1
|
Coe LJ, Zhao Y, Padva L, Keto A, Schittenhelm R, Tailhades J, Pierens G, Krenske EH, Crüsemann M, De Voss JJ, Cryle MJ. Reassignment of the Structure of a Tryptophan-Containing Cyclic Tripeptide Produced by the Biarylitide Crosslinking Cytochrome P450 blt. Chemistry 2024; 30:e202400988. [PMID: 38712638 DOI: 10.1002/chem.202400988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
The structure of the sidechain crosslinked Tyr-Leu-Trp peptide produced by the biarylitide crosslinking cytochrome P450Blt from Micromonospora sp. MW-13 has been reanalysed by a series of NMR, computational and isotope labelling experiments and shown to contain a C-N rather than a C-O bond. Additional in vivo experiments using such a modified peptide show there is a general tolerance of biarylitide crosslinking P450 enzymes for histidine to tryptophan mutations within their minimal peptide substrate sequences despite the lack of such residues noted in natural biarylitide gene clusters. This work further highlights the impressive ability of P450s from biarylitide biosynthesis pathways to act as biocatalysts for the formation of a range of sidechain crosslinked tripeptides.
Collapse
Affiliation(s)
- Laura J Coe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yongwei Zhao
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Leo Padva
- Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Angus Keto
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ralf Schittenhelm
- Monash Proteomics and Metabolomics Platform, Monash University, Clayton, VIC, 3800, Australia
| | - Julien Tailhades
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Greg Pierens
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Max Crüsemann
- Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| |
Collapse
|
2
|
Gaudêncio SP, Bayram E, Lukić Bilela L, Cueto M, Díaz-Marrero AR, Haznedaroglu BZ, Jimenez C, Mandalakis M, Pereira F, Reyes F, Tasdemir D. Advanced Methods for Natural Products Discovery: Bioactivity Screening, Dereplication, Metabolomics Profiling, Genomic Sequencing, Databases and Informatic Tools, and Structure Elucidation. Mar Drugs 2023; 21:md21050308. [PMID: 37233502 DOI: 10.3390/md21050308] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Natural Products (NP) are essential for the discovery of novel drugs and products for numerous biotechnological applications. The NP discovery process is expensive and time-consuming, having as major hurdles dereplication (early identification of known compounds) and structure elucidation, particularly the determination of the absolute configuration of metabolites with stereogenic centers. This review comprehensively focuses on recent technological and instrumental advances, highlighting the development of methods that alleviate these obstacles, paving the way for accelerating NP discovery towards biotechnological applications. Herein, we emphasize the most innovative high-throughput tools and methods for advancing bioactivity screening, NP chemical analysis, dereplication, metabolite profiling, metabolomics, genome sequencing and/or genomics approaches, databases, bioinformatics, chemoinformatics, and three-dimensional NP structure elucidation.
Collapse
Affiliation(s)
- Susana P Gaudêncio
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Engin Bayram
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
| | - Ana R Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
- Instituto Universitario de Bio-Orgánica (IUBO), Universidad de La Laguna, 38206 La Laguna, Spain
| | - Berat Z Haznedaroglu
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Carlos Jimenez
- CICA- Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, HCMR Thalassocosmos, 71500 Gournes, Crete, Greece
| | - Florbela Pereira
- LAQV, REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Fernando Reyes
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Armilla, Spain
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
- Faculty of Mathematics and Natural Science, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
3
|
Lee TH, Ham SL, Lee DY, Lee JR, Kim J, Kim CS. Structure Revision of Balsamisides A-D and Establishment of an Empirical Rule for Distinguishing Four Classes of Biflavonoids. JOURNAL OF NATURAL PRODUCTS 2022; 85:2461-2467. [PMID: 36222268 DOI: 10.1021/acs.jnatprod.2c00694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Balsamisides A-D (1-4) are anti-inflammatory and neurotrophic biflavonoidal glycosides originally proposed to possess an epoxide functionality at the C-2/C-3 position. However, there are inconsistencies in their 13C NMR chemical shift values with those of previously reported analogs, indicating that reanalysis of NMR data for structures of 1-4 is necessary. Computational methods aided by the DP4+ probability technique and ECD calculations enabled structural reassignment of 1-4 to have a 2,3-dihydro-3-hydroxyfuran (3-DHF) instead of an epoxide. Additionally, two new biflavonoidal glycosides, balsamisides E and F (14 and 18), possessing a 2,3-dihydro-2-hydroxyfuran (2-DHF) and a 1,4-dioxane ring, respectively, were characterized by conventional NMR and MS data analysis as well as DP4+ and ECD methods. Systematic 13C NMR analysis was performed on the four aforementioned classes of biflavonoids with a 2- or 3-DHF, epoxide, or 1,4-dioxane. As a result, diagnostic 13C NMR chemical shift values of C-2/C-3 for rapid determination of these four biflavonoid classes were formulated, and based on this first empirical rule for (bi)flavonoids eight previously reported ones were structurally revised.
Collapse
Affiliation(s)
- Tae Hyun Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Song Lim Ham
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Da Yeong Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Ju Ryeong Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Jonghwan Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Chung Sub Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon16419, Republic of Korea
| |
Collapse
|
4
|
Al Subeh ZY, Raja HA, Maldonado A, Burdette JE, Pearce CJ, Oberlies NH. Thielavins: tuned biosynthesis and LR-HSQMBC for structure elucidation. J Antibiot (Tokyo) 2021; 74:300-306. [PMID: 33495550 PMCID: PMC8084880 DOI: 10.1038/s41429-021-00405-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 02/03/2023]
Abstract
A series of thielavins I, V, and Q (1-3) and the previously undescribed thielavin Z8 (4) were isolated from cultures of a fungal Shiraia-like sp. (strain MSX60519) that were grown under a suite of media and light conditions, with enhanced biosynthesis noted using rice as a substrate with 12:12 h light:dark cycles. Conversely, oatmeal medium and continuous white light-emitting diode light exposure negatively affected the production of these compounds, at least by strain MSX60519. The structure of 4 was determined using NMR spectroscopic data and mass fragmentation patterns. Of note, the utility of LR-HSQMBC and NOESY NMR experiments in the structural elucidation of these hydrogen-deficient natural products was demonstrated. Compounds 1-4 exhibited cytotoxic activity at the micromolar level against human breast, ovarian, and melanoma cancer cell lines.
Collapse
Affiliation(s)
- Zeinab Y Al Subeh
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Amanda Maldonado
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| |
Collapse
|
5
|
Bigler P, Furrer J. Simplifying LR-HSQC spectra using a triple-quantum filter: The LR-HTQC experiment. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:52-60. [PMID: 33411358 DOI: 10.1002/mrc.5078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 06/12/2023]
Abstract
Long-range heteronuclear single quantum correlation (LR-HSQC) experiments may be applied for detecting long-range correlations but suffer from two disadvantages, common to all heteronuclear long-range correlation experiments: (i) The information density in LR-HSQC spectra may be too high to be used directly without "filtering out" shorter range correlations, and (ii) often, substantial differences in intensity among cross peaks exist, potentially hampering the visualization of weak, often crucial cross peaks. In this contribution, we propose a modified LR-HSQC experiment, the LR-HTQC experiment (Long-Range Heteronuclear Triple Quantum Correlation) that partially solves the problems aforementioned. We show theoretically and experimentally that the LR-HTQC experiment removes the intense cross peaks of CH spin pairs, substantially reduces the medium intensity of cross peaks originating from CHH' spin systems, whereas the typically weak intensity of cross peaks of CHH'H″ and C(H)n, n > 3 spin systems is less affected. Consequently, the LR-HTQC experiment affords simplified long-range heteronuclear shift correlation spectra and scales down large intensity differences among different types of cross peaks, although a certain general reduction of signal intensities has to be accepted.
Collapse
Affiliation(s)
- Peter Bigler
- Departement für Chemie und Biochemie, Universität Bern, Bern, Switzerland
| | - Julien Furrer
- Departement für Chemie und Biochemie, Universität Bern, Bern, Switzerland
| |
Collapse
|