1
|
Sousa BP, Mottin M, Seanego D, Jurisch CD, Rodrigues BSA, da Silva VLS, Andrade MA, Morais GS, Boerin DF, Froes TQ, Motta FN, Nonato MC, Bastos IDM, Chibale K, Gessner RK, Andrade CH. Discovery of Non-Covalent Inhibitors for SARS-CoV-2 PLpro: Integrating Virtual Screening, Synthesis, and Experimental Validation. ACS Med Chem Lett 2024; 15:2140-2149. [PMID: 39691531 PMCID: PMC11647681 DOI: 10.1021/acsmedchemlett.4c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
The SARS-CoV-2 pandemic has significantly challenged global public health, highlighting the need for effective therapeutic options. This study focuses on the papain-like protease (PLpro) of SARS-CoV-2, which is a critical enzyme for viral polyprotein processing, maturation, and immune evasion. We employed a combined approach that began with computational models in a virtual screening campaign, prioritizing compounds from our in-house chemical library against PLpro. Out of 81 virtual hits evaluated through enzymatic and biophysical assays, we identified a modest inhibitor featuring a naphthyridine core with an IC50 of 73.61 μM and a K i of 22 μM. Expanding our exploration, we synthesized and assessed 30 naphthyridine analogues, three of which emerged as promising noncovalent, nonpeptidomimetic inhibitors with IC50 values between 15.06 and 51.81 μM. Furthermore, in vitro ADMET assays revealed these compounds to possess moderate aqueous solubility, low cytotoxicity, and high microsomal stability, making them excellent candidates for further development targeting SARS-CoV-2 PLpro.
Collapse
Affiliation(s)
- Bruna
K. P. Sousa
- Center
for the Research and Advancement in Fragments and Molecular Targets
(CRAFT), Faculdade de Ciências Farmaceuticas de Ribeirão
Preto, Universidade de São Paulo, Ribeirão Preto, São
Paulo 05508-070, Brazil
- Laboratory
for Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Goiás 74690-900, Brazil
| | - Melina Mottin
- Center
for the Research and Advancement in Fragments and Molecular Targets
(CRAFT), Faculdade de Ciências Farmaceuticas de Ribeirão
Preto, Universidade de São Paulo, Ribeirão Preto, São
Paulo 05508-070, Brazil
- Laboratory
for Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Goiás 74690-900, Brazil
- Pathogen-Host
Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 73345-010, Brazil
| | - Donald Seanego
- Holistic
Drug Discovery and Development Centre (H3D), University of Cape Town, Cape Town 7701, South Africa
| | - Christopher D. Jurisch
- Holistic
Drug Discovery and Development Centre (H3D), University of Cape Town, Cape Town 7701, South Africa
| | - Beatriz S. A. Rodrigues
- Pathogen-Host
Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 73345-010, Brazil
| | - Verônica L. S. da Silva
- Pathogen-Host
Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 73345-010, Brazil
| | - Milene Aparecida Andrade
- Pathogen-Host
Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 73345-010, Brazil
| | - Gilberto S. Morais
- Pathogen-Host
Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 73345-010, Brazil
| | - Diogo F. Boerin
- Center
for the Research and Advancement in Fragments and Molecular Targets
(CRAFT), Faculdade de Ciências Farmaceuticas de Ribeirão
Preto, Universidade de São Paulo, Ribeirão Preto, São
Paulo 05508-070, Brazil
- Laboratório
de Cristalografia de Proteínas, Faculdade de Ciências
Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 05508-070, Brazil
| | - Thamires Q. Froes
- Center
for the Research and Advancement in Fragments and Molecular Targets
(CRAFT), Faculdade de Ciências Farmaceuticas de Ribeirão
Preto, Universidade de São Paulo, Ribeirão Preto, São
Paulo 05508-070, Brazil
- Laboratório
de Cristalografia de Proteínas, Faculdade de Ciências
Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 05508-070, Brazil
| | - Flávia Nader Motta
- Pathogen-Host
Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 73345-010, Brazil
- Faculdade
de Ceilândia, Universidade de Brasília, Brasília, Distrito
Federal 73345-010, Brazil
| | - M. Cristina Nonato
- Center
for the Research and Advancement in Fragments and Molecular Targets
(CRAFT), Faculdade de Ciências Farmaceuticas de Ribeirão
Preto, Universidade de São Paulo, Ribeirão Preto, São
Paulo 05508-070, Brazil
- Laboratório
de Cristalografia de Proteínas, Faculdade de Ciências
Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 05508-070, Brazil
| | - Izabela D. M. Bastos
- Pathogen-Host
Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 73345-010, Brazil
| | - Kelly Chibale
- Holistic
Drug Discovery and Development Centre (H3D), University of Cape Town, Cape Town 7701, South Africa
- South
African Medical Research Council Drug Discovery and Development Research
Unit, University of Cape Town, Cape Town 7701, South Africa
- Institute
of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7701, South Africa
| | - Richard K. Gessner
- Holistic
Drug Discovery and Development Centre (H3D), University of Cape Town, Cape Town 7701, South Africa
| | - Carolina Horta Andrade
- Center
for the Research and Advancement in Fragments and Molecular Targets
(CRAFT), Faculdade de Ciências Farmaceuticas de Ribeirão
Preto, Universidade de São Paulo, Ribeirão Preto, São
Paulo 05508-070, Brazil
- Laboratory
for Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Goiás 74690-900, Brazil
- Center
for Excellence in Artificial Intelligence (CEIA), Instituto de Informática, Universidade Federal de Goiás, Goiânia, Goiás 74690-900, Brazil
| |
Collapse
|
2
|
Mota IDS, Cardoso M, Bueno J, da Silva IGM, Gonçalves J, Bao SN, Neto BAD, Brand G, Corrêa JR, Leite JRSA, Saldanha-Araujo F. Intragenic antimicrobial peptide Hs02 toxicity against leukemia cell lines is associated with increased expression of select pyroptotic components. Toxicol In Vitro 2024; 101:105945. [PMID: 39343072 DOI: 10.1016/j.tiv.2024.105945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
The anticancer potential of some antimicrobial peptides has been reported. Hs02 is a recently characterized Intragenic Antimicrobial Peptide (IAP), which was able to exhibit potent antimicrobial and anti-inflammatory action. In this study, we evaluate for the first time the antineoplastic potential of the Hs02 IAP using cell lines representing the main types of leukemia as cancer models. Interestingly, this peptide decreased the viability of several leukemic cell lines, without compromising the viability of PBMCs in the same concentration. In the HL-60 line, treatment with Hs02 controlled cell division, leading to cell arrest in the G1 phase of the cell cycle. More importantly, HL-60 cells treated with Hs02 undergo cell death, with the formation of pores in the plasma membrane and the release of LDH. Accordingly, Hs02 treatment stimulated the expression of components involved in pyroptosis, such as NLRP1, CASP-1, GSDME, and IL-1β. Taken together, our data characterize the antineoplastic potential of Hs02 and open an opportunity for both evaluating the peptide's antineoplastic potential in other cancer models and using this molecule as a template for new peptides with therapeutic potential against cancer.
Collapse
Affiliation(s)
- Isabella de Souza Mota
- Laboratório de Hematologia e Células-Tronco, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Miguel Cardoso
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília-DF, 70910-900, Brazil; iMed.ULisboa-Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Lisbon 1649-003, Portugal
| | - João Bueno
- Laboratório de Síntese e Análise de Biomoléculas, Instituto de Química, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Ingrid Gracielle Martins da Silva
- Laboratório de Microscopia e Microanálise, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - João Gonçalves
- iMed.ULisboa-Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Lisbon 1649-003, Portugal
| | - Sonia N Bao
- Laboratório de Microscopia e Microanálise, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Brenno A D Neto
- Laboratório de Química Medicinal e Tecnológica, Instituto de Química, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Guilherme Brand
- Laboratório de Síntese e Análise de Biomoléculas, Instituto de Química, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - José Raimundo Corrêa
- Laboratório de Microscopia e Microanálise, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - José Roberto S A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília-DF, 70910-900, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Hematologia e Células-Tronco, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
3
|
Nantes WAG, Liberal SC, Santos FM, Dario MA, Mukoyama LTH, Woidella KB, Rita PHS, Roque ALR, de Oliveira CE, Herrera HM, Jansen AM. Viperidae snakes infected by mammalian-associated trypanosomatids and a free-living kinetoplastid. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105630. [PMID: 38936526 DOI: 10.1016/j.meegid.2024.105630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Trypanosomatids have achieved significant evolutionary success in parasitizing various groups, yet reptiles remain relatively unexplored. The utilization of advanced molecular tools has revealed an increased richness of trypanosomatids in vertebrate hosts. The aim of this study was to identify the trypanosomatid species infecting Bothrops moojeni and Crotalus durissus kept in captivity from 2000 to 2022. Blood samples were obtained from 106 snakes: 73C. durissus and 33 B. moojeni. Whole blood was collected for hemoculture, blood smears and centrifugated to obtain the blood clot that had its DNA extracted and submitted to Nested PCR (18S rDNA gene) to detect Trypanosomatidae. Positive samples were quantified and submitted to both conventional (Sanger) and next generation sequencing (NGS). Cloning of the amplified PCR product was performed for only one individual of C. durissus. To exclude the possibility of local vector transmission, attempts to capture sandflies were conducted using six CDC-LT type light traps. Molecular diagnosis revealed that 34% of the snakes presented trypanosomatid DNA, 47.94% in C. durissus and 3.9% in B. moojeni. The cloning process generated four colonies identified as a new MOTU named Trypanosomatidae sp. CROT. The presence of DNA of five trypanosomatids (Trypanosoma cruzi TcII/VI, Trypanosoma sp. DID, Trypanosoma cascavelli, Trypanosomatidae sp. CROT, Leishmania infantum and Leishmania sp.) and one free-living kinetoplastid (Neobodo sp.) was revealed through NGS and confirmed by phylogenetic analysis. The haplotypic network divided the T. cascavelli sequences into two groups, 1) marsupials and snakes and 2) exclusive to marsupials. Therefore, the diversity of Kinetoplastea is still underestimated. Snakes have the ability to maintain infection with T. cruzi and L. infantum for up to 20 years and the DNA finding of Neobodo sp. in the blood of a C. durissus suggests that this genus can infect vertebrates.
Collapse
Affiliation(s)
- Wesley Arruda Gimenes Nantes
- Environmental Sciences and Agricultural Sustainability Postgraduation, Dom Bosco Catholic University, Campo Grande, 79117-900, Brazil.
| | - Sany Caroline Liberal
- Environmental Sciences and Agricultural Sustainability Postgraduation, Dom Bosco Catholic University, Campo Grande, 79117-900, Brazil
| | - Filipe Martins Santos
- Environmental Sciences and Agricultural Sustainability Postgraduation, Dom Bosco Catholic University, Campo Grande, 79117-900, Brazil
| | - Maria Augusta Dario
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | | | | | | | - André Luiz Rodrigues Roque
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Carina Elisei de Oliveira
- Environmental Sciences and Agricultural Sustainability Postgraduation, Dom Bosco Catholic University, Campo Grande, 79117-900, Brazil; Biotechnology Postgraduation, Dom Bosco Catholic University, Campo Grande 79117-900, Brazil
| | - Heitor Miraglia Herrera
- Environmental Sciences and Agricultural Sustainability Postgraduation, Dom Bosco Catholic University, Campo Grande, 79117-900, Brazil; Biotechnology Postgraduation, Dom Bosco Catholic University, Campo Grande 79117-900, Brazil
| | - Ana Maria Jansen
- Environmental Sciences and Agricultural Sustainability Postgraduation, Dom Bosco Catholic University, Campo Grande, 79117-900, Brazil; Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
4
|
Hagemann CL, Macedo AJ, Tasca T. Therapeutic potential of antimicrobial peptides against pathogenic protozoa. Parasitol Res 2024; 123:122. [PMID: 38311672 DOI: 10.1007/s00436-024-08133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
Protozoal infections cause significant morbidity and mortality in humans and animals. The use of several antiprotozoal drugs is associated with serious adverse effects and resistance development, and drugs that are more effective are urgently needed. Microorganisms, mammalian cells and fluids, insects, and reptiles are sources of antimicrobial peptides (AMPs) that act against pathogenic microorganisms; these AMPs have been widely studied as a promising alternative therapeutic option to conventional antibiotics, aiming to treat infections caused by multidrug-resistant pathogens. One advantage of AMP molecules is their adaptability, as they can be easily fine-tuned for broad-spectrum or targeted activity by changing the amino acid residues in their sequence. Consequently, these variations in structural and physicochemical properties can alter the antimicrobial activities of AMPs and decrease resistance development. This article presents an overview of peptide activities against amebiasis, giardiasis, trichomoniasis, Chagas disease, leishmaniasis, malaria, and toxoplasmosis. AMPs and their analogs demonstrate great potential as therapeutics, with potent and selective activity, when compared with commercially available drugs, and hold the potential to act as new scaffolds for the development of novel anti-protozoal drugs.
Collapse
Affiliation(s)
- Corina Lobato Hagemann
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, 2752, Porto Alegre, RS, CEP 90610-000, Brazil
| | - Alexandre José Macedo
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, 2752, Porto Alegre, RS, CEP 90610-000, Brazil
| | - Tiana Tasca
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, 2752, Porto Alegre, RS, CEP 90610-000, Brazil.
| |
Collapse
|
5
|
Barros ALAN, Silva VC, Ribeiro-Junior AF, Cardoso MG, Costa SR, Moraes CB, Barbosa CG, Coleone AP, Simões RP, Cabral WF, Falcão RM, Vasconcelos AG, Rocha JA, Arcanjo DDR, Batagin-Neto A, Borges TKS, Gonçalves J, Brand GD, Freitas-Junior LHG, Eaton P, Marani M, Kato MJ, Plácido A, Leite JRSA. Antiviral Action against SARS-CoV-2 of a Synthetic Peptide Based on a Novel Defensin Present in the Transcriptome of the Fire Salamander ( Salamandra salamandra). Pharmaceutics 2024; 16:190. [PMID: 38399250 PMCID: PMC10892092 DOI: 10.3390/pharmaceutics16020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The potential emergence of zoonotic diseases has raised significant concerns, particularly in light of the recent pandemic, emphasizing the urgent need for scientific preparedness. The bioprospection and characterization of new molecules are strategically relevant to the research and development of innovative drugs for viral and bacterial treatment and disease management. Amphibian species possess a diverse array of compounds, including antimicrobial peptides. This study identified the first bioactive peptide from Salamandra salamandra in a transcriptome analysis. The synthetic peptide sequence, which belongs to the defensin family, was characterized through MALDI TOF/TOF mass spectrometry. Molecular docking assays hypothesized the interaction between the identified peptide and the active binding site of the spike WT RBD/hACE2 complex. Although additional studies are required, the preliminary evaluation of the antiviral potential of synthetic SS-I was conducted through an in vitro cell-based SARS-CoV-2 infection assay. Additionally, the cytotoxic and hemolytic effects of the synthesized peptide were assessed. These preliminary findings highlighted the potential of SS-I as a chemical scaffold for drug development against COVID-19, hindering viral infection. The peptide demonstrated hemolytic activity while not exhibiting cytotoxicity at the antiviral concentration.
Collapse
Affiliation(s)
- Ana Luisa A N Barros
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília 70910-900, DF, Brazil
- Programa de Pós-graduação em Medicina Tropical, PGMT, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília 70910-900, DF, Brazil
| | - Vladimir C Silva
- Laboratório de Vigilância Genômica e Biologia Molecular-Fundação Oswaldo Cruz Piauí, Teresina 64001-350, PI, Brazil
| | - Atvaldo F Ribeiro-Junior
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília 70910-900, DF, Brazil
| | - Miguel G Cardoso
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília 70910-900, DF, Brazil
- imed.ULisboa-Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Samuel R Costa
- Instituto de Química, IQ, Universidade de Brasília, UnB, Brasília 70910-900, DF, Brazil
| | - Carolina B Moraes
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, SP, Brazil
| | - Cecília G Barbosa
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508-000, SP, Brazil
| | - Alex P Coleone
- Programa de Pós-Graduação em Ciência e Tecnologia de Materiais (POSMAT), School of Sciences, São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil
| | - Rafael P Simões
- School of Agriculture, Department of Bioprocess and Biotechnology, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Wanessa F Cabral
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília 70910-900, DF, Brazil
| | - Raul M Falcão
- Bioinformatics Postgraduate Program, Metrópole Digital Institute, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
| | - Andreanne G Vasconcelos
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília 70910-900, DF, Brazil
- People&Science Pesquisa Desenvolvimento e Inovação LTDA, Centro de Desenvolvimento Tecnológico (CDT), Universidade de Brasília, UnB, Brasília 70910-900, DF, Brazil
| | - Jefferson A Rocha
- Campus São Bernardo, Universidade Federal do Maranhão, UFMA, São Bernardo 65550-000, MA, Brazil
| | - Daniel D R Arcanjo
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Augusto Batagin-Neto
- Programa de Pós-Graduação em Ciência e Tecnologia de Materiais (POSMAT), School of Sciences, São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil
- Institute of Sciences and Engineering, São Paulo State University (UNESP), Itapeva 18409-010, SP, Brazil
| | - Tatiana Karla S Borges
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília 70910-900, DF, Brazil
| | - João Gonçalves
- imed.ULisboa-Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Guilherme D Brand
- Instituto de Química, IQ, Universidade de Brasília, UnB, Brasília 70910-900, DF, Brazil
| | - Lucio H G Freitas-Junior
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508-000, SP, Brazil
| | - Peter Eaton
- Laboratório Associado para a Química Verde/Rede de Química e Tecnologia (LAQV/REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
- School of Chemistry, The Bridge, University of Lincoln, Lincoln LN6 7EL, UK
| | - Mariela Marani
- IPEEC-CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Puerto Madryn 9120, Argentina
| | - Massuo J Kato
- Instituto de Química (IQ), Universidade de São Paulo (USP), São Paulo 05508-900, SP, Brazil
| | - Alexandra Plácido
- Laboratório Associado para a Química Verde/Rede de Química e Tecnologia (LAQV/REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - José Roberto S A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília 70910-900, DF, Brazil
| |
Collapse
|
6
|
Pavani TFA, Cirino ME, Teixeira TR, de Moraes J, Rando DGG. Targeting the Schistosoma mansoni nutritional mechanisms to design new antischistosomal compounds. Sci Rep 2023; 13:19735. [PMID: 37957227 PMCID: PMC10643403 DOI: 10.1038/s41598-023-46959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023] Open
Abstract
The chemical classes of semicarbazones, thiosemicarbazones, and hydrazones are present in various compounds, each demonstrating diverse biological activities. Extensive studies have revealed their potential as schistosomicidal agents. Thiosemicarbazones, in particular, have shown inhibitory effects on Schistosoma mansoni's cathepsin B1 enzyme (SmCB1), which plays a crucial role in hemoglobin degradation within the worm's gut and its nutrition processes. Consequently, SmCB1 has emerged as a promising target for novel schistosomiasis therapies. Moreover, chloroquinoline exhibits characteristics in its aromatic structure that hold promise for developing SmCB1 inhibitors, along with its interaction with hemoglobin's heme group, potentially synergizing against the parasite's gut. In this context, we report the synthesis of 22 hybrid analogs combining hydrazones and quinolines, evaluated against S. mansoni. Five of these hybrids demonstrated schistosomicidal activity in vitro, with GPQF-8Q10 being the most effective, causing worm mortality within 24 h at a concentration of 25 µM. GPQF-8Q8 proved to be the most promising in vivo, significantly reducing egg presence in feces (by 52.8%) and immature eggs in intestines (by 45.8%). These compounds exhibited low cytotoxicity in Vero cells and an in in vivo animal model (Caenorhabditis elegans), indicating a favorable selectivity index. This suggests their potential for the development of new schistosomiasis therapies. Further studies are needed to uncover specific target mechanisms, but these findings offer a promising starting point.
Collapse
Affiliation(s)
- Thaís F A Pavani
- Grupo de Pesquisas Químico-Farmacêuticas, GPQFfesp, Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Rua São Nicolau, 210, 2° Andar, Centro, Diadema, São Paulo, 09913-030, Brazil
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Curso de Pós-Graduação em Biologia Química da Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Maria E Cirino
- Núcleo de Pesquisas em Doenças Negligenciadas, NPDN, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Thainá R Teixeira
- Núcleo de Pesquisas em Doenças Negligenciadas, NPDN, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Josué de Moraes
- Núcleo de Pesquisas em Doenças Negligenciadas, NPDN, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Daniela G G Rando
- Grupo de Pesquisas Químico-Farmacêuticas, GPQFfesp, Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Rua São Nicolau, 210, 2° Andar, Centro, Diadema, São Paulo, 09913-030, Brazil.
| |
Collapse
|
7
|
Moreira-Filho JT, Neves BJ, Cajas RA, Moraes JD, Andrade CH. Artificial intelligence-guided approach for efficient virtual screening of hits against Schistosoma mansoni. Future Med Chem 2023; 15:2033-2050. [PMID: 37937522 DOI: 10.4155/fmc-2023-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
Background: The impact of schistosomiasis, which affects over 230 million people, emphasizes the urgency of developing new antischistosomal drugs. Artificial intelligence is vital in accelerating the drug discovery process. Methodology & results: We developed classification and regression machine learning models to predict the schistosomicidal activity of compounds not experimentally tested. The prioritized compounds were tested on schistosomula and adult stages of Schistosoma mansoni. Four compounds demonstrated significant activity against schistosomula, with 50% effective concentration values ranging from 9.8 to 32.5 μM, while exhibiting no toxicity in animal and human cell lines. Conclusion: These findings represent a significant step forward in the discovery of antischistosomal drugs. Further optimization of these active compounds can pave the way for their progression into preclinical studies.
Collapse
Affiliation(s)
- José Teófilo Moreira-Filho
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, 74605-170, Brazil
| | - Bruno Junior Neves
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, 74605-170, Brazil
| | - Rayssa Araujo Cajas
- Research Center on Neglected Diseases (NPDN), Universidade Guarulhos, Guarulhos, 07023-070, Brazil
| | - Josué de Moraes
- Research Center on Neglected Diseases (NPDN), Universidade Guarulhos, Guarulhos, 07023-070, Brazil
| | - Carolina Horta Andrade
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, 74605-170, Brazil
- Center for the Research and Advancement in Fragments and molecular Targets (CRAFT), School of Pharmaceutical Sciences at Ribeirao Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
8
|
Sen S, Samat R, Jash M, Ghosh S, Roy R, Mukherjee N, Ghosh S, Sarkar J, Ghosh S. Potential Broad-Spectrum Antimicrobial, Wound Healing, and Disinfectant Cationic Peptide Crafted from Snake Venom. J Med Chem 2023; 66:11555-11572. [PMID: 37566805 DOI: 10.1021/acs.jmedchem.3c01150] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Antimicrobial cationic peptides are intriguing and propitious antibiotics for the future, even against multidrug-resistant superbugs. Venoms serve as a source of cutting-edge therapeutics and innovative, unexplored medicines. In this study, a novel cationic peptide library consisting of seven sequences was designed and synthesized from the snake venom cathelicidin, batroxicidin (BatxC), with the inclusion of the FLPII motif at the N-terminus. SP1V3_1 demonstrated exceptional antibacterial effectiveness against Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Klebsiella pneumoniae and destroyed the bacteria by depolarizing, rupturing, and permeabilizing their membranes, as evident from fluorescence assays, atomic force microscopy, and scanning electron microscopy. SP1V3_1 was observed to modulate the immune response in LPS-elicited U937 cells and exhibited good antibiofilm activity against MRSA and K. pneumoniae. The peptide promoted wound healing and disinfection in the murine model. The study demonstrated that SP1V3_1 is an exciting peptide lead and may be explored further for the development of better therapeutic peptides.
Collapse
Affiliation(s)
- Samya Sen
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Ramkamal Samat
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Moumita Jash
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Rajsekhar Roy
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Nabanita Mukherjee
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Surojit Ghosh
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Jayita Sarkar
- Centre for Research and Development of Scientific Instruments, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
9
|
Almeida JR, Gomes A, Mendes B, Aguiar L, Ferreira M, Brioschi MBC, Duarte D, Nogueira F, Cortes S, Salazar-Valenzuela D, Miguel DC, Teixeira C, Gameiro P, Gomes P. Unlocking the potential of snake venom-based molecules against the malaria, Chagas disease, and leishmaniasis triad. Int J Biol Macromol 2023; 242:124745. [PMID: 37150376 DOI: 10.1016/j.ijbiomac.2023.124745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Malaria, leishmaniasis and Chagas disease are vector-borne protozoal infections with a disproportionately high impact on the most fragile societies in the world, and despite malaria-focused research gained momentum in the past two decades, both trypanosomiases and leishmaniases remain neglected tropical diseases. Affordable effective drugs remain the mainstay of tackling this burden, but toxicicty, inneficiency against later stage disease, and drug resistance issues are serious shortcomings. One strategy to overcome these hurdles is to get new therapeutics or inspiration in nature. Indeed, snake venoms have been recognized as valuable sources of biomacromolecules, like peptides and proteins, with antiprotozoal activity. This review highlights major snake venom components active against at least one of the three aforementioned diseases, which include phospholipases A2, metalloproteases, L-amino acid oxidases, lectins, and oligopeptides. The relevance of this repertoire of biomacromolecules and the bottlenecks in their clinical translation are discussed considering approaches that should increase the success rate in this arduous task. Overall, this review underlines how venom-derived biomacromolecules could lead to pioneering antiprotozoal treatments and how the drug landscape for neglected diseases may be revolutionized by a closer look at venoms. Further investigations on poorly studied venoms is needed and could add new therapeutics to the pipeline.
Collapse
Affiliation(s)
- José Rafael Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador.
| | - Ana Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | - Bruno Mendes
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador
| | - Luísa Aguiar
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal
| | - Mariana Ferreira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | | | - Denise Duarte
- Departamento de Biologia Animal, Instituto de Biologia, UNICAMP, Campinas, São Paulo 13083-862, Brazil.
| | - Fátima Nogueira
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua Junqueira 100, P-1349-008 Lisboa, Portugal.
| | - Sofia Cortes
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua Junqueira 100, P-1349-008 Lisboa, Portugal.
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Quito 170103, Ecuador.
| | - Danilo C Miguel
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Quito 170103, Ecuador.
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal
| | - Paula Gameiro
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| |
Collapse
|
10
|
Osipov AV, Cheremnykh EG, Ziganshin RH, Starkov VG, Nguyen TTT, Nguyen KC, Le DT, Hoang AN, Tsetlin VI, Utkin YN. The Potassium Channel Blocker β-Bungarotoxin from the Krait Bungarus multicinctus Venom Manifests Antiprotozoal Activity. Biomedicines 2023; 11:biomedicines11041115. [PMID: 37189733 DOI: 10.3390/biomedicines11041115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Protozoal infections are a world-wide problem. The toxicity and somewhat low effectiveness of the existing drugs require the search for new ways of protozoa suppression. Snake venom contains structurally diverse components manifesting antiprotozoal activity; for example, those in cobra venom are cytotoxins. In this work, we aimed to characterize a novel antiprotozoal component(s) in the Bungarus multicinctus krait venom using the ciliate Tetrahymena pyriformis as a model organism. To determine the toxicity of the substances under study, surviving ciliates were registered automatically by an original BioLaT-3.2 instrument. The krait venom was separated by three-step liquid chromatography and the toxicity of the obtained fractions against T. pyriformis was analyzed. As a result, 21 kDa protein toxic to Tetrahymena was isolated and its amino acid sequence was determined by MALDI TOF MS and high-resolution mass spectrometry. It was found that antiprotozoal activity was manifested by β-bungarotoxin (β-Bgt) differing from the known toxins by two amino acid residues. Inactivation of β-Bgt phospholipolytic activity with p-bromophenacyl bromide did not change its antiprotozoal activity. Thus, this is the first demonstration of the antiprotozoal activity of β-Bgt, which is shown to be independent of its phospholipolytic activity.
Collapse
Affiliation(s)
- Alexey V Osipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | | | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Vladislav G Starkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | | | - Khoa Cuu Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Dung Tien Le
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Anh Ngoc Hoang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Yuri N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
11
|
Dematei A, Costa SR, Moreira DC, Barbosa EA, Friaça Albuquerque LF, Vasconcelos AG, Nascimento T, Silva PC, Silva-Carvalho AÉ, Saldanha-Araújo F, Silva Mancini MC, Saboia Ponte LG, Neves Bezerra RM, Simabuco FM, Batagin-Neto A, Brand G, Borges TKS, Eaton P, Leite JRSA. Antioxidant and Neuroprotective Effects of the First Tryptophyllin Found in Snake Venom ( Bothrops moojeni). JOURNAL OF NATURAL PRODUCTS 2022; 85:2695-2705. [PMID: 36508333 DOI: 10.1021/acs.jnatprod.2c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, we report the isolation, characterization, and synthesis of the peptide BmT-2 belonging to the tryptophyllins family, isolated from the venom of the snake Bothrops moojeni. This is the first time a tryptophyllin is identified in snake venom. We tested whether BmT-2 had cytotoxic effects and antioxidant activity in a set of experiments that included both in vitro and cell-based assays. BmT-2 presented a radical scavenging activity toward ABTS• and AAPH-derived radicals. BmT-2 protected fluorescein, DNA molecules, and human red blood cells (RBCs) from free radicals generated by the thermal decomposition of AAPH. The novel tryptophyllin was not toxic in cell viability tests, where it (up to 0.4 mg/mL) did not cause hemolysis of human RBCs and did not cause significant loss of cell viability, showing a CC50 > 1.5 mM for cytotoxic effects against SK-N-BE(2) neuroblastoma cells. BmT-2 prevented the arsenite-induced upregulation of Nrf2 in Neuro-2a neuroblasts and the phorbol myristate acetate-induced overgeneration of reactive oxygen species and reactive nitrogen species in SK-N-BE(2) neuroblastoma cells. Electronic structure calculations and full atomistic reactive molecular dynamics simulations revealed the relevant contribution of aromatic residues in BmT-2 to its antioxidant properties. Our study presents a novel peptide classified into the family of the tryptophyllins, which has been reported exclusively in amphibians. Despite the promising results on its antioxidant activity and low cytotoxicity, the mechanisms of action of BmT-2 still need to be further elucidated.
Collapse
Affiliation(s)
- Anderson Dematei
- Center for Tropical Medicine (NMT), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
- Research Center in Morphology and Applied Immunology (NuPMIA), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Samuel Ribeiro Costa
- Laboratory for the Synthesis and Analysis of Biomolecules (LSAB), Institute of Chemistry, University of Brasilia, Brasília 70910-900, Brazil
| | - Daniel C Moreira
- Research Center in Morphology and Applied Immunology (NuPMIA), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Eder Alves Barbosa
- Research Center in Morphology and Applied Immunology (NuPMIA), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
- Laboratory for the Synthesis and Analysis of Biomolecules (LSAB), Institute of Chemistry, University of Brasilia, Brasília 70910-900, Brazil
| | - Lucas F Friaça Albuquerque
- Research Center in Morphology and Applied Immunology (NuPMIA), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Andreanne G Vasconcelos
- Research Center in Morphology and Applied Immunology (NuPMIA), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Tiago Nascimento
- Research Center on Biodiversity and Biotechnology (Biotec), Parnaiba Delta Federal University, Parnaíba 64202-020, Brazil
| | - Pedro Costa Silva
- Research Center on Biodiversity and Biotechnology (Biotec), Parnaiba Delta Federal University, Parnaíba 64202-020, Brazil
| | - Amandda É Silva-Carvalho
- Laboratory of Hematology and Stem Cells (LHCT), Faculty of Health Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Felipe Saldanha-Araújo
- Laboratory of Hematology and Stem Cells (LHCT), Faculty of Health Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Mariana Camargo Silva Mancini
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences, University of Campinas, Campinas 13083-970, Brazil
| | - Luis Gustavo Saboia Ponte
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences, University of Campinas, Campinas 13083-970, Brazil
| | - Rosangela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences, University of Campinas, Campinas 13083-970, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences, University of Campinas, Campinas 13083-970, Brazil
| | - Augusto Batagin-Neto
- Institute of Science and Engineering, São Paulo State University (UNESP), Itapeva, São Paulo 01049-010, Brazil
| | - Guilherme Brand
- Laboratory for the Synthesis and Analysis of Biomolecules (LSAB), Institute of Chemistry, University of Brasilia, Brasília 70910-900, Brazil
| | - Tatiana Karla S Borges
- Research Center in Morphology and Applied Immunology (NuPMIA), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Peter Eaton
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4099-002, Portugal
- The Bridge, Joseph Banks Laboratories, School of Chemistry, University of Lincoln, Lincoln LN6 7TS, U.K
| | - José Roberto S A Leite
- Center for Tropical Medicine (NMT), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
- Research Center in Morphology and Applied Immunology (NuPMIA), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| |
Collapse
|
12
|
de Moura GA, de Oliveira JR, Rocha YM, de Oliveira Freitas J, Rodrigues JPV, Ferreira VPG, Nicolete R. Antitumor and antiparasitic activity of antimicrobial peptides derived from snake venom: a systematic review approach. Curr Med Chem 2022; 29:5358-5368. [PMID: 35524668 DOI: 10.2174/0929867329666220507011719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/07/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND In a scenario of increased pathogens with multidrug resistance phenotypes, it is necessary to seek new pharmacological options. This fact is responsible for an increase in neoplasms and multiresistant parasitic diseases. In turn, snake venom-derived peptides exhibited cytotoxic action on fungal and bacterial strains, possibly presenting activities in resistant tumor cells and parasites. Therefore, the aim of this work is to verify an antitumor and antiparasitic activity of antimicrobial peptides derived from snake venom. METHODS For this purpose, searches were performed in the Pubmed, Embase and Virtual Health Library databases by combining the descriptors peptides, venom and snake with antitumor/ antiparasitic agent and in silico. The inclusion criteria: in vitro and in vivo experimental articles in addition to in silico studies. The exclusion criteria: articles that were out of scope, review articles, abstracts, and letters to the reader. Data extracted: peptide name, peptide sequence, semi-maximal inhibitory concentration, snake species, tumor lineage or parasitic strain, cytotoxicity, in vitro and in vivo activity. RESULTS In total 164 articles were found, of which 14 were used. A total of ten peptides with antiproliferative activity on tumor cells were identified. Among the articles, seven peptides addressed the antiparasitic activity. CONCLUSION In conclusion, snake venom-derived peptides can be considered as potential pharmacological options for parasites and tumors, however more studies are needed to prove their specific activity.
Collapse
Affiliation(s)
| | - Juliana R de Oliveira
- Cruz Foundation (Fiocruz Ceará), Eusébio-CE, Brazil.,Northeast Network of Biotechnology (RENORBIO), State University of Ceará (UECE), Fortaleza-CE, Brazil
| | - Yasmim M Rocha
- Cruz Foundation (Fiocruz Ceará), Eusébio-CE, Brazil.,Program in Pharmaceutical Sciences, Federal University of Ceará (UFC), Fortaleza-CE, Brazil
| | | | - João Pedro V Rodrigues
- Cruz Foundation (Fiocruz Ceará), Eusébio-CE, Brazil.,Program in Pharmaceutical Sciences, Federal University of Ceará (UFC), Fortaleza-CE, Brazil
| | - Vanessa P G Ferreira
- Cruz Foundation (Fiocruz Ceará), Eusébio-CE, Brazil.,Northeast Network of Biotechnology (RENORBIO), State University of Ceará (UECE), Fortaleza-CE, Brazil
| | | |
Collapse
|
13
|
Antiprotozoal Effect of Snake Venoms and Their Fractions: A Systematic Review. Pathogens 2021; 10:pathogens10121632. [PMID: 34959587 PMCID: PMC8707848 DOI: 10.3390/pathogens10121632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Protozoal infection is a lingering public health issue of great concern, despite efforts to produce drugs and vaccines against it. Recent breakthrough research has discovered alternative antiprotozoal agents encompassing the use of snake venoms and their components to cure these infections. This study collated the existing literature to examine the antiprotozoal effect of snake venoms and their fractions. Methods: We conducted a systematic review following the PRISMA guidelines. The PubMed and Embase databases were searched from their inception until 13 October 2021. Articles were screened at the title, abstract and full-text phases. Some additional studies were obtained through the manual search process. Results: We identified 331 studies via the electronic database and manual searches, of which 55 reporting the antiprotozoal effect of snake venoms and their components were included in the review. Around 38% of studies examined the effect of whole crude venoms, and a similar percentage evaluated the effect of a proportion of enzymatic phospholipase A2 (PLA2). In particular, this review reports around 36 PLA2 activities and 29 snake crude venom activities. We also report the notable phenomenon of synergism with PLA2 isoforms of Bothrops asper. Importantly, limited attention has been given so far to the antiprotozoal efficacies of metalloproteinase, serine protease and three-finger toxins, although these venom components have been identified as significant components of the dominant venom families. Conclusion: This study highlights the impact of snake venoms and their fractions on controlling protozoal infections and suggests the need to examine further the effectiveness of other venom components, such as metalloproteinase, serine protease and three-finger toxins. Future research questions in this field must be redirected toward synergism in snake venom components, based on pharmacological usage and in the context of toxicology. Ascertaining the effects of snake venoms and their components on other protozoal species that have not yet been studied is imperative.
Collapse
|
14
|
Morais CS, Mengarda AC, Miguel FB, Enes KB, Rodrigues VC, Espírito-Santo MCC, Siyadatpanah A, Wilairatana P, Couri MRC, de Moraes J. Pyrazoline derivatives as promising novel antischistosomal agents. Sci Rep 2021; 11:23437. [PMID: 34873205 PMCID: PMC8648852 DOI: 10.1038/s41598-021-02792-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022] Open
Abstract
Praziquantel is the only available drug to treat schistosomiasis, a parasitic disease that currently infects more than 240 million people globally. Due to increasing concerns about resistance and inadequate efficacy there is a need for new therapeutics. In this study, a series of 17 pyrazolines (15–31) and three pyrazoles (32–34) were synthesized and evaluated for their antiparasitic properties against ex vivo adult Schistosoma mansoni worms. Of the 20 compounds tested, six had a 50% effective concentration (EC50) below 30 μM. Our best hit, pyrazoline 22, showed promising activity against adult schistosomes, with an EC50 < 10 µM. Additionally, compound 22 had low cytotoxicity, with selectivity index of 21.6 and 32.2 for monkey and human cell lines, respectively. All active pyrazolines demonstrated a negative effect on schistosome fecundity, with a marked reduction in the number of eggs. Structure–activity relationship analysis showed that the presence of the non-aromatic heterocycle and N-substitution are fundamental to the antischistosomal properties. Pharmacokinetics, drug-likeness and medicinal chemistry friendliness studies were performed, and predicted values demonstrated an excellent drug-likeness profile for pyrazolines as well as an adherence to major pharmaceutical companies’ filters. Collectively, this study demonstrates that pyrazoline derivatives are promising scaffolds in the discovery of novel antischistosomal agents.
Collapse
Affiliation(s)
- Cristiane S Morais
- Research Center for Neglected Diseases, Guarulhos University, Praça Tereza Cristina, 229, Centro, Guarulhos, SP, 07023-070, Brazil
| | - Ana C Mengarda
- Research Center for Neglected Diseases, Guarulhos University, Praça Tereza Cristina, 229, Centro, Guarulhos, SP, 07023-070, Brazil
| | - Fábio B Miguel
- Department of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Karine B Enes
- Department of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Vinícius C Rodrigues
- Research Center for Neglected Diseases, Guarulhos University, Praça Tereza Cristina, 229, Centro, Guarulhos, SP, 07023-070, Brazil
| | - Maria Cristina C Espírito-Santo
- Laboratory of Immunopathology of Schistosomiasis (LIM-06), Department of Infectious and Parasitic Diseases, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil.,Laboratory of Helminthology, Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, 9717853577, Birjand, Iran
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Mara R C Couri
- Department of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil.
| | - Josué de Moraes
- Research Center for Neglected Diseases, Guarulhos University, Praça Tereza Cristina, 229, Centro, Guarulhos, SP, 07023-070, Brazil.
| |
Collapse
|