1
|
Wu Y, Luo J, Xu B. Insights into the anticancer effects of galangal and galangin: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156085. [PMID: 39353308 DOI: 10.1016/j.phymed.2024.156085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUNDS Cancer continues to be the leading cause of death worldwide, significantly impacting both health and the economy. Natural products have emerged as promising sources for the development of new anticancer drugs, with galangal and their active ingredient, galangin, garnering substantial interest. PURPOSE This study summarizes recent findings on the anticancer properties of galangal and galangin, highlighting their potential to target various cancer types. METHODS We systematically searched the literature across PubMed, Web of Science, and Google Scholar, using keywords such as "Alpinia officinarum," "Alpinia galanga", "galangal," and "galangin." This thorough approach allowed us to gather and compile a comprehensive collection of existing research on the topic. RESULTS This article provided a thorough analysis of the distribution of galangal, the methods used to extract the active compounds of galangal, and the anticancer properties of both galangin and galangal. It is important to note that galangal and galangin primarily function by regulating the signaling pathways of PI3K/Akt, MAPK, AMPK, p53, NF-κB, and Ras/RAF/MEK/ERK, which in turn triggers apoptosis, autophagy, and ROS while preventing the migration and invasion of cancer cells. We also discussed their toxicity, bioavailability, and clinical uses. CONCLUSION In conclusion, galangal extract and galangin have a lot of promise for treating cancer. It is anticipated that this review will further advance the use of galangal extract and galangin as potential cancer treatment medications. Moreover, the discovery and development of drugs based on galangal has enormous potential for the therapy of cancer.
Collapse
Affiliation(s)
- Yingzi Wu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jinhai Luo
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China.
| |
Collapse
|
2
|
Sudarshan K, Yarlagadda S, Sengupta S. Recent Advances in the Synthesis of Diarylheptanoids. Chem Asian J 2024; 19:e202400380. [PMID: 38744677 DOI: 10.1002/asia.202400380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
In the quest for synthesizing biologically important natural products, medicinal chemists embark on an endless journey. This review focuses on the reports published towards the syntheses of diarylheptanoids, classifying them into linear, tetrahydropyran, diarylether, and biphenyl categories. The synthesis methods for each class from 2013 to 2023 are discussed, providing a comprehensive overview of the advancements in the field. Representative natural product examples are highlighted for each category. The review emphasizes the importance of diarylheptanoids in the realms of chemistry and medicine, showcasing their potential as valuable compounds for medicinal and synthetic chemists.
Collapse
Affiliation(s)
- Kasireddy Sudarshan
- Kasireddy Sudarshan, Suresh Yarlagadda, Sagnik Sengupta, Department of Chemistry, Institute for Drug Discovery, Purdue University, West Lafayette, IN-47907, USA
| | - Suresh Yarlagadda
- Kasireddy Sudarshan, Suresh Yarlagadda, Sagnik Sengupta, Department of Chemistry, Institute for Drug Discovery, Purdue University, West Lafayette, IN-47907, USA
| | - Sagnik Sengupta
- Kasireddy Sudarshan, Suresh Yarlagadda, Sagnik Sengupta, Department of Chemistry, Institute for Drug Discovery, Purdue University, West Lafayette, IN-47907, USA
| |
Collapse
|
3
|
Benda M, Evans C, Yuan S, McClish IM, Berkey WJ, Areheart HE, Arnold ES, Tang ML, France S. Modular Enantioselective Total Syntheses of the erythro-7,9-Dihydroxy- and 9-Hydroxy-7-Keto-8,4'-Oxyneolignans. J Org Chem 2024; 89:9910-9922. [PMID: 38959240 PMCID: PMC11267612 DOI: 10.1021/acs.joc.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
A modular, enantioselective approach to access the bioactive 7,9-dihydroxy- and 9-hydroxy-7-keto-8,4'-oxyneolignans is disclosed, which employs stereoselective Mitsunobu reactions of enantiopure 2-aryl-1,3-dioxan-5-ols and functionalized phenols. The enantiopure dioxanols are prepared through Sharpless asymmetric dihydroxylation of protected coniferyl or sinapyl alcohols and subsequent benzylidene acetal formation. Through a mix-and-match coupling approach, six of the eight possible erythro-7,9-dihydroxy-8,4'-oxyneolignan enantiomeric natural products (bearing a C-1' hydroxypropyl chain) were generated following sequential deprotection. Subsequent benzylic oxidation afforded the 7-keto-derivatives, resulting in enantioselective syntheses of each enantiomer of the natural products asprenol B and icariol A1.
Collapse
Affiliation(s)
- Meghan
C. Benda
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Caria Evans
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- Renewable
Bioproducts Institute, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- Center
for a Renewables-based Economy from WOOD (ReWOOD), Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Shaoren Yuan
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Ian M. McClish
- School
of Biological Sciences, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - William J. Berkey
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- Renewable
Bioproducts Institute, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- Center
for a Renewables-based Economy from WOOD (ReWOOD), Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hailey E. Areheart
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Emily S. Arnold
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Michelle L. Tang
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Stefan France
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- School
of Biological Sciences, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- Renewable
Bioproducts Institute, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- Center
for a Renewables-based Economy from WOOD (ReWOOD), Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Zagórska J, Pietrzak K, Kukula-Koch W, Czop M, Wojtysiak K, Koch W. Influence of Thermal Treatment on the Composition of Alpinia officinarum Rhizome. Int J Mol Sci 2024; 25:3625. [PMID: 38612437 PMCID: PMC11012154 DOI: 10.3390/ijms25073625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Alpinia officinarum is a representative of the Zingiberaceae family, which is known for its wide use in the food and pharmaceutical industries also due to its precious pharmacological potential. The major aim of the present study was to evaluate the influence of thermal treatment on the composition of the rhizome of Alpinia officinarum and its antioxidant activity. The fresh rhizome was subjected to various thermal treatment processes-boiling, frying and microwave heating during various time intervals-and their composition and antioxidant activity were determined using chromatographic (HPLC - High Performance Liquid Chromatography and HPLC-MS - High Performance Liquid Chromatography Mass Spectrometry) and spectrophotometric (DPPH and TPC - Total Phenolic Content) methods. Pinobanksin was the main compound found in the extract of the fresh rhizome (537.79 mg/kg), followed by galangin (197.7 mg/kg) and zingerone (185.5 mg/kg). The effect of thermal treatment on the rhizome composition was varied. In general, thermal processing significantly decreased the content of active compounds in the rhizome. However, there were some exceptions-boiling for 4 min significantly increased the content of pinobanksin (1162.4 mg/kg) and galangin (280.7 mg/kg), and microwave processing for 4 min increased the content of pinocembrin (213 mg/kg). It was found that boiling and microwave treatment significantly increased the antioxidant activity of the processed rhizomes.
Collapse
Affiliation(s)
- Justyna Zagórska
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland; (J.Z.); (K.P.); (K.W.)
| | - Karolina Pietrzak
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland; (J.Z.); (K.P.); (K.W.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medical Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland;
| | - Marcin Czop
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska Str., 20-080 Lublin, Poland;
| | - Karolina Wojtysiak
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland; (J.Z.); (K.P.); (K.W.)
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland; (J.Z.); (K.P.); (K.W.)
| |
Collapse
|
5
|
Leary E, Anderson ET, Keyes JK, Huskie TR, Blake DJ, Miller KA. Improved synthesis of deoxyalpinoid B and quantification of antileishmanial activity of deoxyalpinoid B and sulforaphane. Bioorg Med Chem 2023; 78:117136. [PMID: 36565668 PMCID: PMC9903332 DOI: 10.1016/j.bmc.2022.117136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The total synthesis and antileishmanial activity of deoxyalpinoid B is reported via a cationic gold-catalyzed Meyer-Schuster rearrangement. The activity of deoxyalpinoid B and a known inducer of oxidative stress, sulforaphane, against Leishmania donovani and Leishmania infantatum are both reported for the first time. Both compounds exhibit potent antileishmanial activity against both species. We hypothesize that the activation of intracellular oxidative stress is a key molecular response for the inhibition of Leishmania.
Collapse
Affiliation(s)
- Emma Leary
- Department of Biology, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, United States
| | - Ethan T Anderson
- Department of Biology, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, United States
| | - Jasmine K Keyes
- Department of Chemistry and Biochemistry, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, United States
| | - Tristan R Huskie
- Department of Chemistry and Biochemistry, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, United States
| | - David J Blake
- Department of Biology, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, United States
| | - Kenneth A Miller
- Department of Chemistry and Biochemistry, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, United States.
| |
Collapse
|
6
|
Keyes JK, Butzke MB, Miller KA. Efficient total synthesis of three alpinoids via the Au(I)-catalyzed Meyer-Schuster rearrangement. Tetrahedron Lett 2022; 104:154015. [PMID: 38584726 PMCID: PMC10997375 DOI: 10.1016/j.tetlet.2022.154015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The total syntheses of three structurally related natural products, deoxyalpinoid B, deoxyalpinoid A, and alpinoid F, are reported, and each features a Au(I)-catalyzed Meyer-Schuster rearrangement as the key step. The synthesis of alpinoid F is reported for the first time. The syntheses of these natural products, all of which exhibit potent anticancer activity, are readily amenable to the preparation of structural analogs.
Collapse
Affiliation(s)
- Jasmine K. Keyes
- Department of Chemistry and Biochemistry, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, United States
| | - Mauri B. Butzke
- Department of Chemistry and Biochemistry, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, United States
| | - Kenneth A. Miller
- Department of Chemistry and Biochemistry, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, United States
| |
Collapse
|
7
|
Li T, Pan DB, Pang QQ, Zhou M, Yao XJ, Yao XS, Li HB, Yu Y. Diarylheptanoid analogues from the rhizomes of Zingiber officinale and their anti-tumour activity. RSC Adv 2021; 11:29376-29384. [PMID: 35479564 PMCID: PMC9040573 DOI: 10.1039/d1ra03592d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
Diarylheptanoid analogues from the rhizomes of Zingiber officinale and their anti-tumour activity.
Collapse
Affiliation(s)
- Ting Li
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Da-bo Pan
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
- Department of Medical Technology, Qiandongnan Vocational & Technical College for Nationalities, Kaili, Guizhou 556000, P. R. China
| | - Qian-qian Pang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Mi Zhou
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Xiao-jun Yao
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xin-sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Hai-bo Li
- Kanion Pharamaceutical Co. Ltd, State Key Laboratory of New-tech for Chinese Medicine Pharamaceutical Process, Lianyungang 222001, People's Republic of China
| | - Yang Yu
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|