1
|
Risi G, Liu M, Vairoletti F, Quinn RJ, Salinas G. A Screening of 10,240 NatureBank Fractions Identifies Nematicidal Activity in Agelasine-Containing Extracts from Sponges. JOURNAL OF NATURAL PRODUCTS 2024; 87:1532-1539. [PMID: 38853528 DOI: 10.1021/acs.jnatprod.3c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Nematode infections affect a fifth of the human population, livestock, and crops worldwide, imposing a burden to global public health and economies, particularly in developing nations. Resistance to commercial anthelmintics has increased over the years in livestock infections and driven the pursuit for new drugs. We herein present a rapid, cost-effective, and automated assay for nematicide discovery using the free-living nematode Caenorhabditis elegans to screen a highly diverse natural product library enriched in bioactive molecules. Screening of 10,240 fractions obtained from extracts of various biological sources allowed the identification of 7 promising hit fractions, all from marine sponges. These fractions were further assayed for nematicidal activity against the sheep nematode parasite Haemonchus contortus and for innocuity in zebrafish. The most active extracts against parasites and innocuous toward vertebrates belong to two chemotypes. High-performance liquid chromatography (HPLC) coupled with nuclear magnetic resonance (NMR) revealed that the most abundant compound in one chemotype is halaminol A, an aminoalcohol previously identified in a small screen against H. contortus. Terpene-nucleotide hybrids known as agelasines predominate in the other chemotype. This study reinforces the power of C. elegans for nematicide discovery from large collections and the potential of the chemical diversity derived from marine invertebrate biota.
Collapse
Affiliation(s)
- Gastón Risi
- Worm Biology Lab, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4101, Australia
| | - Franco Vairoletti
- Worm Biology Lab, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, 11200 Montevideo, Uruguay
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4101, Australia
| | - Gustavo Salinas
- Worm Biology Lab, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
- Departamento de Biociencias, Facultad de Química, Universidad de la República, 11200 Montevideo, Uruguay
| |
Collapse
|
2
|
Strong EJ, Tan L, Hayes S, Whyte H, Davis RA, West NP. Identification of Axinellamines A and B as Anti-Tubercular Agents. Mar Drugs 2024; 22:298. [PMID: 39057407 PMCID: PMC11277618 DOI: 10.3390/md22070298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Tuberculosis remains a significant global health pandemic. There is an urgent need for new anti-tubercular agents to combat the rising incidence of drug resistance and to offer effective and additive therapeutic options. High-throughput screening of a subset of the NatureBank marine fraction library (n = 2000) identified a sample derived from an Australian marine sponge belonging to the order Haplosclerida that displayed promising anti-mycobacterial activity. Bioassay-guided fractionation of the organic extract from this Haplosclerida sponge led to the purification of previously identified antimicrobial pyrrole alkaloids, axinellamines A (1) and B (2). The axinellamine compounds were found to have a 90% minimum inhibitory concentration (MIC90) of 18 µM and 15 µM, respectively. The removal of protein and complex carbon sources reduced the MIC90 of 1 and 2 to 0.6 and 0.8 µM, respectively. The axinellamines were not toxic to mammalian cells at 25 µM and significantly reduced the intracellular bacterial load by >5-fold. These data demonstrate that axinellamines A and B are effective anti-tubercular agents and promising targets for future medicinal chemistry efforts.
Collapse
Affiliation(s)
- Emily J. Strong
- School of Chemistry and Molecular Biosciences, and the Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lendl Tan
- School of Chemistry and Molecular Biosciences, and the Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sasha Hayes
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
- NatureBank, Griffith University, Brisbane, QLD 4111, Australia
| | - Hayden Whyte
- School of Chemistry and Molecular Biosciences, and the Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rohan A. Davis
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
- NatureBank, Griffith University, Brisbane, QLD 4111, Australia
| | - Nicholas P. West
- School of Chemistry and Molecular Biosciences, and the Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
3
|
Cheng W, Huang Y, Gao H, Bold B, Zhang T, Yang D. Marine Natural Products as Novel Treatments for Parasitic Diseases. Handb Exp Pharmacol 2024. [PMID: 38554166 DOI: 10.1007/164_2024_712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Parasitic diseases including malaria, leishmaniasis, and trypanosomiasis have received significant attention due to their severe health implications, especially in developing countries. Marine natural products from a vast and diverse range of marine organisms such as sponges, corals, molluscs, and algae have been found to produce unique bioactive compounds that exhibit promising potent properties, including antiparasitic, anti-Plasmodial, anti-Leishmanial, and anti-Trypanosomal activities, providing hope for the development of effective treatments. Furthermore, various techniques and methodologies have been used to investigate the mechanisms of these antiparasitic compounds. Continued efforts in the discovery and development of marine natural products hold significant promise for the future of novel treatments against parasitic diseases.
Collapse
Affiliation(s)
- Wenbing Cheng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yanbing Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Haijun Gao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
- Chengdu Fifth People's Hospital (Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine/The Second Clinical Medical College), Chengdu, Sichuan, China
| | - Bolor Bold
- National Center for Zoonotic Disease, Ulaanbaatar, Mongolia
| | - Ting Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China.
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
- College of Food and Quality Engineering, Nanning University, Nanning, China
| |
Collapse
|
4
|
Carroll AR, Copp BR, Grkovic T, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2024; 41:162-207. [PMID: 38285012 DOI: 10.1039/d3np00061c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Covering: January to the end of December 2022This review covers the literature published in 2022 for marine natural products (MNPs), with 645 citations (633 for the period January to December 2022) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1417 in 384 papers for 2022), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of NP structure class diversity in relation to biota source and biome is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
5
|
Kamal M, Mukherjee S, Joshi B, Sindhu ZUD, Wangchuk P, Haider S, Ahmed N, Talukder MH, Geary TG, Yadav AK. Model nematodes as a practical innovation to promote high throughput screening of natural products for anthelmintics discovery in South Asia: Current challenges, proposed practical and conceptual solutions. Mol Biochem Parasitol 2023; 256:111594. [PMID: 37730126 DOI: 10.1016/j.molbiopara.2023.111594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
With the increasing prevalence of anthelmintic resistance in animals recorded globally, and the threat of resistance in human helminths, the need for novel anthelmintic drugs is greater than ever. Most research aimed at discovering novel anthelmintic leads relies on high throughput screening (HTS) of large libraries of synthetic small molecules in industrial and academic settings in developed countries, even though it is the tropical countries that are most plagued by helminth infections. Tropical countries, however, have the advantage of possessing a rich flora that may yield natural products (NP) with promising anthelmintic activity. Focusing on South Asia, which produces one of the world's highest research outputs in NP and NP-based anthelmintic discovery, we find that limited basic research and funding, a lack of awareness of the utility of model organisms, poor industry-academia partnerships and lack of technological innovations greatly limit anthelmintics research in the region. Here we propose that utilizing model organisms including the free-living nematode Caenorhabditis elegans, that can potentially allow rapid target identification of novel anthelmintics, and Oscheius tipulae, a closely related, free-living nematode which is found abundantly in soil in hotter temperatures, could be a much-needed innovation that can enable cost-effective and efficient HTS of NPs for discovering compounds with anthelmintic/antiparasitic potential in South Asia and other tropical regions that historically have devoted limited funding for such research. Additionally, increased collaborations at the national, regional and international level between parasitologists and pharmacologists/ethnobotanists, setting up government-industry-academia partnerships to fund academic research, creating a centralized, regional collection of plant extracts or purified NPs as a dereplication strategy and HTS library, and holding regional C. elegans/O. tipulae-based anthelmintics workshops and conferences to share knowledge and resources regarding model organisms may collectively promote and foster a NP-based anthelmintics landscape in South Asia and beyond.
Collapse
Affiliation(s)
- Muntasir Kamal
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| | - Suprabhat Mukherjee
- Department of Animal Science, Kazi Nazrul University, Asansol 713340, West Bengal, India
| | - Bishnu Joshi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Zia-Ud-Din Sindhu
- Department of Parasitology, University of Agriculture Faisalabad, Pakistan
| | - Phurpa Wangchuk
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns Campus, QLD 4878, Australia
| | | | - Nurnabi Ahmed
- Department of Parasitology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | - Timothy G Geary
- Institute of Parasitology, McGill University, Montreal, Canada; School of Biological Sciences, Queen's University-Belfast, Belfast, NI, UK
| | - Arun K Yadav
- Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
6
|
Salim AA, Butler MS, Blaskovich MAT, Henderson IR, Capon RJ. Natural products as anthelmintics: safeguarding animal health. Nat Prod Rep 2023; 40:1754-1808. [PMID: 37555325 DOI: 10.1039/d3np00019b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Covering literature to December 2022This review provides a comprehensive account of all natural products (500 compounds, including 17 semi-synthetic derivatives) described in the primary literature up to December 2022, reported to be capable of inhibiting the egg hatching, motility, larval development and/or the survival of helminths (i.e., nematodes, flukes and tapeworms). These parasitic worms infect and compromise the health and welfare, productivity and lives of commercial livestock (i.e., sheep, cattle, horses, pigs, poultry and fish), companion animals (i.e., dogs and cats) and other high value, endangered and/or exotic animals. Attention is given to chemical structures, as well as source organisms and anthelmintic properties, including the nature of bioassay target species, in vivo animal hosts, and measures of potency.
Collapse
Affiliation(s)
- Angela A Salim
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Mark S Butler
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Mark A T Blaskovich
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Robert J Capon
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| |
Collapse
|