1
|
Çelik G, Karaoğlu ŞA, Suyabatmaz Ş, Bozdeveci A, Yılmaz GT, Yaylı N, Akpınar R, Çiçek AÇ. Synthesis, biological evaluation and molecular docking studies of flavonol-3-O-β-D-glycoside as a potential inhibitor of SARS-CoV-2 main protease (3CLpro) in drug development for COVID-19. Int J Biol Macromol 2025; 298:139621. [PMID: 39818399 DOI: 10.1016/j.ijbiomac.2025.139621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
The COVID-19 pandemic began in March 2020 and has affected many countries and infected over a million people. It has had a serious impact on people's physical and mental health, daily life and the global economy. Today, many drugs show limited efficacy in the treatment of COVID-19 and studies to develop effective drugs continue. Here, we aim to the synthesise and characterise of the flavonol-3-O-glycoside derivatives, the following and evaluated molecular docking studies with antimicrobial activity, inhibition of SARS-CoV-2 main protease enzyme (3CLpro) and nuclease activity. Molecular docking simulations of the synthesized flavonol-3-O-glycoside derivatives, especially compounds 5a, 5d, 5h, 5i and 5m, showed a stronger interaction with SARS-CoV-2 3CLpro in the active site. Two compounds from the target compounds, 5h and 5m, were found to be specifically effective against M. smegmatis and yeasts. In particular, compounds 5a, 5d, 5h, 5i and 5m, which exhibited high activity against the SARS-CoV-2 main protease enzyme, were found to be effective at low concentrations. We determined the IC50 values for the compounds that showed an inhibitory effect as well as their nuclease activities, which further emphasising the potential of our results. Among these, compound 5d showed a significant competitive inhibitor of 3CLpro. Furthermore, nuclease activity studies identified compound 5d as the most potent. The above results suggest that the flavonol-3-O-glycoside derivatives could be promising new antiviral agents for the development of 3CLpro inhibitors to combat COVID-19.
Collapse
Affiliation(s)
- Gonca Çelik
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon 61080, Türkiye.
| | - Şengül Alpay Karaoğlu
- Department of Biology, Faculty of Science, Recep Tayyip Erdoğan University, Rize 53100, Türkiye
| | - Şeyma Suyabatmaz
- Department of Biology, Faculty of Science, Recep Tayyip Erdoğan University, Rize 53100, Türkiye
| | - Arif Bozdeveci
- Department of Biology, Faculty of Science, Recep Tayyip Erdoğan University, Rize 53100, Türkiye
| | - Gizem Tatar Yılmaz
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Türkiye; Karadeniz Technical University, Institute of Health Sciences, Department of Bioinformatics, 61080 Trabzon, Türkiye; Yılmaz Bilişim R&D Consulting Software Engineering and Services Trade Limited Company, 61081 Trabzon, Türkiye
| | - Nurettin Yaylı
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, Trabzon 61080, Türkiye
| | - Rahşan Akpınar
- Laboratory of Bee Diseases, Samsun Veterinary Control Institute, Samsun 55200, Türkiye
| | - Ayşegül Çopur Çiçek
- Department of Basic Medical Sciences, Faculty of Medicine, Istanbul Medipol University, Istanbul 34815, Türkiye
| |
Collapse
|
2
|
Salim AA, Butler MS, Blaskovich MAT, Henderson IR, Capon RJ. Natural products as anthelmintics: safeguarding animal health. Nat Prod Rep 2023; 40:1754-1808. [PMID: 37555325 DOI: 10.1039/d3np00019b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Covering literature to December 2022This review provides a comprehensive account of all natural products (500 compounds, including 17 semi-synthetic derivatives) described in the primary literature up to December 2022, reported to be capable of inhibiting the egg hatching, motility, larval development and/or the survival of helminths (i.e., nematodes, flukes and tapeworms). These parasitic worms infect and compromise the health and welfare, productivity and lives of commercial livestock (i.e., sheep, cattle, horses, pigs, poultry and fish), companion animals (i.e., dogs and cats) and other high value, endangered and/or exotic animals. Attention is given to chemical structures, as well as source organisms and anthelmintic properties, including the nature of bioassay target species, in vivo animal hosts, and measures of potency.
Collapse
Affiliation(s)
- Angela A Salim
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Mark S Butler
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Mark A T Blaskovich
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Robert J Capon
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| |
Collapse
|
3
|
Zhu YT, Fang HB, Liu XN, Yan YM, Feng WS, Cheng YX, Wang YZ. Unusual acetylated flavonol glucuronides, oxyphyllvonides A-H with renoprotective activities from the fruits of Alpinae oxyphylla. PHYTOCHEMISTRY 2023; 215:113849. [PMID: 37673290 DOI: 10.1016/j.phytochem.2023.113849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
As a widely consumed spice and Traditional Chinese Medicine, Alpinae oxyphylla has been used to treat conditions such as diarrhea, ulcers, dementia, and enuresis. Fruits of A. oxyphylla were phytochemically studied and the bioactive constituents against renal fibrosis were identified. Eight previously undescribed acetylated flavonol glucuronides named oxyphyllvonides A-H (1-7 and 10), two known acetylated flavonol glucuronides (8 and 9), together with seven known flavone glycosides (11-17) were isolated from the fruits of A. oxyphylla. Among them, flavonol glucuronides were discovered in Zingiberaceae for the first time. The planar structures of 1-7 and 10 were determined using HRESIMS and extensive spectroscopic techniques (UV, IR, 1D-NMR, and 2D-NMR). The absolute configurations of the sugar moiety in these compounds were determined by using LC-MS analysis of acid-hydrolyzed derivatized monosaccharides. Biological evaluation showed that 7-10, 13, 14, 16 and 17 inhibit renal fibrosis in TGF-β1-induced kidney proximal tubular cells. In addition, 7, 8 and 14 were superior to nootkatone in inhibiting Fibronectin expression. The finding has significant relevance to our ongoing research on the anti-renal fibrosis activity of A. oxyphylla.
Collapse
Affiliation(s)
- Yue-Tong Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Hong-Bin Fang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiao-Ning Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yong-Ming Yan
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Wei-Sheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-construction by Henan Province & Education Ministry of PR China, Zhengzhou, 450046, China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| | - Yan-Zhi Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-construction by Henan Province & Education Ministry of PR China, Zhengzhou, 450046, China.
| |
Collapse
|
4
|
Wójciak M, Feldo M, Stolarczyk P, Płachno BJ. Biological Potential of Carnivorous Plants from Nepenthales. Molecules 2023; 28:molecules28083639. [PMID: 37110873 PMCID: PMC10146735 DOI: 10.3390/molecules28083639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Since Charles Darwin and his book carnivorous plants have aroused interest and heated debate. In addition, there is growing interest in this group of plants as a source of secondary metabolites and in the application of their biological activity. The aim of this study was to trace the recent literature in search of the application of extracts obtained from families Droseraceae, Nepenthaceae, and Drosophyllaceae to show their biological potential. The data collected in the review clearly indicate that the studied Nepenthales species have great biological potential in terms of antibacterial, antifungal, antioxidant, anti-inflammatory, and anticancer use. We proposed that further investigations should include: (i) bioactivity-guided investigations of crude plant extract to connect a particular type of action with a specific compound or a group of metabolites; (ii) a search for new bioactive properties of carnivorous plants; (iii) establishment of molecular mechanisms associated with specific activity. Furthermore, further research should be extended to include less explored species, i.e., Drosophyllum lusitanicum and especially Aldrovanda vesiculosa.
Collapse
Affiliation(s)
- Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland
| | - Piotr Stolarczyk
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54 Ave., 31-425 Cracow, Poland
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Cracow, Poland
| |
Collapse
|
5
|
Umer SM, Shamim S, Khan KM, Saleem RSZ. Perplexing Polyphenolics: The Isolations, Syntheses, Reappraisals, and Bioactivities of Flavonoids, Isoflavonoids, and Neoflavonoids from 2016 to 2022. Life (Basel) 2023; 13:life13030736. [PMID: 36983891 PMCID: PMC10058313 DOI: 10.3390/life13030736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Flavonoids, isoflavonoids, neoflavonoids, and their various subcategories are polyphenolics-an extensive class of natural products. These compounds are bioactive and display multiple activities, including anticancer, antibacterial, antiviral, antioxidant, and neuroprotective activities. Thus, these compounds can serve as leads for therapeutic agents or targets for complex synthesis; they are coveted and routinely isolated, characterized, biologically evaluated, and synthesized. However, data regarding the compounds' sources, isolation procedures, structural novelties, bioactivities, and synthetic schemes are often dispersed and complex, a dilemma this review aims to address. To serve as an easily accessible guide for researchers wanting to apprise themselves of the latest advancements in this subfield, this review summarizes seventy-six (76) articles published between 2016 and 2022 that detail the isolation and characterization of two hundred and forty-nine (249) novel compounds, the total and semisyntheses of thirteen (13) compounds, and reappraisals of the structures of twenty (20) previously reported compounds and their bioactivities. This article also discusses new synthetic methods and enzymes capable of producing or modifying flavonoids, isoflavonoids, or neoflavonoids.
Collapse
Affiliation(s)
- Syed Muhammad Umer
- Department of Chemistry and Chemical Engineering, SBASSE, Lahore University of Management Sciences, Sector-U, DHA, Lahore 54792, Pakistan
| | - Shahbaz Shamim
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam P.O. Box 31441, Saudi Arabia
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, SBASSE, Lahore University of Management Sciences, Sector-U, DHA, Lahore 54792, Pakistan
| |
Collapse
|
6
|
Carnivorous Plants from Nepenthaceae and Droseraceae as a Source of Secondary Metabolites. Molecules 2023; 28:molecules28052155. [PMID: 36903400 PMCID: PMC10004607 DOI: 10.3390/molecules28052155] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Carnivorous plants are able to attract small animals or protozoa and retain them in their specialized traps. Later, the captured organisms are killed and digested. The nutrients contained in the prey bodies are absorbed by the plants to use for growth and reproduction. These plants produce many secondary metabolites involved in the carnivorous syndrome. The main purpose of this review was to provide an overview of the secondary metabolites in the family Nepenthaceae and Droseraceae, which were studied using modern identification techniques, i.e., high-performance liquid chromatography or ultra-high-performance liquid chromatography with mass spectrometry and nuclear magnetic resonance spectroscopy. After literature screening, there is no doubt that tissues of species from the genera Nepenthes, Drosera, and Dionaea are rich sources of secondary metabolites that can be used in pharmacy and for medical purposes. The main types of the identified compounds include phenolic acids and their derivatives (gallic, protocatechuic, chlorogenic, ferulic, p-coumaric acids, gallic, hydroxybenzoic, vanillic, syringic caffeic acids, and vanillin), flavonoids (myricetin, quercetin, and kaempferol derivatives), including anthocyanins (delphinidin-3-O-glucoside, cyanidin-3-O-glucoside, and cyanidin), naphthoquinones (e.g., plumbagin, droserone, and 5-O-methyl droserone), and volatile organic compounds. Due to the biological activity of most of these substances, the importance of the carnivorous plant as a pharmaceutical crop will increase.
Collapse
|
7
|
Wisetsai A, Choodej S, Ngamrojanavanich N, Pudhom K. Fatty acid acylated flavonol glycosides from the seeds of Nephelium lappaceum and their nitric oxide suppression activity. PHYTOCHEMISTRY 2022; 201:113262. [PMID: 35660550 DOI: 10.1016/j.phytochem.2022.113262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Five undescribed fatty acid esters of flavonol glycosides, nephelosides A-E, along with eight known compounds, were isolated from the seeds of Nephelium lappaceum L. The structures were elucidated by extensive analysis of spectroscopic data in combination with GC-MS analysis. Potency of compounds toward nitric oxide suppression was assessed by monitoring the inhibition of lipopolysaccharide-stimulated nitric oxide production in J744.A1 macrophage cells. Nepheloside D, kaempferol and kaempferol 7-O-α-L-rhamnopyranoside showed significant activity with IC50 values of 26.5, 11.6 and 12.0 μM, respectively.
Collapse
Affiliation(s)
- Awat Wisetsai
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siwattra Choodej
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Khanitha Pudhom
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
Chemical structures and anti-tyrosinase activity of the constituents from Elephantopus scaber L. Fitoterapia 2022; 162:105259. [PMID: 35931288 DOI: 10.1016/j.fitote.2022.105259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 11/24/2022]
Abstract
Four undescribed compounds including one germacrane-type sesquiterpene lactones (1), alkaloid (2) along with two neolignans (3-4) were isolated from Elephantopus scaber L. Their structures and absolute configurations were elucidated unambiguously by means of 1D and 2D NMR spectroscopic data analysis, and quantum chemical electronic circular dichroism calculations, as well as single-crystal X-ray crystallography. Their anti-tyrosinase activities have been evaluated in vitro and compound 2 exhibited significant inhibitory activity. Furthermore, molecular docking was performed to study the interaction patterns between 2 and the tyrosinase.
Collapse
|
9
|
Wu Y, Su X, Lu J, Wu M, Yang SY, Mai Y, Deng W, Xue Y. In Vitro and in Silico Analysis of Phytochemicals From Fallopia dentatoalata as Dual Functional Cholinesterase Inhibitors for the Treatment of Alzheimer’s Disease. Front Pharmacol 2022; 13:905708. [PMID: 35899116 PMCID: PMC9313597 DOI: 10.3389/fphar.2022.905708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
Current studies have found that butyrylcholinesterase (BuChE) replaces the biological function of acetylcholinesterase (AChE) in the late stage of Alzheimer’s disease. Species in the genus of Fallopia, rich in polyphenols with diverse chemical structures and significant biological activities, are considered as an important resource for screening natural products to against AD. In this study, thirty-four compounds (1–34) were isolated from Fallopia dentatoalata (Fr. Schm.) Holub, and their inhibitory effects against AChE and BuChE were assessed. Compounds of the phenylpropanoid sucrose ester class emerged as the most promising members of the group, with 31–33 displaying moderate AChE inhibition (IC50 values ranging from 30.6 ± 4.7 to 56.0 ± 2.4 µM) and 30–34 showing potential inhibitory effects against BuChE (IC50 values ranging from 2.7 ± 1.7 to 17.1 ± 3.4 µM). Tacrine was used as a positive control (IC50: 126.7 ± 1.1 in AChE and 5.5 ± 1.7 nM in BuChE). Kinetic analysis highlighted compounds 31 and 32 as non-competitive inhibitors of AChE with Ki values of ∼30.0 and ∼34.4 µM, whilst 30–34 were revealed to competitively inhibit BuChE with Ki values ranging from ∼1.8 to ∼17.5 µM. Molecular binding studies demonstrated that 30–34 bound to the catalytic sites of BuChE with negative binding energies. The strong agreement between both in vitro and in silico studies highlights the phenylpropanoid sucrose esters 30–34 as promising candidates for use in future anti-cholinesterase therapeutics against Alzheimer’s disease.
Collapse
Affiliation(s)
- Yichuang Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Xiangdong Su
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jielang Lu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Meifang Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Seo Young Yang
- Department of Pharmaceutical Engineering, Sangji University, Wonju, South Korea
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- *Correspondence: Wenbin Deng, ; Yongbo Xue,
| | - Yongbo Xue
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- *Correspondence: Wenbin Deng, ; Yongbo Xue,
| |
Collapse
|