meet all the research demands. In this regard, medicinal chemistry is especially dependent on available chemical space as subtle tuning of the molecule structure is required to create a drug with relevant physicochemical properties and a remarkable activity profile. The recent rapid evolution of synthetic methodology to deploy fluorine has brought fluorinated compounds to the spotlight of MedChem community. And now unique properties of fluorine still keep fascinating more and more as its justified installation into a molecular framework has a beneficial impact on membrane permeability, lipophilicity, metabolic stability, pharmacokinetic properties, conformation, pKa , etc. The backward influence of medicinal chemistry on organic synthesis has also changed the landscape of the latter towards new fluorinated topologies as well. Such complex relationships create a flexible and ever-changing ecosystem. Given that MedChem investigations strongly lean on the ability to reach suitable building blocks and the existence of reliable synthetic methods in this review we collected advances in the chemistry of respectful, but still enigmatic gem-difluorinated aza-heterocyclic building blocks.
Collapse
Affiliation(s)
- S V Ryabukhin
- Enamine Ltd., 78 Winston Churchill str., 02094, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., 01033, Kyiv, Ukraine
- Institute of Organic Chemistry of the, National Academy of Sciences of Ukraine, 5 Akademik Kukhar str., 02094, Kyiv, Ukraine
| | - D V Bondarenko
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., 01033, Kyiv, Ukraine
| | - S A Trofymchuk
- Enamine Ltd., 78 Winston Churchill str., 02094, Kyiv, Ukraine
- Institute of Organic Chemistry of the, National Academy of Sciences of Ukraine, 5 Akademik Kukhar str., 02094, Kyiv, Ukraine
| | - D A Lega
- Enamine Ltd., 78 Winston Churchill str., 02094, Kyiv, Ukraine
- National University of Pharmacy of the Ministry of Health of Ukraine, 53 Pushkinska str., 61002, Kharkiv, Ukraine
| | - D M Volochnyuk
- Enamine Ltd., 78 Winston Churchill str., 02094, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., 01033, Kyiv, Ukraine
- Institute of Organic Chemistry of the, National Academy of Sciences of Ukraine, 5 Akademik Kukhar str., 02094, Kyiv, Ukraine
| |
Collapse
|
26
|
Liu A, Zhang X, Zhao F, Ni C, Hu J. Controllable Fluorocarbon Chain Elongation: TMSCF 2Br-Enabled Trifluorovinylation and Pentafluorocyclopropylation of Aldehydes. J Am Chem Soc 2024; 146:1806-1812. [PMID: 38193677 DOI: 10.1021/jacs.3c12919] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Controllable fluorocarbon chain elongation (CFCE) is a promising yet underdeveloped strategy for the well-defined synthesis of structurally novel polyfluorinated compounds. Herein, the direct and efficient trifluorovinylation and pentafluorocyclopropylation of aldehydes are described by using TMSCF2Br (TMS = trimethylsilyl) as the sole fluorocarbon source, accomplishing the goals of CFCE from C1 to C2 and from C1 to C3, respectively. The key to the success of these CFCE processes lies in the unique and diversified chemical reactivity of TMSCF2Br, which can serve as two different precursors, namely, a TMSCF2 radical precursor and a difluorocarbene precursor. Various functional groups are amenable to this new synthetic protocol, providing streamlined access to a broad range of alcohols containing trifluorovinyl or pentafluorocyclopropyl moieties from abundantly available aldehydes. The potential utility of these methods is further demonstrated by the gram-scale synthesis, derivatization, and measurement of log P values of the products.
Collapse
Affiliation(s)
- An Liu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Xianghong Zhang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Feng Zhao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chuanfa Ni
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jinbo Hu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
27
|
Meanwell NA. Applications of Bioisosteres in the Design of Biologically Active Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18087-18122. [PMID: 36961953 DOI: 10.1021/acs.jafc.3c00765] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The design of bioisosteres represents a creative and productive approach to improve a molecule, including by enhancing potency, addressing pharmacokinetic challenges, reducing off-target liabilities, and productively modulating physicochemical properties. Bioisosterism is a principle exploited in the design of bioactive compounds of interest to both medicinal and agricultural chemists, and in this review, we provide a synopsis of applications where this kind of molecular editing has proved to be advantageous in molecule optimization. The examples selected for discussion focus on bioisosteres of carboxylic acids, applications of fluorine and fluorinated motifs in compound design, some applications of the sulfoximine functionality, the design of bioisosteres of drug-H2O complexes, and the design of bioisosteres of the phenyl ring.
Collapse
Affiliation(s)
- Nicholas A Meanwell
- The Baruch S. Blumberg Institute, 3805 Old Easton Rd, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
28
|
Deng M, Wilde M, Welch JT. N-(2-Tetrafluoro(trifluoromethyl)-λ 6-sulfanyl(CF 3SF 4)-ethyl) Amines: The Influence of the CF 3SF 4 Group on Lipophilicity and p Ka. J Org Chem 2023; 88:15639-15646. [PMID: 37934773 DOI: 10.1021/acs.joc.3c01614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
A practical synthetic path for the preparation of trans-CF3SF4-substituted amines has been described. Primary and secondary amines bearing a variety of different functional groups including amino acids, cyclic amines, and nucleosides were prepared. The desired amines were synthesized under mild conditions. The influence of the CF3SF4-group on the pKa and log D of a standard amine was established. The unusual conformation of the trans-CF3SF4-substituted tosylate has been verified via its crystal structure.
Collapse
Affiliation(s)
- Muqian Deng
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Max Wilde
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
| | - John T Welch
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
29
|
Columbus I, Ghindes-Azaria L, Herzog IM, Blum E, Parvari G, Eichen Y, Cohen Y, Gershonov E, Drug E, Saphier S, Elias S, Smolkin B, Zafrani Y. Species-specific lipophilicities of fluorinated diketones in complex equilibria systems and their potential as multifaceted reversible covalent warheads. Commun Chem 2023; 6:197. [PMID: 37715018 PMCID: PMC10504258 DOI: 10.1038/s42004-023-01004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
Combined molecular, physicochemical and chemical properties of electrophilic warheads can be applied to create covalent drugs with diverse facets. Here we study these properties in fluorinated diketones (FDKs) and their multicomponent equilibrium systems in the presence of protic nucleophiles, revealing the potential of the CF2(CO)2 group to act as a multifaceted warhead for reversible covalent drugs. The equilibria compositions of various FDKs in water/octanol contain up to nine species. A simultaneous direct species-specific 19F-NMR-based log P determination of these complex equilibria systems was achieved and revealed in some cases lipophilic to hydrophilic shifts, indicating possible adaptation to different environments. This was also demonstrated in 19F-MAS-NMR-based water-membrane partitioning measurements. An interpretation of the results is suggested by the aid of a DFT study and 19F-DOSY-NMR spectroscopy. In dilute solutions, a model FDK reacted with protected cysteine to form two hemi-thioketal regioisomers, indicating possible flexible regio-reactivity of CF2(CO)2 warheads toward cysteine residues.
Collapse
Affiliation(s)
- Ishay Columbus
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Lee Ghindes-Azaria
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ido Michael Herzog
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Eliav Blum
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Galit Parvari
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa, Israel
| | - Yoav Eichen
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa, Israel
| | - Yoram Cohen
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Eytan Gershonov
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Eyal Drug
- Department of Analytic Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Sigal Saphier
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel.
| | - Shlomi Elias
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Boris Smolkin
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Yossi Zafrani
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel.
| |
Collapse
|
30
|
Melnykov KP, Nazar K, Smyrnov O, Skreminskyi A, Pavlenko S, Klymenko-Ulianov O, Shishkina S, Volochnyuk DM, Grygorenko OO. Mono- and Difluorinated Saturated Heterocyclic Amines for Drug Discovery: Systematic Study of Their Physicochemical Properties. Chemistry 2023; 29:e202301383. [PMID: 37318940 DOI: 10.1002/chem.202301383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
A comprehensive study of physicochemical properties (pKa , LogP, and intrinsic microsomal clearance) within the series of mono- and difluorinated azetidine, pyrrolidine, and piperidine derivatives was performed. While the number of fluorine atoms and their distance to the protonation center were the major factors defining the compound's basicity, both pKa and LogP values were affected considerably by the conformational preferences of the corresponding derivatives. For example, features of "Janus face" (facially polarized) cyclic compounds (i. e., unusually high hydrophilicity) were identified for cis-3,5-difluoropiperidine, preferring a diaxial conformation. Intrinsic microsomal clearance measurements demonstrated high metabolic stability of the compounds studied (with a single exception of the 3,3-difluoroazetidine derivative). According to pKa - LogP plots, the title compounds provide a valuable extension of the fluorine-containing (e. g., fluoroalkyl-substituted) saturated heterocyclic amine series as building blocks for rational optimization studies in early drug discovery.
Collapse
Affiliation(s)
- Kostiantyn P Melnykov
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Kostiantyn Nazar
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleh Smyrnov
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | | | - Serhii Pavlenko
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
| | | | - Svitlana Shishkina
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademik Kukhar Street 5, Kyїv, 02660, Ukraine
| | - Dmitriy M Volochnyuk
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademik Kukhar Street 5, Kyїv, 02660, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| |
Collapse
|
31
|
Alle T, Joyasawal S, Oukoloff K, Long K, Owyang Z, Francisco KR, Cahard D, Huryn DM, Ballatore C. Structure-property relationships of fluorinated carboxylic acid bioisosteres. Bioorg Med Chem Lett 2023; 91:129363. [PMID: 37295616 PMCID: PMC11003450 DOI: 10.1016/j.bmcl.2023.129363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Fluorinated alcohols and phenols are potentially useful as bioisosteres of the carboxylic acid functional group. To enable a direct comparison of the properties of fluorinated carboxylic acid surrogates with those of other commonly used, non-fluorinated bioisosteres, we conducted a structure-property relationship (SPR) study based on matched molecular pair (MMP) analyses. A series of representative examples have been characterized by experimentally determining physicochemical properties, such as acidity (pKa), lipophilicity (logD7.4), and permeability (PAMPA). The results presented can help estimate the relative changes in physicochemical properties that may be attainable by replacing the carboxylic acid functional group with fluorine containing surrogate structures.
Collapse
Affiliation(s)
- Thibault Alle
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Sipak Joyasawal
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, 3501 Terrace St., Pittsburgh, PA 15261, United States
| | - Killian Oukoloff
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Keith Long
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, 3501 Terrace St., Pittsburgh, PA 15261, United States
| | - Zachary Owyang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Karol R Francisco
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Dominique Cahard
- CNRS, UMR 6014 COBRA, Normandie Université, 76821 Mont Saint Aignan, France.
| | - Donna M Huryn
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, 3501 Terrace St., Pittsburgh, PA 15261, United States.
| | - Carlo Ballatore
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States.
| |
Collapse
|
32
|
Saphier S, Katalan S, Yacov G, Berliner A, Redy-Keisar O, Fridkin G, Ghindes-Azaria L, Columbus I, Pevzner A, Drug E, Prihed H, Gershonov E, Eichen Y, Elias S, Parvari G, Zafrani Y. Placing CF 2 in the Center: Major Physicochemical Changes Upon a Minor Structural Alteration in Gem-Difunctional Compounds. Chemistry 2023; 29:e202202939. [PMID: 36374157 DOI: 10.1002/chem.202202939] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
Fluorine atoms play an important role in all branches of chemistry and accordingly, it is very important to study their unique and varied effects systematically, in particular, the structure-physicochemical properties relationship. The present study describes exceptional physicochemical effects resulting from a H/F exchange at the methylene bridge of gem-difunctional compounds. The Δlog P(CF2-CH2) values, that is, the change in lipophilicity, observed for the CH2 /CF2 replacement in various α,α-phenoxy- and thiophenoxy-esters/amides, diketones, benzodioxoles and more, fall in the range of 0.6-1.4 units, which for most cases, is far above the values expected for such a replacement. Moreover, for compounds holding more than one such gem-difunctional moiety, the effect is nearly additive, so one can switch from a hydrophilic compound to a lipophilic one in a limited number of H/F exchanges. DFT studies of some of these systems revealed that polarity, conformational preference as well as charge distributions are strongly affected by such hydrogen to fluorine atom substitution. The pronounced effects described, are a result of the interplay between changes in polarity, H-bond basicity and molecular volume, which were obtained with a very low 'cost' in terms of molecular weight or steric effects and may have a great potential for implementation in various fields of chemical sciences.
Collapse
Affiliation(s)
- Sigal Saphier
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Shahaf Katalan
- Department of Pharmacology, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Guy Yacov
- Department of Pharmacology, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Anat Berliner
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Orit Redy-Keisar
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Gil Fridkin
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Lee Ghindes-Azaria
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Ishay Columbus
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Alexander Pevzner
- Department of Physical Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Eyal Drug
- Department of Analytical Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Hagit Prihed
- Department of Analytical Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Eytan Gershonov
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Yoav Eichen
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology, Technion City, Haifa, 3200008, Israel
| | - Shlomi Elias
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Galit Parvari
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology, Technion City, Haifa, 3200008, Israel
| | - Yossi Zafrani
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| |
Collapse
|
33
|
Box JR, Avanthay ME, Poole DL, Lennox AJJ. Electronically Ambivalent Hydrodefluorination of Aryl‐CF 3 groups enabled by Electrochemical Deep‐Reduction on a Ni Cathode. Angew Chem Int Ed Engl 2023; 62:e202218195. [PMID: 36705627 PMCID: PMC10946569 DOI: 10.1002/anie.202218195] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 01/28/2023]
Abstract
We report a general procedure for the direct mono- and di-hydrodefluorination of ArCF3 compounds. Exploiting the tunability of electrochemistry and the selectivity enabled by a Ni cathode, the deep reduction garners high selectivity with good to excellent yields up to gram scale. The late-stage peripheral editing of CF3 feedstocks to construct fluoromethyl moieties will aid the rapid diversification of lead-compounds and compound libraries.
Collapse
Affiliation(s)
- John R. Box
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | - Darren L. Poole
- Discovery High-Throughput ChemistryMedicinal ChemistryGSK Medicines Research CentreStevenageSG1 2NYUK
| | | |
Collapse
|
34
|
Sindhe H, Saiyed N, Kamble A, Mounika Reddy M, Singh A, Sharma S. Catalytic and Chemodivergent Synthesis of 1-Substituted 9 H-Pyrrolo[1,2- a]indoles via Annulation of β-CF 3 Enones with 3-Substituted Indoles. J Org Chem 2023; 88:230-244. [PMID: 36503232 DOI: 10.1021/acs.joc.2c02240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemodivergent reactions are more advantageous in organic synthesis that yield diversely functionalized scaffolds from common starting materials. Herein, we report an efficient metal-free chemodivergent protocol for the synthesis of 1-substituted 9H-pyrrolo[1,2-a]indole derivatives in the presence of catalytic amounts of Lewis acid/Brønsted acid conditions using 3-substituted indoles and β-trifluoromethyl-α,β-unsaturated ketones. Fine-tuning of the catalyst and solvent system in the reaction conditions deliver the trifluoromethyl, trifluoroethylcarboxylate, or carboxylic acid substituents on the C1-position of 9H-pyrrolo[1,2-a]indole derivatives in situ. It is postulated that the solvent and LA/BA catalyst interaction was found to be crucial for the catalytic C-F activation in these transformations.
Collapse
Affiliation(s)
- Haritha Sindhe
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Nehanaz Saiyed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Akshay Kamble
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Malladi Mounika Reddy
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Amardeep Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Satyasheel Sharma
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
35
|
Sumii Y, Iwasaki H, Fujihira Y, Mahmoud EM, Adachi H, Kagawa T, Cahard D, Shibata N. KHMDS/Triglyme Cryptate as an Alternative to Phosphazene Base in Stereodivergent Pentafluoroethylation of N-Sulfinylimines Using HFC-125. J Org Chem 2022; 87:15806-15819. [PMID: 36315641 DOI: 10.1021/acs.joc.2c01821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
A protocol for the stereodivergent pentafluoroethylation of N-sulfinylimines using HFC-125 with KHMDS/triglyme has been developed. Both diastereomers of the pentafluoroethylated amines can be selectively synthesized based on the presence or absence of triglyme. This additive-controlled protocol allows the KHMDS/triglyme cryptate to be a straightforward and cheap alternative to previously reported base-controlled stereodivergent trifluoromethylation using potassium hexamethyldisilazide (KHMDS) versus P4-tBu.
Collapse
Affiliation(s)
- Yuji Sumii
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Hiroto Iwasaki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Yamato Fujihira
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Elsayed M Mahmoud
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Hiroaki Adachi
- Tosoh Finechem Corporation, 4988, Kaiseicho, Shunan 746-0006, Japan
| | - Takumi Kagawa
- Tosoh Finechem Corporation, 4988, Kaiseicho, Shunan 746-0006, Japan
| | - Dominique Cahard
- CNRS UMR 6014 COBRA, Normandie Université, 76821 Mont Saint Aignan, France
| | - Norio Shibata
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan.,Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| |
Collapse
|
36
|
Xu S, Del Pozo J, Romiti F, Fu Y, Mai BK, Morrison RJ, Lee K, Hu S, Koh MJ, Lee J, Li X, Liu P, Hoveyda AH. Diastereo- and enantioselective synthesis of compounds with a trifluoromethyl- and fluoro-substituted carbon centre. Nat Chem 2022; 14:1459-1469. [PMID: 36376387 PMCID: PMC9772297 DOI: 10.1038/s41557-022-01054-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Molecules that contain one or more fluorine atoms are crucial to drug discovery. There are protocols available for the selective synthesis of different organofluorine compounds, including those with a fluoro-substituted or a trifluoromethyl-substituted stereogenic carbon centre. However, approaches for synthesizing compounds with a trifluoromethyl- and fluoro-substituent stereogenic carbon centre are far less common. This potentially impactful set of molecules thus remains severely underdeveloped. Here we introduce a catalytic regio-, diastereo- and enantioselective strategy for the preparation of homoallylic alcohols bearing a stereogenic carbon centre bound to a trifluoromethyl group and a fluorine atom. The process, which involves a polyfluoroallyl boronate and is catalysed by an in situ-formed organozinc complex, can be used for diastereodivergent preparation of tetrafluoro-monosaccharides, including ribose core analogues of the antiviral drug sofosbuvir (Sovaldi). Unexpected reactivity/selectivity profiles, probably originating from the trifluoromethyl- and fluoro-substituted carbon site, are discovered, foreshadowing other unique chemistries that remain unknown.
Collapse
Affiliation(s)
- Shibo Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Juan Del Pozo
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Filippo Romiti
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France
| | - Yue Fu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan J Morrison
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - KyungA Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Shaowei Hu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Ming Joo Koh
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Jaehee Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Xinghan Li
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA.
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France.
| |
Collapse
|
37
|
Chen SJ, Li JH, He ZQ, Chen GS, Zhuang YY, Chen CP, Liu YL. N-Trifluoropropylation of Azoles through N-Vinylation and Sequential Hydrogenation. J Org Chem 2022; 87:15703-15712. [PMID: 36331418 DOI: 10.1021/acs.joc.2c02323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Installing a fluoroalkyl group onto the nitrogen atom of azoles represents a potential strategy for lead optimization in medicinal chemistry. Herein, we describe a method for the N-trifluoropropylation of azoles. This process is accomplished using a combination of regioselective N-vinylation and sequential hydrogenation. The two-step sequence is applicable to a diverse set of azoles and tolerates a wide range of functionalities. In addition, we showcase its practicability and utility through the gram-scale synthesis and the late-stage modification of a complex molecule.
Collapse
Affiliation(s)
- Shu-Jie Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Jia-Hui Li
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Zhi-Qing He
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Guo-Shu Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Yin-Yin Zhuang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Chang-Ping Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Yun-Lin Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
38
|
Asymmetric construction of allylicstereogenic carbon center featuring atrifluoromethyl group via enantioselective reductive fluoroalkylation. Nat Commun 2022; 13:7035. [PMID: 36396652 PMCID: PMC9672039 DOI: 10.1038/s41467-022-34841-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Emerging as a powerful tool for lead optimization in pharmaceutical research and development, to develop the facile, general protocols that allows the incorporation of fluorine-containing motif in drug candidates has accumulated enormous research interest in recent years. Among these important motifs, the incorporation of strategic motif CF3 on aliphatic chain especially with the concomitant construction of trifluoromethylated alkanes bearing a CF3-substituted stereogenic carbon, is of paramount importance. Herein, we disclose an asymmetric nickel-catalyzed reductive trifluoroalkylation of alkenyl halides for enantioselective syntheses of diverse α-trifluoromethylated allylic alkanes, offering a general protocol to access the trifluoromethyl analogue to chiral α-methylated allylic alkanes, one of the most prevalent key components among natural products and pharmaceuticals. Utilities of the method including the application of the asymmetric trifluoroalkylation on multiple biologically active complex molecules, derivatization of transformable alkenyl functionality were demonstrated, providing a facile method in the diversity-oriented syntheses of CF3-containing chiral drugs and bioactive-molecules.
Collapse
|
39
|
Yue WJ, Martin R. Ni-Catalyzed Site-Selective Hydrofluoroalkylation of Terminal and Internal Olefins. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wen-Jun Yue
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
40
|
Wu BB, Xu J, Gao Q, Bian KJ, Liu GK, Wang XS. A General and Efficient Solution to Monofluoroalkylation: Divergent Synthesis of Aliphatic Monofluorides with Modular Synthetic Scaffolds. Angew Chem Int Ed Engl 2022; 61:e202208938. [PMID: 35791279 DOI: 10.1002/anie.202208938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 12/15/2022]
Abstract
Monofluoroalkanes are important in many pharmaceuticals, agrochemicals and functional materials. However, the lack of easily available and transformable monofluoroalkylating reagents that facilitate a broad array of transformations has hampered the application of monofluoroalkylation. Herein, we report a general and efficient method of preparing diverse aliphatic monofluorides with monofluoroalkyl triflate as the synthetic scaffold. Using both nickel-catalyzed hydromonofluoroalkylation of unactivated alkenes and copper-catalyzed C-C bond formation, the general diversification of the monofluoroalkylating scaffold has been exhibited. The broad utility of this monofluoroalkylating reagent is shown by concise conversion into various conventional fluoroalkylating reagents and construction of monofluoro-alkoxy, -alkylamino motifs with commercially available heteroatom-based coupling partners.
Collapse
Affiliation(s)
- Bing-Bing Wu
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060, China.,Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Jie Xu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Qian Gao
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Kang-Jie Bian
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Guo-Kai Liu
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Xi-Sheng Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
41
|
Vayer M, Mayer RJ, Moran J, Lebœuf D. Leveraging the Hydroarylation of α-(Trifluoromethyl)styrenes to Access Trifluoromethylated All-Carbon Quaternary Centers. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Marie Vayer
- Université de Strasbourg, CNRS, ISIS UMR
7006, 67000 Strasbourg, France
| | - Robert J. Mayer
- Université de Strasbourg, CNRS, ISIS UMR
7006, 67000 Strasbourg, France
| | - Joseph Moran
- Université de Strasbourg, CNRS, ISIS UMR
7006, 67000 Strasbourg, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - David Lebœuf
- Université de Strasbourg, CNRS, ISIS UMR
7006, 67000 Strasbourg, France
| |
Collapse
|
42
|
Wang Y, Lee W, Chen YC, Zhou Y, Plise E, Migliozzi M, Crawford JJ. Turning the Other Cheek: Influence of the cis-Tetrafluorocyclohexyl Motif on Physicochemical and Metabolic Properties. ACS Med Chem Lett 2022; 13:1517-1523. [PMID: 36105337 PMCID: PMC9465827 DOI: 10.1021/acsmedchemlett.2c00312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022] Open
Abstract
![]()
The targeted introduction of substituents in order to
tailor a
molecule’s pharmacologic, physicochemical, and metabolic properties
has long been of interest to medicinal chemists. The all-cis tetrafluorocyclohexyl motif—dubbed Janus face, due to its
electrostatically polarized cyclohexyl ring—represents one
such example where chemists might incorporate a metabolically stable,
polar, lipocompatible motif. To better understand its potential utility,
we have synthesized three series of matched molecular pairs (MMPs)
where each MMP differs only in the cyclohexane unit, i.e., with a
tetrafluorocyclohexyl or a standard cyclohexyl motif. With the introduction
of the facially polarized all-cis tetrafluorocyclohexyl
ring, the resulting compounds have significantly modified physicochemical
properties (e.g., kinetic solubility, lipophilicity and permeability)
and metabolic stabilities. These results further speak to the promise
of this substituent as a tactic to improve the drug-like properties
of molecules.
Collapse
Affiliation(s)
- Yong Wang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wendy Lee
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yi-Chen Chen
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yuhui Zhou
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Emile Plise
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Madyson Migliozzi
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - James J. Crawford
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
43
|
Melnykov KP, Tavlui O, Skreminskiy A, Kuchkovska YO, Grygorenko OO. Impact of Fluoroalkyl Substituents on the Physicochemical Properties of Saturated Heterocyclic Amines. Chemistry 2022; 28:e202201601. [DOI: 10.1002/chem.202201601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Kostiantyn P. Melnykov
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Olha Tavlui
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | | | - Yuliya O. Kuchkovska
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Current address: Biozentrum University of Basel Spitalstrasse 41 4056 Basel Switzerland
| | - Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
44
|
Wu BB, Xu J, Gao Q, Bian KJ, Liu GK, Wang XS. A General and Efficient Solution to Monofluoroalkylation: Divergent Synthesis of Aliphatic Monofluorides with Modular Synthetic Scaffolds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bing-Bing Wu
- University of Science and Technology of China Chemistry CHINA
| | - Jie Xu
- University of Science and Technology of China Chemistry CHINA
| | - Qian Gao
- University of Science and Technology of China Chemistry CHINA
| | - Kang-Jie Bian
- University of Science and Technology of China Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| | - Guo-Kai Liu
- Shenzhen University Pharmaceutical Sciences CHINA
| | - Xi-Sheng Wang
- University of Science and Technology of China Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
45
|
Patel C, Roy D. Octanol-Water Partition Coefficients of Fluorinated Drug Molecules with Continuum Solvation Models. J Phys Chem A 2022; 126:4185-4190. [PMID: 35748869 DOI: 10.1021/acs.jpca.2c02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we have examined the efficiency of continuum solvation models, used with density functional theory methods, in calculating octanol-water partition coefficients (logP) of 56 fluorine containing drug molecules. The solvation model based on density model computed logP values that are in good agreement with the benchmark values. The conductor-like polarizable continuum models computed results have issues in predicting correct trend, often with reversal of sign from benchmark. The choice of basis set does not show significant effect, and the selection of atomic radii affects geometry convergence during calculations.
Collapse
Affiliation(s)
- Chandan Patel
- Department of Applied Sciences, College of Engineering, Wellesley Road, Shivajinagar, Pune 411005, India
| | - Dipankar Roy
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Bldg., Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
46
|
Jakubczyk M, Mkrtchyan S, Shkoor M, Lanka S, Budzák Š, Iliaš M, Skoršepa M, Iaroshenko VO. Mechanochemical Conversion of Aromatic Amines to Aryl Trifluoromethyl Ethers. J Am Chem Soc 2022; 144:10438-10445. [PMID: 35652785 PMCID: PMC9204773 DOI: 10.1021/jacs.2c02611] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
Increased interest
in the trifluoromethoxy group in organic synthesis
and medicinal chemistry has induced a demand for new, selective, general,
and faster methods applicable to natural products and highly functionalized
compounds at a later stage of hit-to-lead campaigns. Applying pyrylium
tetrafluoroborate, we have developed a mechanochemical protocol to
selectively substitute the aromatic amino group with the OCF3 functionality. The scope of our method includes 31 examples of ring-substituted
anilines, including amides and sulfonamides. Expected SNAr products were obtained in excellent yields. The presented concise
method opens a pathway to new chemical spaces for the pharmaceutical
industry.
Collapse
Affiliation(s)
- Michał Jakubczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
| | - Satenik Mkrtchyan
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Łodź PL-90-363, Poland
| | - Mohanad Shkoor
- Department of Chemistry and Earth Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Suneel Lanka
- Lodz University of Technology, Stefana Żeromskiego 116, Lodz 90-924, Poland
| | - Šimon Budzák
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica 97401, Slovakia
| | - Miroslav Iliaš
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica 97401, Slovakia
| | - Marek Skoršepa
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica 97401, Slovakia
| | - Viktor O Iaroshenko
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica 97401, Slovakia.,Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, Helsinki 00014, Finland
| |
Collapse
|
47
|
Hill J, Crich D. The N,N,O-Trisubstituted Hydroxylamine Isostere and Its Influence on Lipophilicity and Related Parameters. ACS Med Chem Lett 2022; 13:799-806. [PMID: 35586423 PMCID: PMC9109164 DOI: 10.1021/acsmedchemlett.1c00713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/13/2022] [Indexed: 11/28/2022] Open
Abstract
The influence of substitution of an N,N,O-trisubstituted hydroxylamine (-NR-OR'-) unit for a hydrocarbon (-CHR-CH2-), ether (-CHR-OR'-), or amine (-NR-CHR'-) moiety on lipophilicity and other ADME parameters is described. A matched molecular pair analysis was conducted across five series of compounds, which showed that the replacement of carbon-carbon bonds by N,N,O-trisubstituted hydroxylamines typically leads to a reduction in logP comparable to that achieved with a tertiary amine group. In contrast, the weakly basic N,N,O-trisubstituted hydroxylamines have greater logD 7.4 values than tertiary amines. It is also demonstrated that the N,N,O-trisubstituted hydroxylamine moiety can improve metabolic stability and reduce human plasma protein binding relative to the corresponding hydrocarbon and ether units. Coupled with recent synthetic methods for hydroxylamine assembly by N-O bond formation, these results provide support for the re-evaluation of the N,N,O-trisubstituted hydroxylamine moiety in small-molecule optimization schemes in medicinal chemistry.
Collapse
Affiliation(s)
- Jarvis Hill
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United
States
- Department
of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - David Crich
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United
States
- Department
of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| |
Collapse
|
48
|
Wu BB, Xu J, Bian KJ, Gao Q, Wang XS. Enantioselective Synthesis of Secondary β-Trifluoromethyl Alcohols via Catalytic Asymmetric Reductive Trifluoroalkylation and Diastereoselective Reduction. J Am Chem Soc 2022; 144:6543-6550. [PMID: 35378033 DOI: 10.1021/jacs.2c01422] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fluorinated motifs are frequently encountered in drugs and agrochemicals. Incorporating fluorine-containing motifs in drug candidates for lead optimization in pharmaceutical research and development has emerged as a powerful tool. The construction of molecules that feature a trifluoromethyl (CF3-) group on a stereogenic carbon has accumulated broad research efforts. Unlike its well-explored, biologically active methyl counterpart, asymmetric construction of β-trifluoromethylated alcohols bearing adjacent stereocenters still remains elusive. Through retrosynthetic analysis, we posited that followed by sequential reduction of carbonyl, the initial construction of chiral α-trifluoromethylated ketones could render the desired product in a facile, one-pot fashion. Herein, we developed the first example of nickel-catalyzed asymmtric reductive cross-coupling trifluoroalkylation of acyl chlorides for enantioselective synthesis of diverse α-trifluoromethylated ketones. The one-pot reduction of these α-trifluoromethylated ketones furnished corresponding alcohols bearing β-CF3-substituted stereogenic carbons with excellent diastereoselectivity and complete enantioselective retention. High yields/enantioselectivity, mild conditions, and good functional group compatibility are shown in the system. Utilities of the method are also illustrated by applying asymmetric, late-stage trifluoroalkylation of biologically active complex molecules, revealing tremendous potential for development of CF3-containing chiral drugs.
Collapse
Affiliation(s)
- Bing-Bing Wu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jie Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kang-Jie Bian
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qian Gao
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xi-Sheng Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
49
|
Holovach S, Melnykov KP, Skreminskiy A, Herasymchuk M, Tavlui O, Aloshyn D, Borysko P, Rozhenko AB, Ryabukhin SV, Volochnyuk DM, Grygorenko OO. Effect of gem-Difluorination on the Key Physicochemical Properties Relevant to Medicinal Chemistry: The Case of Functionalized Cycloalkanes. Chemistry 2022; 28:e202200331. [PMID: 35147261 DOI: 10.1002/chem.202200331] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 12/12/2022]
Abstract
Physico-chemical properties important to drug discovery (pKa , LogP, and aqueous solubility), as well as metabolic stability, were studied for a series of functionalized gem-difluorinated cycloalkanes and compared to those of non-fluorinated and acyclic counterparts to evaluate the impact of the fluorination. It was found that the influence of the CF2 moiety on the acidity/basicity of the corresponding carboxylic acids and amines was defined by inductive the effect of the fluorine atoms and was nearly the same for acyclic and cyclic aliphatic compounds. Lipophilicity and aqueous solubility followed more complex trends and were affected by the position of the fluorine atoms, ring size, and even the nature of the functional group present; also, significant differences were found for the acyclic and cyclic series. Also, gem-difluorination either did not affect or slightly improved the metabolic stability of the corresponding model derivatives. The presented results can be used as a guide for rational drug design employing fluorine and establish the first chapter in a catalog of the key in vitro properties of fluorinated cycloalkanes.
Collapse
Affiliation(s)
- Sergey Holovach
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02660, Ukraine
| | - Kostiantyn P Melnykov
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | | | - Maksym Herasymchuk
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Olha Tavlui
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Danylo Aloshyn
- Bienta / Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine
| | - Petro Borysko
- Bienta / Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine
| | - Alexander B Rozhenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02660, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Sergey V Ryabukhin
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Dmitriy M Volochnyuk
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02660, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| |
Collapse
|
50
|
Rodríguez RI, Sicignano M, Alemán J. Fluorinated Sulfinates as Source of Alkyl Radicals in the Photo-Enantiocontrolled β-Functionalization of Enals. Angew Chem Int Ed Engl 2022; 61:e202112632. [PMID: 34982505 DOI: 10.1002/anie.202112632] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 12/13/2022]
Abstract
The generation of sulfonyl radicals has long been known as a flexible strategy in a wide range of different sulfonylative transformations. Meanwhile their use in alkylation processes has been somehow limited due to their inherent difficulty in evolving to less-stable radicals after sulfur dioxide extrusion. Herein we report a convenient strategy that involves gem-difluorinated sulfinates as an "upgrading-mask", allowing these precursors to decompose into their corresponding alkyl radicals. The electron-donor character of sulfinates in the formation of an electron donor-acceptor (EDA) complex with transient iminium ions is displayed, achieving the first example of a stereocontrolled light-driven insertion of gem-difluoro derivatives into unsaturated aldehydes. This methodology is compatible with flow conditions, maintaining identical levels of enantiocontrol.
Collapse
Affiliation(s)
- Ricardo I Rodríguez
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Marina Sicignano
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José Alemán
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|