1
|
Jing SX, Neves JG, Liberato W, Ferreira D, Bedran-Russo AK, McAlpine JB, Chen SN, Pauli GF. Preparation, Modification, Quantitation, and Dentin Biomodification Activity of Selectively Enriched Proanthocyanidins. JOURNAL OF NATURAL PRODUCTS 2025. [PMID: 39804821 DOI: 10.1021/acs.jnatprod.4c01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
To date, quantitative analysis of proanthocyanidin (PAC) containing materials including plant extracts and fractions depends on colorimetric assays or phloroglucinolysis/thiolysis combined with UV-HPLC analysis. Such assays are of limited accuracy, particularly lack specificity, require extensive sample preparation and degradation, and need appropriate physical reference standards. To address this analytical challenge and toward our broader goal of developing new plant-sourced biomaterials that chemically and mechanically modulate the properties of dental tissue for clinical interventions, we have characterized 12 different PAC DESIGNER (Depletion and Enrichment of Select Ingredients Generating Normalized Extract Resources) materials. The DESIGNER approach is carried out by using either centrifugal partition chromatography (CPC) or size-exclusion chromatography (SEC) for the selective enrichment of trimeric and tetrameric PACs. Moreover, the rare but biologically interesting A-type PAC DESIGNERs can now be generated successfully from their natural AB-type PAC precursors via phenol-oxidative intramolecular coupling initiated by a mixture of the stable radicals, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). Furthermore, to ensure the quality and stability of PAC DESIGNER materials, we developed a quantitative analysis of the total PAC content of the DESIGNER materials in the form of a quantitative NMR (qNMR) method using a non-PAC internal calibrant combined with diol-HPLC. The total PAC content was, thus, determined to be in a range of 67.5-96.9% by qNMR. We highlight the complementarity of diol-HPLC and qNMR to accurately assess the amount of PACs across a range of concentrations and PAC stability in the DESIGNER materials. This quantitative methodology paves the way to generate standardized DESIGNER and other PAC-containing materials and to perform rigorous quality control for dental (pre)clinical studies of PACs.
Collapse
Affiliation(s)
- Shu-Xi Jing
- Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - José Guilherme Neves
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Walleska Liberato
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Daneel Ferreira
- National Center for Natural Products Research and Department of Biomolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Ana K Bedran-Russo
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - James B McAlpine
- Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Shao-Nong Chen
- Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Guido F Pauli
- Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
2
|
Chen C, Lai H, Song P, Gu X. Promotion effect of proanthocyanidin on dentin remineralization via the polymer induced liquid precursor process. J Mech Behav Biomed Mater 2024; 160:106750. [PMID: 39293136 DOI: 10.1016/j.jmbbm.2024.106750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/04/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Proanthocyanidin (PA) has demonstrated promise as a dental biomodifier for maintaining dentin collagen integrity, yet there is limited evidence regarding its efficacy in dentin repair. The aim of this study was to investigate the effect of PA on dentin remineralization through the polymer induced liquid precursor (PILP) process, as well as to assess the mechanical properties of the restored dentin. Demineralized dentin was treated with a PA-contained remineralization medium, resulting in the formation of PA-amorphous calcium phosphate (ACP) nanoparticles via the PILP process. The kinetics and microstructure of remineralized dentin were examined through the use of Fourier transform infrared spectroscopy(FTIR), attenuated total reflectance-FTIR, scanning electron microscopy, transmission electron microscopy. The results showed that the application of PA facilitated the process of dentin remineralization, achieving completion within 48 h, demonstrating a notable reduction in time required. Following remineralization, the mechanical properties of the dentin exhibited an elastic modulus of 15.89 ± 1.70 GPa and a hardness of 0.47 ± 0.08 GPa, which were similar to those of natural dentin. These findings suggest that combining PA with the PILP process can promote dentin remineralization and improve its mechanical properties, offering a promising new approach for dentin repair in clinical practice.
Collapse
Affiliation(s)
- Chaoqun Chen
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Haiyan Lai
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Pingping Song
- SanYe Pediatric Dental Clinic, Hangzhou Stomatology Hospital, Hangzhou, Zhejiang Province, China
| | - Xinhua Gu
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
3
|
Jing SX, McDermott CM, Flanders PL, Reis-Havlat M, Chen SN, Bedran-Russo AK, McAlpine JB, Ambrose EA, Pauli GF. Chemical Transformation of B- to A-type Proanthocyanidins and 3D Structural Implications. JOURNAL OF NATURAL PRODUCTS 2024; 87:1416-1425. [PMID: 38687902 DOI: 10.1021/acs.jnatprod.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
In nature, proanthocyanidins (PACs) with A-type linkages are relatively rare, likely due to biosynthetic constraints in the formation of additional ether bonds to be introduced into the more common B-type precursors. However, A-type linkages confer greater structural rigidity on PACs than do B-type linkages. Prior investigations into the structure-activity relationships (SAR) describing how plant-derived PACs with B- and complex AB-type linkages affect their capacity for dentin biomodification indicate that a higher ratio of double linkages leads to a greater interaction with dentin type I collagen. Thus, A-type PACs emerge as particularly intriguing candidates for interventional functional biomaterials. This study employed a free-radical-mediated oxidation using DPPH to transform trimeric and tetrameric B-type PACs, 2 and 4, respectively, into their exclusively A-type linked analogues, 3 and 5, respectively. The structures and absolute configurations of the semisynthetic products, including the new all-A-type tetramer 5, were determined by comprehensive spectroscopic analysis. Additionally, molecular modeling investigated the conformational characteristics of all trimers and tetramers, 1-5. Our findings suggest that the specific interflavan linkages significantly impact the flexibility and low-energy conformations of the connected monomeric units, which conversely can affect the bioactive conformations relevant for dentin biomodification.
Collapse
Affiliation(s)
| | - Connor M McDermott
- Department of Chemistry, Grandview University, Des Moines, Iowa 50316, United States
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Queiroz EF, Guillarme D, Wolfender JL. Advanced high-resolution chromatographic strategies for efficient isolation of natural products from complex biological matrices: from metabolite profiling to pure chemical entities. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2024; 23:1415-1442. [PMID: 39574436 PMCID: PMC11576662 DOI: 10.1007/s11101-024-09928-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/05/2024] [Indexed: 11/24/2024]
Abstract
The isolation of pure compounds from extracts represents a key step common to all investigations of natural product (NP) research. Isolation methods have gone through a remarkable evolution. Current approaches combine powerful metabolite profiling methods for compounds annotation with omics mining results and/or bioassay for bioactive NPs/biomarkers priorisation. Targeted isolation of prioritized NPs is performed using high-resolution chromatographic methods that closely match those used for analytical profiling. Considerable progress has been made by the introduction of innovative stationary phases providing remarkable selectivity for efficient NPs isolation. Today, efficient separation conditions determined at the analytical scale using high- or ultra-high-performance liquid chromatography can be optimized via HPLC modelling software and efficiently transferred to the semi-preparative scale by chromatographic calculation. This ensures similar selectivity at both the analytical and preparative scales and provides a precise separation prediction. High-resolution conditions at the preparative scale can notably be granted using optimized sample preparation and dry load sample introduction. Monitoring by ultraviolet, mass spectrometry, and or universal systems such as evaporative light scattering detectors and nuclear magnetic resonance allows to precisely guide the isolation or trigger the collection of specific NPs with different structural scaffolds. Such approaches can be applied at different scales depending on the amounts of NPs to be isolated. This review will showcase recent research to highlight both the potential and constraints of using these cutting-edge technologies for the isolation of plant and microorganism metabolites. Several strategies involving their application will be examined and critically discussed. Graphical abstract
Collapse
Affiliation(s)
- Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
5
|
Jing SX, Ferreira D, Pandey P, Klein LL, Chittiboyina AG, McAlpine JB, Lankin DC, Alania Y, Reis-Havlat M, Bedran-Russo AK, Chen SN, Pauli GF. Unprecedented Benzoquinone Motifs Reveal Post-Oligomerizational Modification of Proanthocyanidins. J Org Chem 2023; 88:13490-13503. [PMID: 37748101 PMCID: PMC10921432 DOI: 10.1021/acs.joc.3c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Proanthocyanidins (PACs) are complex flavan-3-ol polymers with stunning chemical complexity due to oxygenation patterns, oxidative phenolic ring linkages, and intricate stereochemistry of their heterocycles and inter-flavan linkages. Being promising candidates for dental restorative biomaterials, trace analysis of dentin bioactive cinnamon PACs now yielded novel trimeric (1 and 2) and tetrameric (3) PACs with unprecedented o- and p-benzoquinone motifs (benzoquinonoid PACs). Challenges in structural characterization, especially their absolute configuration, prompted the development of a new synthetic-analytical approach involving comprehensive spectroscopy, including NMR with quantum mechanics-driven 1H iterative functionalized spin analysis (HifSA) plus experimental and computational electronic circular dichroism (ECD). Vital stereochemical information was garnered from synthesizing 4-(2,5-benzoquinone)flavan-3-ols and a truncated analogue of trimer 2 as ECD models. Discovery of the first natural benzoquinonoid PACs provides new evidence to the experimentally elusive PAC biosynthesis as their formation requires two oxidative post-oligomerizational modifications (POMs) that are distinct and occur downstream from both quinone-methide-driven oligomerization and A-type linkage formation. While Nature is known to achieve structural diversity of many major compound classes by POMs, this is the first indication of PACs also following this common theme.
Collapse
Affiliation(s)
- Shu-Xi Jing
- Pharmacognosy Institute, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Daneel Ferreira
- Department of Biomolecular Sciences, The University of Mississippi, University, Mississippi 38677, USA
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, USA
| | - Pankaj Pandey
- Department of Biomolecular Sciences, The University of Mississippi, University, Mississippi 38677, USA
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, USA
| | - Larry L. Klein
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Amar Gopal Chittiboyina
- Department of Biomolecular Sciences, The University of Mississippi, University, Mississippi 38677, USA
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, USA
| | - James B. McAlpine
- Pharmacognosy Institute, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - David C. Lankin
- Pharmacognosy Institute, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yvette Alania
- Department of General Dental Sciences, School of Dentistry, Marquette University, Milwaukee, Wisconsin 53233, USA
| | - Mariana Reis-Havlat
- Department of General Dental Sciences, School of Dentistry, Marquette University, Milwaukee, Wisconsin 53233, USA
| | - Ana K. Bedran-Russo
- Department of General Dental Sciences, School of Dentistry, Marquette University, Milwaukee, Wisconsin 53233, USA
| | - Shao-Nong Chen
- Pharmacognosy Institute, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Guido F. Pauli
- Pharmacognosy Institute, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
6
|
Jing SX, Reis M, Alania Y, McAlpine JB, Chen SN, Bedran-Russo AK, Pauli GF. B-type Proanthocyanidins with Dentin Biomodification Activity from Cocoa ( Theobroma cacao). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12456-12468. [PMID: 36134876 PMCID: PMC9547875 DOI: 10.1021/acs.jafc.2c04288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To enable translational studies, a scalable preparative isolation scheme was developed for underivatized cocoa (Theobroma cacao) proanthocyanidins (PACs), affording six all-B-type oligomeric PACs, including a new tetramer 4. Their structures, including absolute configuration, were unambiguously established by comprehensive spectroscopic and chemical methods. Evaluation of the PACs' dentin biomodification properties employed dynamic mechanical and infrared spectroscopic analyses in dentin bioassay models. PAC treatment enhanced the biomechanical strength of dentin by 5- to 15-fold compared to untreated dentin. Among the PAC agents, the pentamer, cinnamtannin A3 (6), led to the highest complex modulus value of 131 MPa, whereas the "branched" tetramer, 4, showed the lowest, yet still significant bioactivity. This study of specifically singly linked medium-length oligomeric PACs indicates that the linkage site is paramount in determining the potency of these PACs as dentin biomodifiers.
Collapse
Affiliation(s)
- Shu-Xi Jing
- Pharmacognosy Institute and Department of Pharmaceutical
Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612,
USA
| | - Mariana Reis
- Department of General Dental Sciences, School of Dentistry,
Marquette University, Milwaukee, WI 53233, USA
| | - Yvette Alania
- Department of General Dental Sciences, School of Dentistry,
Marquette University, Milwaukee, WI 53233, USA
| | - James B. McAlpine
- Pharmacognosy Institute and Department of Pharmaceutical
Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612,
USA
| | - Shao-Nong Chen
- Pharmacognosy Institute and Department of Pharmaceutical
Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612,
USA
| | - Ana K. Bedran-Russo
- Department of General Dental Sciences, School of Dentistry,
Marquette University, Milwaukee, WI 53233, USA
| | - Guido F. Pauli
- Pharmacognosy Institute and Department of Pharmaceutical
Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612,
USA
| |
Collapse
|