1
|
Xue S, Yang L, Xu M, Zhang Y, Liu H. The screening of α-glucosidase inhibitory peptides from β-conglycinin and hypoglycemic mechanism in HepG2 cells and zebrafish larvae. Int J Biol Macromol 2024; 278:134678. [PMID: 39137852 DOI: 10.1016/j.ijbiomac.2024.134678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/15/2024]
Abstract
Inhibition of carbohydrate digestive enzymes is a key focus across diverse fields, given the prominence of α-glucosidase inhibitors as preferred oral hypoglycaemic drugs for diabetes treatment. β-conglycinin is the most abundant functional protein in soy; however, it is unclear whether the peptides produced after its gastrointestinal digestion exhibit α-glucosidase inhibitory properties. Therefore, we examined the α-glucosidase inhibitory potential of soy peptides. Specifically, β-conglycinin was subjected to simulated gastrointestinal digestion by enzymatically cleaving it into 95 peptides with gastric, pancreatic and chymotrypsin enzymes. Eight soybean peptides were selected based on their predicted activity; absorption, distribution, metabolism, excretion and toxicity score; and molecular docking analysis. The results indicated that hydrogen bonding and electrostatic interactions play important roles in inhibiting α-glucosidase, with the tripeptide SGR exhibiting the greatest inhibitory effect (IC50 = 10.57 μg/mL). In vitro studies revealed that SGR markedly improved glucose metabolism disorders in insulin-resistant HepG2 cells without affecting cell viability. Animal experiments revealed that SGR significantly improved blood glucose and decreased maltase activity in type 2 diabetic zebrafish larvae, but it did not result in the death of zebrafish larvae. Transcriptomic analysis revealed that SGR exerts its anti-diabetic and hypoglycaemic effects by attenuating the expression of several genes, including Slc2a1, Hsp70, Cpt2, Serpinf1, Sfrp2 and Ggt1a. These results suggest that SGR is a potential food-borne bioactive peptide for managing diabetes.
Collapse
Affiliation(s)
- Sen Xue
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - Lina Yang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China.
| | - Mengnan Xu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - Yangyang Zhang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| |
Collapse
|
2
|
Cole AG, Kultgen SG, Mani N, Fan KY, Ardzinski A, Stever K, Dorsey BD, Mesaros EF, Thi EP, Graves I, Tang S, Harasym TO, Lee ACH, Olland A, Suto RK, Sofia MJ. Rational Design, Synthesis, and Structure-Activity Relationship of a Novel Isoquinolinone-Based Series of HBV Capsid Assembly Modulators Leading to the Identification of Clinical Candidate AB-836. J Med Chem 2024; 67:16773-16795. [PMID: 39231272 DOI: 10.1021/acs.jmedchem.4c01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Inhibition of Hepatitis B Virus (HBV) replication by small molecules that modulate capsid assembly and the encapsidation of pgRNA and viral polymerase by HBV core protein is a clinically validated approach toward the development of new antivirals. Through definition of a minimal pharmacophore, a series of isoquinolinone-based capsid assembly modulators (CAMs) was identified. Structural biology analysis revealed that lead molecules possess a unique binding mode, exploiting electrostatic interactions with accessible phenylalanine and tyrosine residues. Key analogs demonstrated excellent primary potency, absorption, distribution, metabolism, and excretion (ADME) and pharmacokinetic properties, and efficacy in a mouse model of HBV. The optimized lead also displayed potent inhibition of capsid uncoating in HBV-infected HepG2 cells expressing the sodium-taurocholate cotransporting polypeptide (NTCP) receptor, affecting the generation of HBsAg and cccDNA establishment. Based on these results, isoquinolinone derivative AB-836 was advanced into clinical development. In Phase 1b trials, AB-836 demonstrated >3 log10 reduction in serum HBV DNA, however, further development was discontinued due to the observation of incidental alanine aminotransferase (ALT) elevations.
Collapse
Affiliation(s)
- Andrew G Cole
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Steven G Kultgen
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Nagraj Mani
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Kristi Yi Fan
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Andrzej Ardzinski
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Kim Stever
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Bruce D Dorsey
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Eugen F Mesaros
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Emily P Thi
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Ingrid Graves
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Sunny Tang
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Troy O Harasym
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Amy C H Lee
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Andrea Olland
- Xtal BioStructures Inc., 12 Michigan Drive, Natick, Massachusetts 01760, United States
| | - Robert K Suto
- Xtal BioStructures Inc., 12 Michigan Drive, Natick, Massachusetts 01760, United States
| | - Michael J Sofia
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| |
Collapse
|
3
|
Zhang W, Guo L, Liu H, Wu G, Shi H, Zhou M, Zhang Z, Kou B, Hu T, Zhou Z, Xu Z, Zhou X, Zhou Y, Tian X, Yang G, Young JAT, Qiu H, Ottaviani G, Xie J, Mayweg AV, Shen HC, Zhu W. Discovery of Linvencorvir (RG7907), a Hepatitis B Virus Core Protein Allosteric Modulator, for the Treatment of Chronic HBV Infection. J Med Chem 2023; 66:4253-4270. [PMID: 36896968 DOI: 10.1021/acs.jmedchem.3c00173] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Described herein is the first-time disclosure of Linvencorvir (RG7907), a clinical compound and a hepatitis B virus (HBV) core protein allosteric modulator, for the treatment of chronic HBV infection. Built upon the core structure of hetero aryl dihydropyrimidine, RG7907 was rationally designed by combining all the drug-like features of low CYP3A4 induction, potent anti-HBV activity, high metabolic stability, low hERG liability, and favorable animal pharmacokinetic (PK) profiles. In particular, the chemistry strategy to mitigate CYP3A4 induction through introducing a large, rigid, and polar substituent at the position that has less interaction with the therapeutic biological target (HBV core proteins herein) is of general interest to the medicinal chemistry community. RG7907 demonstrated favorable animal PK, pharmacodynamics, and safety profiles with sufficient safety margins supporting its clinical development in healthy volunteers and HBV-infected patients.
Collapse
Affiliation(s)
- Weixing Zhang
- China Innovation Center of Roche, Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Lei Guo
- China Innovation Center of Roche, Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Haixia Liu
- China Innovation Center of Roche, Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Guolong Wu
- China Innovation Center of Roche, Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Houguang Shi
- China Innovation Center of Roche, Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Mingwei Zhou
- China Innovation Center of Roche, Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Zhisen Zhang
- China Innovation Center of Roche, Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Buyu Kou
- China Innovation Center of Roche, Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Taishan Hu
- China Innovation Center of Roche, Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Zheng Zhou
- China Innovation Center of Roche, Lead Discovery, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Zhiheng Xu
- China Innovation Center of Roche, Lead Discovery, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Xue Zhou
- China Innovation Center of Roche, Discovery Virology, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Yuan Zhou
- China Innovation Center of Roche, Discovery Virology, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Xiaojun Tian
- China Innovation Center of Roche, Discovery Virology, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Guang Yang
- China Innovation Center of Roche, Discovery Virology, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - John A T Young
- Roche Innovation Center Basel, Discovery Virology, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Hongxia Qiu
- China Innovation Center of Roche, Pharmaceutical Sciences, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Giorgio Ottaviani
- China Innovation Center of Roche, Pharmaceutical Sciences, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Jianxun Xie
- China Innovation Center of Roche, Pharmaceutical Sciences, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Alexander V Mayweg
- Roche Innovation Center Basel, Medicinal Chemistry, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Hong C Shen
- China Innovation Center of Roche, Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Wei Zhu
- China Innovation Center of Roche, Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| |
Collapse
|
4
|
Chen D, Tan X, Chen W, Liu Y, Li C, Wu J, Zheng J, Shen HC, Zhang M, Wu W, Wang L, Xiong J, Dai J, Sun K, Zhang JD, Xiang K, Li B, Ni X, Zhu Q, Gao L, Wang L, Feng S. Discovery of Novel cccDNA Reducers toward the Cure of Hepatitis B Virus Infection. J Med Chem 2022; 65:10938-10955. [PMID: 35973101 DOI: 10.1021/acs.jmedchem.1c02215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is a worldwide disease that causes thousands of deaths per year. Currently, there is no therapeutic that can completely cure already infected HBV patients due to the inability of humans to eliminate covalently closed circular DNA (cccDNA), which serves as the template to (re)initiate an infection even after prolonged viral suppression. Through phenotypic screening, we discovered xanthone series hits as novel HBV cccDNA reducers, and subsequent structure optimization led to the identification of a lead compound with improved antiviral activity and pharmacokinetic profiles. A representative compound 59 demonstrated good potency and oral bioavailability with no cellular toxicity. In an HBVcircle mouse model, compound 59 showed excellent efficacy in significantly reducing HBV antigens, DNA, and intrahepatic cccDNA levels.
Collapse
Affiliation(s)
- Dongdong Chen
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Xuefei Tan
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Wenming Chen
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Yongfu Liu
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Chao Li
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Jun Wu
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Jiamin Zheng
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Hong C Shen
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Meifang Zhang
- Lead Discovery, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Waikwong Wu
- Lead Discovery, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Lin Wang
- pCMC, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Jing Xiong
- pCMC, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Jieyu Dai
- Pharmaceutical Sciences, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Kai Sun
- Pharmaceutical Sciences, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Jitao David Zhang
- Pharmaceutical Science, Roche Innovation Center Basel, Roche Pharma Research & Early Development, Grenzacherstrasse 124, Basel CH-4070, Switzerland
| | - Kunlun Xiang
- Discovery Virology, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Baocun Li
- Discovery Virology, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - XiaoJu Ni
- Discovery Virology, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Qihui Zhu
- Discovery Virology, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Lu Gao
- Discovery Virology, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Li Wang
- Discovery Virology, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Song Feng
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| |
Collapse
|
5
|
Cole AG, Kultgen SG, Mani N, Ardzinski A, Fan KY, Thi EP, Dorsey BD, Stever K, Chiu T, Tang S, Daly O, Phelps JR, Harasym T, Olland A, Suto RK, Sofia MJ. The identification of highly efficacious functionalised tetrahydrocyclopenta[ c]pyrroles as inhibitors of HBV viral replication through modulation of HBV capsid assembly. RSC Med Chem 2022; 13:343-349. [PMID: 35434625 PMCID: PMC8942244 DOI: 10.1039/d1md00318f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/17/2022] [Indexed: 01/21/2023] Open
Abstract
Disruption of the HBV viral life cycle with small molecules that prevent the encapsidation of pregenomic RNA and viral polymerase through binding to HBV core protein is a clinically validated approach to inhibiting HBV viral replication. Herein we report the further optimisation of clinical candidate AB-506 through core modification with a focus on increasing oral exposure and oral half-life. Maintenance of high levels of anti-HBV cellular potency in conjunction with improvements in pharmacokinetic properties led to multi-log10 reductions in serum HBV DNA following low, once-daily oral dosing for key analogues in a preclinical animal model of HBV replication.
Collapse
Affiliation(s)
- Andrew G. Cole
- Arbutus Biopharma, Inc.701 Veterans CircleWarminsterPA 18974USA
| | | | - Nagraj Mani
- Arbutus Biopharma, Inc.701 Veterans CircleWarminsterPA 18974USA
| | | | - Kristi Yi Fan
- Arbutus Biopharma, Inc.701 Veterans CircleWarminsterPA 18974USA
| | - Emily P. Thi
- Arbutus Biopharma, Inc.701 Veterans CircleWarminsterPA 18974USA
| | - Bruce D. Dorsey
- Arbutus Biopharma, Inc.701 Veterans CircleWarminsterPA 18974USA
| | - Kim Stever
- Arbutus Biopharma, Inc.701 Veterans CircleWarminsterPA 18974USA
| | - Tim Chiu
- Arbutus Biopharma, Inc.701 Veterans CircleWarminsterPA 18974USA
| | - Sunny Tang
- Arbutus Biopharma, Inc.701 Veterans CircleWarminsterPA 18974USA
| | - Owen Daly
- Arbutus Biopharma, Inc.701 Veterans CircleWarminsterPA 18974USA
| | - Janet R. Phelps
- Arbutus Biopharma, Inc.701 Veterans CircleWarminsterPA 18974USA
| | - Troy Harasym
- Arbutus Biopharma, Inc.701 Veterans CircleWarminsterPA 18974USA
| | - Andrea Olland
- Xtal BioStructures Inc.12 Michigan DriveNatickMA 01760USA
| | - Robert K. Suto
- Xtal BioStructures Inc.12 Michigan DriveNatickMA 01760USA
| | | |
Collapse
|
6
|
Che J, Dai X, Gao J, Sheng H, Zhan W, Lu Y, Li D, Gao Z, Jin Z, Chen B, Luo P, Yang B, Hu Y, He Q, Weng Q, Dong X. Discovery of N-((3 S,4 S)-4-(3,4-Difluorophenyl)piperidin-3-yl)-2-fluoro-4-(1-methyl-1 H-pyrazol-5-yl)benzamide (Hu7691), a Potent and Selective Akt Inhibitor That Enables Decrease of Cutaneous Toxicity. J Med Chem 2021; 64:12163-12180. [PMID: 34375113 DOI: 10.1021/acs.jmedchem.1c00815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rash is one of the primary dose-limiting toxicities of Akt (protein kinase B) inhibitors in clinical trials. Here, we demonstrate the inhibition of Akt2 isozyme may be a driver for keratinocyte apoptosis, which promotes us to search for new selective Akt inhibitors with an improved cutaneous safety property. According to our previous research, compound 2 is selected for further optimization for overcoming the disadvantages of compound 1, including high Akt2 inhibition and high toxicity against HaCaT keratinocytes. The dihedral angle-based design and molecular dynamics simulation lead to the identification of Hu7691 (B5) that achieves a 24-fold selectivity between Akt1 and Akt2. Hu7691 exhibits low activity in inducing HaCaT apoptosis, promising kinase selectivity, and excellent anticancer cell proliferation potencies. Based on the superior results of safety property, pharmacokinetic profile, and in vivo efficacy, the National Medical Products Administration (NMPA) approved the investigational new drug (IND) application of Hu7691.
Collapse
Affiliation(s)
- Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xiaoyang Dai
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jian Gao
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Haichao Sheng
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wenhu Zhan
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yang Lu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Dan Li
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zizheng Gao
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zegao Jin
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Binhui Chen
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Peihua Luo
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Bo Yang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yongzhou Hu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qiaojun He
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, P. R. China
- Cancer Center, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, P. R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, P. R. China
- Cancer Center, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
7
|
Hall A, Chanteux H, Ménochet K, Ledecq M, Schulze MSED. Designing Out PXR Activity on Drug Discovery Projects: A Review of Structure-Based Methods, Empirical and Computational Approaches. J Med Chem 2021; 64:6413-6522. [PMID: 34003642 DOI: 10.1021/acs.jmedchem.0c02245] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This perspective discusses the role of pregnane xenobiotic receptor (PXR) in drug discovery and the impact of its activation on CYP3A4 induction. The use of structural biology to reduce PXR activity on drug discovery projects has become more common in recent years. Analysis of this work highlights several important molecular interactions, and the resultant structural modifications to reduce PXR activity are summarized. The computational approaches undertaken to support the design of new drugs devoid of PXR activation potential are also discussed. Finally, the SAR of empirical design strategies to reduce PXR activity is reviewed, and the key SAR transformations are discussed and summarized. In conclusion, this perspective demonstrates that PXR activity can be greatly diminished or negated on active drug discovery projects with the knowledge now available. This perspective should be useful to anyone who seeks to reduce PXR activity on a drug discovery project.
Collapse
Affiliation(s)
- Adrian Hall
- UCB, Avenue de l'Industrie, Braine-L'Alleud 1420, Belgium
| | | | | | - Marie Ledecq
- UCB, Avenue de l'Industrie, Braine-L'Alleud 1420, Belgium
| | | |
Collapse
|