1
|
Kim HJ, Jeong MS, Jang SB. Identification and structure of AIMP2-DX2 for therapeutic perspectives. BMB Rep 2024; 57:318-323. [PMID: 38835119 PMCID: PMC11289502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Regulation of cell fate and lung cell differentiation is associated with Aminoacyl-tRNA synthetases (ARS)-interacting multifunctional protein 2 (AIMP2), which acts as a non-enzymatic component required for the multi-tRNA synthetase complex. In response to DNA damage, a component of AIMP2 separates from the multi-tRNA synthetase complex, binds to p53, and prevents its degradation by MDM2, inducing apoptosis. Additionally, AIMP2 reduces proliferation in TGF-β and Wnt pathways, while enhancing apoptotic signaling induced by tumor necrosis factor-β. Given the crucial role of these pathways in tumorigenesis, AIMP2 is expected to function as a broad-spectrum tumor suppressor. The full-length AIMP2 transcript consists of four exons, with a small section of the pre-mRNA undergoing alternative splicing to produce a variant (AIMP2-DX2) lacking the second exon. AIMP2-DX2 binds to FBP, TRAF2, and p53 similarly to AIMP2, but competes with AIMP2 for binding to these target proteins, thereby impairing its tumor-suppressive activity. AIMP2-DX2 is specifically expressed in a diverse range of cancer cells, including breast cancer, liver cancer, bone cancer, and stomach cancer. There is growing interest in AIMP2-DX2 as a promising biomarker for prognosis and diagnosis, with AIMP2-DX2 inhibition attracting significant interest as a potentially effective therapeutic approach for the treatment of lung, ovarian, prostate, and nasopharyngeal cancers. [BMB Reports 2024; 57(7): 318-323].
Collapse
Affiliation(s)
- Hyeon Jin Kim
- Insitute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Mi Suk Jeong
- Insitute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Se Bok Jang
- Insitute of Systems Biology, Pusan National University, Busan 46241, Korea
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| |
Collapse
|
2
|
Lee B, Kim DG, Lee A, Kim YM, Cui L, Kim S, Choi I. Synthesis and discovery of the first potent proteolysis targeting chimaera (PROTAC) degrader of AIMP2-DX2 as a lung cancer drug. J Enzyme Inhib Med Chem 2023; 38:51-66. [PMID: 36305287 PMCID: PMC9621298 DOI: 10.1080/14756366.2022.2135510] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ARS-interacting multifunctional proteins 2 (AIMP2) is known to be a powerful tumour suppressor. However, the target AIMP2-DX2, AIMP2-lacking exon 2, is often detected in many cancer patients and cells. The predominant approach for targeting AIMP-DX2 has been attempted via small molecule mediated inhibition, but due to the lack of satisfactory activity against AIMP2-DX2, new therapeutic strategies are needed to develop a novel drug for AIMP2-DX2. Here, we report the use of the PROTAC strategy that combines small-molecule AIMP2-DX2 inhibitors with selective E3-ligase ligands with optimised linkers. Consequently, candidate compound 45 was found to be a degrader of AIMP2-DX2. Together, these findings demonstrate that our PROTAC technology targeting AIMP2-DX2 would be a potential new strategy for future lung cancer treatment.
Collapse
Affiliation(s)
- BoRa Lee
- Medicinal Chemistry, Institut Pasteur Korea, Gyeonggi-do, Korea
| | - Dae Gyu Kim
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy and College of Medicine, Interdisciplinary Biomedical Center, Gangnam Severance Hospital, Yonsei University, Seoul, Korea
| | - Aram Lee
- Medicinal Chemistry, Institut Pasteur Korea, Gyeonggi-do, Korea
| | - Young Mi Kim
- Medicinal Chemistry, Institut Pasteur Korea, Gyeonggi-do, Korea
| | - Lianji Cui
- Medicinal Chemistry, Institut Pasteur Korea, Gyeonggi-do, Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy and College of Medicine, Interdisciplinary Biomedical Center, Gangnam Severance Hospital, Yonsei University, Seoul, Korea
| | - Inhee Choi
- Medicinal Chemistry, Institut Pasteur Korea, Gyeonggi-do, Korea
| |
Collapse
|
3
|
Lee B, Gyu Kim D, Mi Kim Y, Kim S, Choi I. Discovery of benzodioxane analogues as lead candidates of AIMP2-DX2 inhibitors. Bioorg Med Chem Lett 2022; 73:128889. [PMID: 35842206 DOI: 10.1016/j.bmcl.2022.128889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022]
Abstract
Aminoacyl-tRNA synthetase (ARS) interacting multifunctional protein2 (AIMP2) plays a vital role in protein synthesis. However, a splicing variant in which the second of the four exons of AIMP2 is deleted, inhibits the tumor suppression activity of AIMP2. Herein, we describe our discovery of series of potent AIMP2-DX2 inhibitors that are targeting lung cancer. Optimization of series using ligand-based drug design strategy led to discovery of compound 35, a potent AIMP2-DX2 inhibitor that is the most efficacious in H460 and A549 cells. This benzodioxane series may represent good starting points for further lead optimization of the identification potential drug candidates for the AIMP2-DX2 targeted treatment of lung cancer.
Collapse
Affiliation(s)
- BoRa Lee
- Medicinal Chemistry, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| | - Dae Gyu Kim
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy & College of Medicine, Interdisciplinary Biomedical Center, Gangnam Severance Hospital, Yonsei University, Korea
| | - Young Mi Kim
- Medicinal Chemistry, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy & College of Medicine, Interdisciplinary Biomedical Center, Gangnam Severance Hospital, Yonsei University, Korea.
| | - Inhee Choi
- Medicinal Chemistry, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea.
| |
Collapse
|
4
|
Kim SH, Bae S, Song M. Recent Development of Aminoacyl-tRNA Synthetase Inhibitors for Human Diseases: A Future Perspective. Biomolecules 2020; 10:E1625. [PMID: 33271945 PMCID: PMC7760260 DOI: 10.3390/biom10121625] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/21/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that ligate amino acids to tRNAs and translate the genetic code during protein synthesis. Their function in pathogen-derived infectious diseases has been well established, which has led to the development of small molecule therapeutics. The applicability of ARS inhibitors for other human diseases, such as fibrosis, has recently been explored in the clinical setting. There are active studies to find small molecule therapeutics for cancers. Studies on central nervous system (CNS) disorders are burgeoning as well. In this regard, we present a concise analysis of the recent development of ARS inhibitors based on small molecules from the discovery research stage to clinical studies as well as a recent patent analysis from the medicinal chemistry point of view.
Collapse
Affiliation(s)
| | | | - Minsoo Song
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro Dong-gu, Daegu 41061, Korea; (S.-H.K.); (S.B.)
| |
Collapse
|
5
|
Zhou Z, Sun B, Nie A, Yu D, Bian M. Roles of Aminoacyl-tRNA Synthetases in Cancer. Front Cell Dev Biol 2020; 8:599765. [PMID: 33330488 PMCID: PMC7729087 DOI: 10.3389/fcell.2020.599765] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) catalyze the ligation of amino acids to their cognate transfer RNAs (tRNAs), thus playing an important role in protein synthesis. In eukaryotic cells, these enzymes exist in free form or in the form of multi-tRNA synthetase complex (MSC). The latter contains nine cytoplasmic ARSs and three ARS-interacting multifunctional proteins (AIMPs). Normally, ARSs and AIMPs are regarded as housekeeping molecules without additional functions. However, a growing number of studies indicate that ARSs are involved in a variety of physiological and pathological processes, especially tumorigenesis. Here, we introduce the roles of ARSs and AIMPs in certain cancers, such as colon cancer, lung cancer, breast cancer, gastric cancer and pancreatic cancer. Furthermore, we particularly focus on their potential clinical applications in cancer, aiming at providing new insights into the pathogenesis and treatment of cancer.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Anzheng Nie
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongsheng Yu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Bian
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Wang J, Vallee I, Dutta A, Wang Y, Mo Z, Liu Z, Cui H, Su AI, Yang XL. Multi-Omics Database Analysis of Aminoacyl-tRNA Synthetases in Cancer. Genes (Basel) 2020; 11:genes11111384. [PMID: 33266490 PMCID: PMC7700366 DOI: 10.3390/genes11111384] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/24/2020] [Accepted: 11/20/2020] [Indexed: 12/23/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are key enzymes in the mRNA translation machinery, yet they possess numerous non-canonical functions developed during the evolution of complex organisms. The aaRSs and aaRS-interacting multi-functional proteins (AIMPs) are continually being implicated in tumorigenesis, but these connections are often limited in scope, focusing on specific aaRSs in distinct cancer subtypes. Here, we analyze publicly available genomic and transcriptomic data on human cytoplasmic and mitochondrial aaRSs across many cancer types. As high-throughput technologies have improved exponentially, large-scale projects have systematically quantified genetic alteration and expression from thousands of cancer patient samples. One such project is the Cancer Genome Atlas (TCGA), which processed over 20,000 primary cancer and matched normal samples from 33 cancer types. The wealth of knowledge provided from this undertaking has streamlined the identification of cancer drivers and suppressors. We examined aaRS expression data produced by the TCGA project and combined this with patient survival data to recognize trends in aaRSs' impact on cancer both molecularly and prognostically. We further compared these trends to an established tumor suppressor and a proto-oncogene. We observed apparent upregulation of many tRNA synthetase genes with aggressive cancer types, yet, at the individual gene level, some aaRSs resemble a tumor suppressor while others show similarities to an oncogene. This study provides an unbiased, overarching perspective on the relationship of aaRSs with cancers and identifies certain aaRS family members as promising therapeutic targets or potential leads for developing biological therapy for cancer.
Collapse
Affiliation(s)
- Justin Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (J.W.); (I.V.); (A.D.); (Y.W.); (Z.M.); (Z.L.); (H.C.)
| | - Ingrid Vallee
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (J.W.); (I.V.); (A.D.); (Y.W.); (Z.M.); (Z.L.); (H.C.)
| | - Aditi Dutta
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (J.W.); (I.V.); (A.D.); (Y.W.); (Z.M.); (Z.L.); (H.C.)
| | - Yu Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (J.W.); (I.V.); (A.D.); (Y.W.); (Z.M.); (Z.L.); (H.C.)
| | - Zhongying Mo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (J.W.); (I.V.); (A.D.); (Y.W.); (Z.M.); (Z.L.); (H.C.)
| | - Ze Liu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (J.W.); (I.V.); (A.D.); (Y.W.); (Z.M.); (Z.L.); (H.C.)
| | - Haissi Cui
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (J.W.); (I.V.); (A.D.); (Y.W.); (Z.M.); (Z.L.); (H.C.)
| | - Andrew I. Su
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (J.W.); (I.V.); (A.D.); (Y.W.); (Z.M.); (Z.L.); (H.C.)
- Correspondence: ; Tel.: +1-858-784-8976; Fax: +1-858-784-7250
| |
Collapse
|
7
|
Wang J, Yang XL. Novel functions of cytoplasmic aminoacyl-tRNA synthetases shaping the hallmarks of cancer. Enzymes 2020; 48:397-423. [PMID: 33837711 DOI: 10.1016/bs.enz.2020.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
With the intense protein synthesis demands of cancer, the classical enzymatic role of aminoacyl-tRNA synthetases (aaRSs) is required to sustain tumor growth. However, many if not all aaRSs also possess regulatory functions outside of the domain of catalytic tRNA aminoacylation, which can further contribute to or even antagonize cancers in non-translational ways. These regulatory functions of aaRS are likely to be manipulated in cancer to ensure uncontrolled growth and survival. This review will largely focus on the unique capacities of individual and sometimes collaborating synthetases to influence the hallmarks of cancer, which represent the principles and characteristics of tumorigenesis. An interesting feature of cytoplasmic aaRSs in higher eukaryotes is the formation of a large multi-synthetase complex (MSC) with nine aaRSs held together by three non-enzymatic scaffolding proteins (AIMPs). The MSC-associated aaRSs, when released from the complex in response to certain stimulations, often participate in pathways that promote tumorigenesis. In contrast, the freestanding aaRSs are associated with activities in both directions-some promoting while others inhibiting cancer. The AIMPs have emerged as potent tumor suppressors through their own distinct mechanisms. We propose that the tumor-suppressive roles of AIMPs may also be a consequence of keeping the cancer-promoting aaRSs within the MSC. The rich connections between cancer and the synthetases have inspired the development of innovative cancer treatments that target or take advantage of these novel functions of aaRSs.
Collapse
Affiliation(s)
- Justin Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|