1
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Cytochrome P450 monooxygenase systems: Diversity and plasticity for adaptive stress response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:19-34. [PMID: 39245215 DOI: 10.1016/j.pbiomolbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Superfamily of cytochromes P450 (CYPs) is composed of heme-thiolate-containing monooxygenase enzymes, which play crucial roles in the biosynthesis, bioactivation, and detoxification of a variety of organic compounds, both endogenic and exogenic. Majority of CYP monooxygenase systems are multi-component and contain various redox partners, cofactors and auxiliary proteins, which contribute to their diversity in both prokaryotes and eukaryotes. Recent progress in bioinformatics and computational biology approaches make it possible to undertake whole-genome and phylogenetic analyses of CYPomes of a variety of organisms. Considerable variations in sequences within and between CYP families and high similarity in secondary and tertiary structures between all CYPs along with dramatic conformational changes in secondary structure elements of a substrate binding site during catalysis have been reported. This provides structural plasticity and substrate promiscuity, which underlie functional diversity of CYPs. Gene duplication and mutation events underlie CYP evolutionary diversity and emergence of novel selectable functions, which provide the involvement of CYPs in high adaptability to changing environmental conditions and dietary restrictions. In our review, we discuss the recent advancements and challenges in the elucidating the evolutionary origin and mechanisms underlying the CYP monooxygenase system diversity and plasticity. Our review is in the view of hypothesis that diversity of CYP monooxygenase systems is translated into the broad metabolic profiles, and this has been acquired during the long evolutionary time to provide structural plasticity leading to high adaptative capabilities to environmental stress conditions.
Collapse
Affiliation(s)
| | - Dmitry V Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | | |
Collapse
|
2
|
Jiang JH, Li QZ, Luo X, Yu J, Zhou LW. Transcriptome and Metabolome Reveal Accumulation of Key Metabolites with Medicinal Properties of Phylloporia pulla. Int J Mol Sci 2024; 25:11070. [PMID: 39456849 PMCID: PMC11507218 DOI: 10.3390/ijms252011070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Phylloporia pulla, a macrofungal species in the Hymenochaetales, Basidiomycota, is known to enhance the nutritional and bioactive properties of rice through co-fermentation; however, its own secondary metabolites are not well understood. In this study, an integrative analysis of transcriptome and metabolome data revealed that the accumulation of steroids, steroid derivatives, and triterpenoids in P. pulla peaks during the mid-growth stage, while the genes associated with these metabolites show higher expression levels from the early to mid-growth stages. Weighted gene co-expression network analysis identified several modules containing candidate genes involved in the synthesis of steroids, steroid derivatives, and triterpenoids. Specifically, six key hub genes were identified, along with their connectivity to other related genes, as potential catalysts in converting the precursor lanosterol to celastrol. This study enhances our understanding of the secondary metabolites of P. pulla and is essential for the selective utilization of these bioactive compounds.
Collapse
Affiliation(s)
- Ji-Hang Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.-H.J.)
| | - Qian-Zhu Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.-H.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Luo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.-H.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.-H.J.)
| | - Li-Wei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.-H.J.)
| |
Collapse
|
3
|
Pelliccia S, Russomanno P, Barone S, Mateu B, Alfano AI, Miranda M, Coretti L, Lembo F, Piccolo M, Irace C, Friggeri L, Hargrove TY, Curtis A, Lepesheva GI, Kavanagh K, Buommino E, Brindisi M. A First-in-Class Pyrazole-isoxazole Enhanced Antifungal Activity of Voriconazole: Synergy Studies in an Azole-Resistant Candida albicans Strain, Computational Investigation and in Vivo Validation in a Galleria mellonella Fungal Infection Model. J Med Chem 2024; 67:14256-14276. [PMID: 39115219 PMCID: PMC11482282 DOI: 10.1021/acs.jmedchem.4c01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The widespread and irrational use of azole antifungal agents has led to an increase of azole-resistant Candida albicans strains with an urgent need for combination drug therapy, enhancing the treatment efficacy. Here, we report the discovery of a first-in-class pyrazole-isoxazole, namely, 5b, that showed remarkable growth inhibition against the C. albicans ATCC 10231 strain in combination with voriconazole, acting as a downregulator of ERG 11 (Cyp51) gene expression with a significant reduction of the yeast-to-hypha morphological transition. Furthermore, C. albicans CYP51 enzyme assay and in-depth molecular docking studies unveiled the unique ability of the combination of 5b and voriconazole to completely fill the CYP51 binding sites. In vivo studies using a Galleria mellonella model confirmed the previously in vitro observed synergistic effect of 5b with voriconazole. Also considering its biocompatibility in a cellular model of human keratinocytes, these results indicate that 5b represents a promising compound for a further optimization campaign.
Collapse
Affiliation(s)
- Sveva Pelliccia
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, 80131 Naples, Italy
| | - Pasquale Russomanno
- Magnetic Resonance Centre (CERM), Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP) and Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino 50019, Italy
| | - Simona Barone
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, 80131 Naples, Italy
| | - Baptiste Mateu
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, 80131 Naples, Italy
| | - Antonella Ilenia Alfano
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, 80131 Naples, Italy
| | - Martina Miranda
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Lorena Coretti
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, 80131 Naples, Italy
| | - Francesca Lembo
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, 80131 Naples, Italy
| | - Marialuisa Piccolo
- BioChemLab, Department of Pharmacy,School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Carlo Irace
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Laura Friggeri
- Department of Cell and Development Biology, U4225 Medical Research Building III, Nashville, Tennessee 37232, United States
| | - Tatiana Y. Hargrove
- Department of Biochemistry,Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Aaron Curtis
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Galina I. Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Elisabetta Buommino
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, 80131 Naples, Italy
| | - Margherita Brindisi
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
4
|
Guengerich FP. Cytochrome P450 Enzymes as Drug Targets in Human Disease. Drug Metab Dispos 2024; 52:493-497. [PMID: 37793784 PMCID: PMC11114603 DOI: 10.1124/dmd.123.001431] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/06/2023] Open
Abstract
Although the mention of cytochrome P450 (P450) inhibition usually brings to mind unwanted variability in pharmacokinetics, in several cases P450s are good targets for inhibition. These P450s are essential, but in certain disease states, it is desirable to reduce the concentrations of their products. Most of the attention to date has been with human P450s 5A1, 11A1, 11B1, 11B2, 17A1, 19A1, and 51A1. In some of those cases, there are multiple drugs in use, e.g., exemestane, letrozole, and anastrozole with P450 19A1, the steroid aromatase target in breast cancer. There are also several targets that are less developed, e.g., P450s 2A6, 8B1, 4A11, 24A1, 26A1, and 26B1. SIGNIFICANCE STATEMENT: The selective inhibition of certain cytochrome P450s that have major physiological functions has been shown to be very efficacious in certain human diseases. In several cases, the search for better drugs continues.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
5
|
Tanvir R, Ijaz S, Sajid I, Hasnain S. Multifunctional in vitro, in silico and DFT analyses on antimicrobial BagremycinA biosynthesized by Micromonospora chokoriensis CR3 from Hieracium canadense. Sci Rep 2024; 14:10976. [PMID: 38745055 PMCID: PMC11093986 DOI: 10.1038/s41598-024-61490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Among the actinomycetes in the rare genera, Micromonospora is of great interest since it has been shown to produce novel therapeutic compounds. Particular emphasis is now on its isolation from plants since its population from soil has been extensively explored. The strain CR3 was isolated as an endophyte from the roots of Hieracium canadense, and it was identified as Micromonospora chokoriensis through 16S gene sequencing and phylogenetic analysis. The in-vitro analysis of its extract revealed it to be active against the clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and Candida tropicalis (15 mm). No bioactivity was observed against Gram-negative bacteria, Escherichia coli ATCC 25922, and Klebsiella pneumoniae ATCC 706003. The Micromonospora chokoriensis CR3 extract was also analyzed through the HPLC-DAD-UV-VIS resident database, and it gave a maximum match factor of 997.334 with the specialized metabolite BagremycinA (BagA). The in-silico analysis indicated that BagA strongly interacted with the active site residues of the sterol 14-α demethylase and thymidylate kinase enzymes, with the lowest binding energies of - 9.7 and - 8.3 kcal/mol, respectively. Furthermore, the normal mode analysis indicated that the interaction between these proteins and BagA was stable. The DFT quantum chemical properties depicted BagA to be reasonably reactive with a HOMO-LUMO gap of (ΔE) of 4.390 eV. BagA also passed the drug-likeness test with a synthetic accessibility score of 2.06, whereas Protox-II classified it as a class V toxicity compound with high LD50 of 2644 mg/kg. The current study reports an endophytic actinomycete, M. chokoriensis, associated with H. canadense producing the bioactive metabolite BagA with promising antimicrobial activity, which can be further modified and developed into a safe antimicrobial drug.
Collapse
Affiliation(s)
- Rabia Tanvir
- Institute of Microbiology (IOM), University of Veterinary and Animal Sciences (UVAS), Lahore, 54000, Punjab, Pakistan.
| | - Saadia Ijaz
- Department of Microbiology and Molecular Genetics, The Women University, Multan, 66000, Punjab, Pakistan
| | - Imran Sajid
- Institute of Microbiology and Molecular Genetics (IMMG), University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Punjab, Pakistan
| | - Shahida Hasnain
- Institute of Microbiology and Molecular Genetics (IMMG), University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Punjab, Pakistan
| |
Collapse
|
6
|
Hargrove T, Lamb DC, Wawrzak Z, Hull M, Kelly SL, Guengerich FP, Lepesheva GI. Identification of Potent and Selective Inhibitors of Acanthamoeba: Structural Insights into Sterol 14α-Demethylase as a Key Drug Target. J Med Chem 2024; 67:7443-7457. [PMID: 38683753 PMCID: PMC11089504 DOI: 10.1021/acs.jmedchem.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Acanthamoeba are free-living pathogenic protozoa that cause blinding keratitis, disseminated infection, and granulomatous amebic encephalitis, which is generally fatal. The development of efficient and safe drugs is a critical unmet need. Acanthamoeba sterol 14α-demethylase (CYP51) is an essential enzyme of the sterol biosynthetic pathway. Repurposing antifungal azoles for amoebic infections has been reported, but their inhibitory effects on Acanthamoeba CYP51 enzymatic activity have not been studied. Here, we report catalytic properties, inhibition, and structural characterization of CYP51 from Acanthamoeba castellanii. The enzyme displays a 100-fold substrate preference for obtusifoliol over lanosterol, supporting the plant-like cycloartenol-based pathway in the pathogen. The strongest inhibition was observed with voriconazole (1 h IC50 0.45 μM), VT1598 (0.25 μM), and VT1161 (0.20 μM). The crystal structures of A. castellanii CYP51 with bound VT1161 (2.24 Å) and without an inhibitor (1.95 Å), presented here, can be used in the development of azole-based scaffolds to achieve optimal amoebicidal effectiveness.
Collapse
Affiliation(s)
- Tatiana
Y. Hargrove
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - David C. Lamb
- Faculty
of Medicine, Health and Life Science, Swansea
University, Swansea SA2 8PP, U.K.
| | - Zdzislaw Wawrzak
- Synchrotron
Research Center, Life Science Collaborative Access Team, Northwestern University, Argonne, Illinois 60439, United States
| | - Marcus Hull
- Faculty
of Medicine, Health and Life Science, Swansea
University, Swansea SA2 8PP, U.K.
| | - Steven L. Kelly
- Faculty
of Medicine, Health and Life Science, Swansea
University, Swansea SA2 8PP, U.K.
| | - F. Peter Guengerich
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Galina I. Lepesheva
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Nashville, Tennessee 37232, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
7
|
Zhang J, Wang Z, Gai C, Yang F, Yun X, Jiang B, Zou Y, Meng Q, Zhao Q, Chai X. Design, synthesis, evaluation and optimization of novel azole analogues as potent antifungal agents. Bioorg Med Chem 2024; 97:117543. [PMID: 38071944 DOI: 10.1016/j.bmc.2023.117543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
In order to develop antifungal drugs, a series of novel azole analogues were designed and synthesized based on our previous work. Most of the target compounds had broad-spectrum antifungal activity, which showed excellent to moderate inhibitory activity against the tested strains, except A. fum 0504656. Among these, compounds B3, B7, B8, B11, B12 and E9 showed excellent activity against C. alb Y0109 and C. alb SC5314 (with the MIC80: 0.0156 ug/mL). In addition, compound B3 showed the best inhibitory activity against fluconazole-resistant strains C. alb 901 and C. alb 904, and had low toxicity against NIH/3T3 cells at the effective MIC range against fungi. Structure-activity relationship and docking studies of the derivatives suggest that the presence of the 2-fluoro-4-hydroxyphenyl and 1,2,3-triazole group enhance the antifungal activity of the compounds, which may be related to the interaction of the key groups with the amino acids surrounding the target enzyme.
Collapse
Affiliation(s)
- Juan Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Zhen Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Conghao Gai
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Fan Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xiaoqing Yun
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Boye Jiang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yan Zou
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Qingjie Zhao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Xiaoyun Chai
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
8
|
Zhang R, Wang Y, Wu A, Wang J, Zhang J. Strategies of targeting CYP51 for IFIs therapy: Emerging prospects, opportunities and challenges. Eur J Med Chem 2023; 259:115658. [PMID: 37480712 DOI: 10.1016/j.ejmech.2023.115658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
CYP51, a monooxygenase associated with the sterol synthesis pathway, is responsible for the catalysis of the 14-methyl hydroxylation reaction of lanosterol precursors. This enzyme is widely present in microorganisms, plants, and mammals. In mammals, CYP51 plays a role in cholesterol production, oligodendrocyte formation, oocyte maturation, and spermatogenesis. In fungal cells, CYP51 is an enzyme that synthesizes membrane sterols. By inhibiting fungal CYP51, ergosterol synthesis can be inhibited and ergosterol membrane fluidity is altered, resulting in fungal cell apoptosis. Thus, targeting CYP51 is a reliable antifungal strategy with important implications for the treatment of invasive fungal infections (IFIs). Many CYP51 inhibitors have been approved by the FDA for clinical treatment. However, several limitations of CYP51 inhibitors remain to be resolved, including fungal resistance, hepatotoxicity, and drug-drug interactions. New broad-spectrum, anti-resistant, highly selective CYP51 inhibitors are expected to be developed to enhance clinical efficacy and minimize adverse effects. Herein, we summarize the structural features and biological functions of CYP51 and emphatically analyze the structure-activity relationship (SAR) and therapeutic potential of different chemical types of small-molecule CYP51 inhibitors. We also discuss the latest progress of novel strategies, providing insights into new drugs targeting CYP51 for clinical practice.
Collapse
Affiliation(s)
- Ruofei Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Aijia Wu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Magistrati M, Gilea AI, Gerra MC, Baruffini E, Dallabona C. Drug Drop Test: How to Quickly Identify Potential Therapeutic Compounds for Mitochondrial Diseases Using Yeast Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:10696. [PMID: 37445873 DOI: 10.3390/ijms241310696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Mitochondrial diseases (MDs) refer to a group of clinically and genetically heterogeneous pathologies characterized by defective mitochondrial function and energy production. Unfortunately, there is no effective treatment for most MDs, and current therapeutic management is limited to relieving symptoms. The yeast Saccharomyces cerevisiae has been efficiently used as a model organism to study mitochondria-related disorders thanks to its easy manipulation and well-known mitochondrial biogenesis and metabolism. It has been successfully exploited both to validate alleged pathogenic variants identified in patients and to discover potential beneficial molecules for their treatment. The so-called "drug drop test", a phenotype-based high-throughput screening, especially if coupled with a drug repurposing approach, allows the identification of molecules with high translational potential in a cost-effective and time-saving manner. In addition to drug identification, S. cerevisiae can be used to point out the drug's target or pathway. To date, drug drop tests have been successfully carried out for a variety of disease models, leading to very promising results. The most relevant aspect is that studies on more complex model organisms confirmed the effectiveness of the drugs, strengthening the results obtained in yeast and demonstrating the usefulness of this screening as a novel approach to revealing new therapeutic molecules for MDs.
Collapse
Affiliation(s)
- Martina Magistrati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Alexandru Ionut Gilea
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Maria Carla Gerra
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
10
|
Evren AE, Karaduman AB, Sağlik BN, Özkay Y, Yurttaş L. Investigation of Novel Quinoline-Thiazole Derivatives as Antimicrobial Agents: In Vitro and In Silico Approaches. ACS OMEGA 2023; 8:1410-1429. [PMID: 36643421 PMCID: PMC9835529 DOI: 10.1021/acsomega.2c06871] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Infectious diseases are a major concern around the world. Today, it is an urgent need for new chemotherapeutics for infectious diseases. Because of that, our group designed, synthesized, and analyzed 14 new quinoline derivatives endowed with the pharmacophore moiety of fluoroquinolones primarily for their antimicrobial effects. Their cytotoxicity effects were tested against six bacterial and four fungal strains and NIH/3T3 cell line. Additionally, their action mechanisms were evaluated against DNA gyrase and lanosterol 14α-demethylase (LMD). Furthermore, to eliminate the potential side effects, the active compounds were evaluated against the aromatase enzyme. The experimental enzymatic results were evaluated for active compounds' binding modes using molecular docking and molecular dynamics simulation studies. The results were utilized to clarify the structure-activity relationship (SAR). Finally, compound 4m was the most potent compound for its antifungal activity with low cytotoxicity against healthy cells and fewer possible side effects, while compounds 4j and 4l can be used alone for special patients who are suffering from fungal infections in addition to the primer disease.
Collapse
Affiliation(s)
- Asaf Evrim Evren
- Department
of Pharmacy Services, Vocational School of Health Services, Bilecik Şeyh Edebali University, Bilecik 11000, Turkey
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Abdullah Burak Karaduman
- Department
of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Begüm Nurpelin Sağlik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central
Research Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Yusuf Özkay
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central
Research Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Leyla Yurttaş
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| |
Collapse
|
11
|
Sax JL, Hershman SN, Hubler Z, Allimuthu D, Elitt MS, Bederman I, Adams DJ. Enhancers of Human and Rodent Oligodendrocyte Formation Predominantly Induce Cholesterol Precursor Accumulation. ACS Chem Biol 2022; 17:2188-2200. [PMID: 35833657 PMCID: PMC9773236 DOI: 10.1021/acschembio.2c00330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Regeneration of myelin in the central nervous system is being pursued as a potential therapeutic approach for multiple sclerosis. Several labs have reported small molecules that promote oligodendrocyte formation and remyelination in vivo. Recently, we reported that many such molecules function by inhibiting a narrow window of enzymes in the cholesterol biosynthesis pathway. Here we describe a new high-throughput screen of 1,836 bioactive molecules and a thorough re-analysis of more than 60 molecules previously identified as promoting oligodendrocyte formation from human, rat, or mouse oligodendrocyte progenitor cells. These studies highlight that an overwhelming fraction of validated screening hits, including several molecules being evaluated clinically for remyelination, inhibit cholesterol pathway enzymes like emopamil-binding protein (EBP). To rationalize these findings, we suggest a model that relies on the high druggability of sterol-metabolizing enzymes and the ability of cationic amphiphiles to mimic the transition state of EBP. These studies further establish cholesterol pathway inhibition as a dominant mechanism among screening hits that enhance human, rat, or mouse oligodendrocyte formation.
Collapse
Affiliation(s)
- Joel L Sax
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Samantha N Hershman
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Zita Hubler
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Dharmaraja Allimuthu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Matthew S Elitt
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Drew J Adams
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
12
|
Yin W, Liu L, Jiang H, Wu T, Cui H, Zhang Y, Gao Z, Sun Y, Qin Q, Zhao L, Su X, Zhao D, Cheng M. Design, synthesis, and evaluation of novel 3-thiophene derivatives as potent fungistatic and fungicidal reagents based on a conformational restriction strategy. Eur J Med Chem 2022; 233:114195. [DOI: 10.1016/j.ejmech.2022.114195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/04/2022]
|
13
|
Xu Y, Tian J, Kang Q, Yuan H, Liu C, Li Z, Liu J, Li M. Knockout of Nur77 Leads to Amino Acid, Lipid, and Glucose Metabolism Disorders in Zebrafish. Front Endocrinol (Lausanne) 2022; 13:864631. [PMID: 35547009 PMCID: PMC9084189 DOI: 10.3389/fendo.2022.864631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 12/25/2022] Open
Abstract
Orphan nuclear receptor Nur77 has been reported to be implicated in a diverse range of metabolic processes, including carbohydrate metabolism and lipid metabolism. However, the detailed mechanism of Nur77 in the regulation of metabolic pathway still needs to be further investigated. In this study, we created a global nur77 knockout zebrafish model by CRISPR/Cas9 technique, and then performed whole-organism RNA sequencing analysis in wildtype and nur77-deficient zebrafish to dissect the genetic changes in metabolic-related pathways. We found that many genes involved in amino acid, lipid, and carbohydrate metabolism changed by more than twofold. Furthermore, we revealed that nur77-/- mutant displayed increased total cholesterol (TC) and triglyceride (TG), alteration in total amino acids, as well as elevated glucose. We also demonstrated that the elevated glucose was not due to the change of glucose uptake but was likely caused by the disorder of glycolysis/gluconeogenesis and the impaired β-cell function, including downregulated insb expression, reduced β-cell mass, and suppressed insulin secretion. Importantly, we also verified that targeted expression of Nur77 in the β cells is sufficient to rescue the β-cell defects in global nur77-/- larvae zebrafish. These results provide new information about the global metabolic network that Nur77 signaling regulates, as well as the role of Nur77 in β-cell function.
Collapse
Affiliation(s)
- Yang Xu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Juanjuan Tian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Qi Kang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hang Yuan
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Chengdong Liu
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Zhehui Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jie Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
- *Correspondence: Mingyu Li, ; Jie Liu,
| | - Mingyu Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
- *Correspondence: Mingyu Li, ; Jie Liu,
| |
Collapse
|
14
|
Guengerich FP. Inhibition of Cytochrome P450 Enzymes by Drugs-Molecular Basis and Practical Applications. Biomol Ther (Seoul) 2022; 30:1-18. [PMID: 34475272 PMCID: PMC8724836 DOI: 10.4062/biomolther.2021.102] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/22/2021] [Indexed: 11/05/2022] Open
Abstract
Drug-drug interactions are a major cause of hospitalization and deaths related to drug use. A large fraction of these is due to inhibition of enzymes involved in drug metabolism and transport, particularly cytochrome P450 (P450) enzymes. Understanding basic mechanisms of enzyme inhibition is important, particularly in terms of reversibility and the use of the appropriate parameters. In addition to drug-drug interactions, issues have involved interactions of drugs with foods and natural products related to P450 enzymes. Predicting drug-drug interactions is a major effort in drug development in the pharmaceutical industry and regulatory agencies. With appropriate in vitro experiments, it is possible to stratify clinical drug-drug interaction studies. A better understanding of drug interactions and training of physicians and pharmacists has developed. Finally, some P450s have been the targets of drugs in some cancers and other disease states.
Collapse
Affiliation(s)
- F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| |
Collapse
|
15
|
Hargrove TY, Wawrzak Z, Rachakonda G, Nes WD, Villalta F, Guengerich FP, Lepesheva GI. Relaxed Substrate Requirements of Sterol 14α-Demethylase from Naegleria fowleri Are Accompanied by Resistance to Inhibition. J Med Chem 2021; 64:17511-17522. [PMID: 34842434 PMCID: PMC8667612 DOI: 10.1021/acs.jmedchem.1c01710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Naegleria fowleri is the protozoan pathogen that causes primary amoebic meningoencephalitis (PAM), with the death rate exceeding 97%. The amoeba makes sterols and can be targeted by sterol biosynthesis inhibitors. Here, we characterized N. fowleri sterol 14-demethylase, including catalytic properties and inhibition by clinical antifungal drugs and experimental substituted azoles with favorable pharmacokinetics and low toxicity. None of them inhibited the enzyme stoichiometrically. The highest potencies were displayed by posaconazole (IC50 = 0.69 μM) and two of our compounds (IC50 = 1.3 and 0.35 μM). Because both these compounds penetrate the brain with concentrations reaching minimal inhibitory concentration (MIC) values in an N. fowleri cellular assay, we report them as potential drug candidates for PAM. The 2.1 Å crystal structure, in complex with the strongest inhibitor, provides an explanation connecting the enzyme weaker substrate specificity with lower sensitivity to inhibition. It also provides insight into the enzyme/ligand molecular recognition process and suggests directions for the design of more potent inhibitors.
Collapse
Affiliation(s)
- Tatiana Y Hargrove
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Zdzislaw Wawrzak
- Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Argonne, Illinois 60439, United States
| | - Girish Rachakonda
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee 37208, United States
| | - W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Fernando Villalta
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee 37208, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Galina I Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
16
|
di Punzio G, Gilberti M, Baruffini E, Lodi T, Donnini C, Dallabona C. A Yeast-Based Repurposing Approach for the Treatment of Mitochondrial DNA Depletion Syndromes Led to the Identification of Molecules Able to Modulate the dNTP Pool. Int J Mol Sci 2021; 22:ijms222212223. [PMID: 34830106 PMCID: PMC8621932 DOI: 10.3390/ijms222212223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial DNA depletion syndromes (MDS) are clinically heterogenous and often severe diseases, characterized by a reduction of the number of copies of mitochondrial DNA (mtDNA) in affected tissues. In the context of MDS, yeast has proved to be both an excellent model for the study of the mechanisms underlying mitochondrial pathologies and for the discovery of new therapies via high-throughput assays. Among the several genes involved in MDS, it has been shown that recessive mutations in MPV17 cause a hepatocerebral form of MDS and Navajo neurohepatopathy. MPV17 encodes a non selective channel in the inner mitochondrial membrane, but its physiological role and the nature of its cargo remains elusive. In this study we identify ten drugs active against MPV17 disorder, modelled in yeast using the homologous gene SYM1. All ten of the identified molecules cause a concomitant increase of both the mitochondrial deoxyribonucleoside triphosphate (mtdNTP) pool and mtDNA stability, which suggests that the reduced availability of DNA synthesis precursors is the cause for the mtDNA deletion and depletion associated with Sym1 deficiency. We finally evaluated the effect of these molecules on mtDNA stability in two other MDS yeast models, extending the potential use of these drugs to a wider range of MDS patients.
Collapse
|
17
|
Monk BC, Keniya MV. Roles for Structural Biology in the Discovery of Drugs and Agrochemicals Targeting Sterol 14α-Demethylases. J Fungi (Basel) 2021; 7:67. [PMID: 33498194 PMCID: PMC7908997 DOI: 10.3390/jof7020067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/08/2021] [Accepted: 01/17/2021] [Indexed: 02/06/2023] Open
Abstract
Antifungal drugs and antifungal agrochemicals have significant limitations. These include several unintended consequences of their use including the growing importance of intrinsic and acquired resistance. These problems underpin an increasingly urgent need to improve the existing classes of antifungals and to discover novel antifungals. Structural insights into drug targets and their complexes with both substrates and inhibitory ligands increase opportunity for the discovery of more effective antifungals. Implementation of this promise, which requires multiple skill sets, is beginning to yield candidates from discovery programs that could more quickly find their place in the clinic. This review will describe how structural biology is providing information for the improvement and discovery of inhibitors targeting the essential fungal enzyme sterol 14α-demethylase.
Collapse
Affiliation(s)
- Brian C. Monk
- Department of Oral Sciences, Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand;
| | | |
Collapse
|
18
|
Ogris I, Zelenko U, Sosič I, Gobec M, Skubic C, Ivanov M, Soković M, Kocjan D, Rozman D, Golič Grdadolnik S. Pyridylethanol(phenylethyl)amines are non-azole, highly selective Candida albicans sterol 14α-demethylase inhibitors. Bioorg Chem 2020; 106:104472. [PMID: 33261849 DOI: 10.1016/j.bioorg.2020.104472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022]
Abstract
Sterol 14α-demethylase (CYP51) is the main drug target for the treatment of fungal infections. The worldwide increase in the incidence of opportunistic fungal infections and the emerging resistance to available azole-based antifungal drugs, raise the need to develop structurally distinct and selective fungal CYP51 inhibitors. In this work we have, for the first time, investigated the binding of pyridylethanol(phenylethyl)amines to any fungal CYP51. The comparison of the binding to Candida albicans and human CYP51 studied by spectroscopic and modeling methods revealed moieties decisive for selectivity and potency and resulted in the development of highly selective derivatives with significantly increased inhibitory potency. The structure-based insight into the selectivity requirements of this new chemical class of fungal CYP51 inhibitors, their unique binding properties and the low molecular weight of lead derivatives offer novel directions for the targeted development of antifungal clinical candidates.
Collapse
Affiliation(s)
- Iza Ogris
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Urška Zelenko
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Cene Skubic
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Marija Ivanov
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Soković
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Darko Kocjan
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Damjana Rozman
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Simona Golič Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia.
| |
Collapse
|
19
|
Irannejad H, Emami S, Mirzaei H, Hashemi SM. Data on molecular docking of tautomers and enantiomers of ATTAF-1 and ATTAF-2 selectivty to the human/fungal lanosterol-14α-demethylase. Data Brief 2020; 31:105942. [PMID: 32671150 PMCID: PMC7341365 DOI: 10.1016/j.dib.2020.105942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 06/24/2020] [Indexed: 12/03/2022] Open
Abstract
The data have been obtained for tautomers and enantiomers of ATTAF-1 and ATTAF-2 that were developed based on antifungal standard drugs with triazole scaffold. These compounds were docked into the human and fungal lanosterol-14α-demethylase. In order to validate the data, 8 standard triazole antifungal drugs (Fluconazole, Itraconazole, Posaconazole, Ravuconazole, Albaconazole, Voriconazole, Isavuconazole and Efinaconazole) were also docked into the human and fungal lanosterol-14α-demethylase. The binding conformations of these molecules and their interactions with lanosterol-14α-demethylase may inform the development of further small molecule lanosterol-14α-demethylase inhibitors with significant selectivity toward this enzyme. The analysis has done on the basis of type of interactions (bond type and distance). The length of the Fe-N coordination bond for (R)-N2-ATTAF-1 and (S)-N1-ATTAF-2 complexes is obtained 6.36 and 4.19 Å, respectively and about 2 Å in the other tautomer and enantiomer complexes, reflecting the lower basicity of the N-4 atom in the 1,2,4-triazole ring of (R)-N2-ATTAF-1 and (S)-N1-ATTAF-2 in comparison with the N-4 atom in the 1,2,4-triazole ring in other tautomers and enantiomers and supporting higher selectivity of (R)-N2-ATTAF-1 and (S)-N1-ATTAF-2 towards the target CYP51 enzymes vs. human. Interestingly, we have investigated unfavorable interactions (donor-donor) with TRP239 and MET378 for (R)-N2-ATTAF-1 and (S)-N1-ATTAF-2, respectively. These unfavorable interactions also have been seen in case of posaconazole and isavuconazole. The data presented in this article are related to the research paper entitled "In silico prediction of ATTAF-1 and ATTAF-2 selectivity towards human/fungal lanosterol 14α-demethylase using molecular dynamic simulation and docking approaches".
Collapse
Affiliation(s)
- Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hassan Mirzaei
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyedeh Mahdieh Hashemi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
20
|
Hargrove TY, Wawrzak Z, Guengerich FP, Lepesheva GI. A requirement for an active proton delivery network supports a compound I-mediated C-C bond cleavage in CYP51 catalysis. J Biol Chem 2020; 295:9998-10007. [PMID: 32493730 DOI: 10.1074/jbc.ra120.014064] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
CYP51 enzymes (sterol 14α-demethylases) are cytochromes P450 that catalyze multistep reactions. The CYP51 reaction occurs in all biological kingdoms and is essential in sterol biosynthesis. It removes the 14α-methyl group from cyclized sterol precursors by first forming an alcohol, then an aldehyde, and finally eliminating formic acid with the introduction of a Δ14-15 double bond in the sterol core. The first two steps are typical hydroxylations, mediated by an electrophilic compound I mechanism. The third step, C-C bond cleavage, has been proposed to involve either compound I (i.e. FeO3 +) or, alternatively, a proton transfer-independent nucleophilic ferric peroxo anion (compound 0, i.e. Fe3 +O2 -). Here, using comparative crystallographic and biochemical analyses of WT human CYP51 (CYP51A1) and its D231A/H314A mutant, whose proton delivery network is destroyed (as evidenced in a 1.98-Å X-ray structure in complex with lanosterol), we demonstrate that deformylation of the 14α-carboxaldehyde intermediate requires an active proton relay network to drive the catalysis. These results indicate a unified, compound I-based mechanism for all three steps of the CYP51 reaction, as previously established for CYP11A1 and CYP19A1. We anticipate that our approach can be applied to mechanistic studies of other P450s that catalyze multistep reactions, such as C-C bond cleavage.
Collapse
Affiliation(s)
- Tatiana Y Hargrove
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Zdzislaw Wawrzak
- Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Argonne, Illinois, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Galina I Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA .,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
21
|
Irannejad H, Emami S, Mirzaei H, Hashemi SM. In silico prediction of ATTAF-1 and ATTAF-2 selectivity towards human/fungal lanosterol 14α-demethylase using molecular dynamic simulation and docking approaches. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|