1
|
Albino RDC, Oliveira DRD. Ethnobotanical knowledge and utilization patterns of Burseraceae resins in Brazil. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118920. [PMID: 39393562 DOI: 10.1016/j.jep.2024.118920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 09/28/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Amid all the Brazilian phytodiversity, in all its shades and shapes, black and white amorphous masses glued to the barks of Burseraceae species stand out as some of the nation's most appreciated plant medicinal resources. Burseraceae resins have been used in all macroregions of Brazil, wherever they occur, for a variety of medicinal purposes. However, despite ongoing interest in them, their cultural and health relevance in the country has been underexamined. AIM OF THE STUDY This review aimed to illuminate the therapeutic importance and potential of Brazilian Burseraceae by assembling the ethnomedicinal, chemical, and pharmacological data available on its resins used in Brazil. MATERIALS AND METHODS A search for journal articles documenting local ethnomedicinal uses of Burseraceae resins and reporting chemical and pharmacological data associated with their botanical sources was conducted in ScienceDirect, Google Scholar, and PubMed databases. Books and theses were also appraised for such information. RESULTS At least 21 Burseraceae taxa, belonging to Protium, Trattinnickia, and Commiphora, are recorded as sources of medicinal resins in Brazil. Protium and Trattinickia yield oleoresins typically rich in mono- and triterpenoids, especially the pentacyclic triterpenoids α- and β-amyrin. Although Commiphora oleo-gum-resins are expected to differ significantly from Protium and Trattinickia oleoresins by the presence of gum fractions, they often exhibit distinct terpenoid compositional patterns, characterized by a high proportion of sesquiterpenoids and tetracyclic triterpenoids. Burseraceae resins are more frequently cited in the Brazilian ethnomedicinal literature for relieving headaches and healing wounds. Pharmacological evidence corroborates the potential of Burseraceae resins against these and some other conditions and diseases, however, further studies are needed to confirm their efficacy and safety when used topically and through inhalation-the two primary routes of administration explored for them in Brazil. CONCLUSIONS The present review unearths a consistent, persistent, and cross-cultural pattern of using Burseraceae resins against pain conditions. But to really tap into the Burseraceae's therapeutic potential in Brazil, we first need to address the following gaps: (a) conduct more thorough pharmacological studies, including clinical trials; (b) give more attention to the triterpenoid fraction of Burseraceae oleoresins, not only to essential oils and α- and β-amyrin; and (c) deepen our understanding of the impact of resin aging on chemical composition.
Collapse
Affiliation(s)
- Rayane da Cruz Albino
- Laboratory of Bioprospection and Applied Ethnopharmacology, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil.
| | - Danilo Ribeiro de Oliveira
- Laboratory of Bioprospection and Applied Ethnopharmacology, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Hussain H, Xiao J, Ali A, Green IR, Westermann B. Unusually cyclized triterpenoids: occurrence, biosynthesis and chemical synthesis. Nat Prod Rep 2023; 40:412-451. [PMID: 36458822 DOI: 10.1039/d2np00033d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Covering: 2009 to 2021Biosynthetically, most of the syntheses of triterpenes follow the cascade cyclization and rearrangement of the acyclic precursors viz., squalene (S) and 2,3-oxidosqualene (OS), which lead to the very well known tetra- and pentacyclic triterpene skeletons. Aside from these, numerous other triterpenoid molecules are also reported from various natural sources and their structures are derived from "S" and "OS" via some unusual cyclization operations which are different from the usual tetra- and pentacyclic frameworks. Numerous compelling advances have been made and reported in the identification of these unusual cyclized mono-, di-, tri- and tetracyclic triterpenes between 2009 and 2021. Besides a dramatic increase in the newly isolated uncommon cyclized triterpenoids, substantial progress in the (bio)-synthesis of these triterpenes has been published along with significant progress in their biological effects. In this review, 180 new unusual cyclized triterpenoids together with their demonstrated biogenetic pathways, syntheses and biological effects will be categorized and discussed.
Collapse
Affiliation(s)
- Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale) D-06120, Germany.
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.,Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, E-32004, Spain
| | - Akbar Ali
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ivan R Green
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch 7600, South Africa
| | - Bernhard Westermann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale) D-06120, Germany.
| |
Collapse
|
3
|
Luo ZH, Zeng J, Yu HY, Huang HY, Bao XF, Qin SY, Chen GD, Zhou ZQ, Zhi H, Yao XS, Gao H. Astramalabaricosides A-T, Highly Oxygenated Malabaricane Triterpenoids with Migratory Inhibitory Activity from Astragalus membranaceus var. mongholicus. JOURNAL OF NATURAL PRODUCTS 2022; 85:2312-2331. [PMID: 36137221 DOI: 10.1021/acs.jnatprod.2c00494] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Twenty new malabaricane triterpenoids, astramalabaricosides A-T (1-20), were isolated from the roots of Astragalus membranaceus var. mongholicus (Astragali Radix). Their structures were determined by spectroscopic analysis, and the use of the circular dichroism exciton chirality method, quantum chemical calculations, and chemical methods. Malabaricane triterpenoids, an unusual group with the 6-6-5-tricyclic core, are distributed in plants (e.g., Simaroubaceae, Polypodiaceae, and Fabaceae), a marine sponge, and fungi, and their number obtained to date is limited. Compounds 1-20 were characterized as glycosides with a highly oxygenated side chain, and 13-20 were the first cyclic carbonate derivatives among the malabaricane triterpenoids. The stereocluster formed from the continuous hydroxylated chiral carbons in each highly oxygenated side chain and the 6-6-5-tricyclic core system were entirely segregated, and the independent identification of their stereoconfigurations required considerable effort. The migratory inhibitory and antiproliferative activities of 1-20 were evaluated by wound-healing and cell-viability assays, respectively. Most compounds showed significant migratory inhibitory activity, and a preliminary structure-activity relationship was developed. Malabaricane triterpenoids are being reported in the genus Astragalus for the first time.
Collapse
Affiliation(s)
- Zhi-Hui Luo
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, P. R. China
| | - Jin Zeng
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, P. R. China
| | - Hai-Yang Yu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, P. R. China
| | - Hui-Yun Huang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, P. R. China
| | - Xue-Feng Bao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, P. R. China
| | - Sheng-Ying Qin
- Clinical Experimental Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, P. R. China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, P. R. China
| | - Zheng-Qun Zhou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, P. R. China
| | - Hui Zhi
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, P. R. China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
4
|
Mukhija M, Joshi BC, Bairy PS, Bhargava A, Sah AN. Lignans: a versatile source of anticancer drugs. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:76. [PMID: 35694188 PMCID: PMC9166195 DOI: 10.1186/s43088-022-00256-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/17/2022] [Indexed: 12/18/2022] Open
Abstract
Background Cancer is considered as the second deadliest disease globally. Plants have continuously offered unique secondary metabolites with remarkable biological applications. Lignans have gained great importance due to their biological activity. Previous studies revealed that the most remarkable bioactivity of lignan class of molecules is anticancer. They are derived from the oxidative dimerization of two phenylpropanoid units. This review covers the isolated anticancer lignans and their mechanistic aspects. Main body A bibliographic investigation was performed by analyzing the information available on anticancer lignans in the internationally accepted scientific databases including Web of Science, SciFinder, PubMed, Scopus, and Google Scholar. In this review we have tried to sum up the isolated anticancerous lignan, its source, active plant part, extract and various cell lines used to establish different studies. Here we have included a total number of 113 natural lignans. Many studies that mainly performed in human cell lines have reported. Very few plants have been evaluated for their in vivo anticancer activity. Conclusion It can be concluded that in near future the lignans may be an effective pharmacon for the treatment of cancer. Fruitful areas of future research may be in modifying natural lignans or synthesizing new lignans with structural diversity and potent pharmacological activities. Extensive studies are needed to be done highlighting the mechanism of anticancer action of explored and unexplored plants. The data will definitely attract many researchers to start further experimentation that might lead to the drugs for the cancer treatment. Graphical Abstract ![]()
Collapse
|
5
|
Fouquieria splendens: A source of phenolic compounds with antioxidant and antiproliferative potential. Eur J Integr Med 2022. [DOI: 10.1016/j.eujim.2021.102084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Stonik VA, Kolesnikova SA. Malabaricane and Isomalabaricane Triterpenoids, Including Their Glycoconjugated Forms. Mar Drugs 2021; 19:327. [PMID: 34198756 PMCID: PMC8228503 DOI: 10.3390/md19060327] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 12/22/2022] Open
Abstract
In this review, we discuss structural diversity, taxonomic distribution, biological activities, biogenesis, and synthesis of a rare group of terpenoids, the so-called malabaricane and isomalabaricane triterpenoids, as well as some compounds derived from them. Representatives of these groups were found in some higher and lower terrestrial plants, as well as in some fungi, and in a relatively small group of marine sponges. The skeletal systems of malabaricanes and isomalabaricanes are similar to each other, but differ principally in the stereochemistry of their tricyclic core fragments, consisting of two six-membered and one five-membered rings. Evolution of these triterpenoids provides variety of rearranged, oxidized, and glycoconjugated products. These natural compounds have attracted a lot of attention for their biosynthetic origin and biological activity, especially for their extremely high cytotoxicity against tumor cells as well as promising neuroprotective properties in nanomolar concentrations.
Collapse
Affiliation(s)
- Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia
- School of Natural Sciences, Far Eastern Federal University, Sukhanova Str. 8, 690000 Vladivostok, Russia
| | - Sophia A. Kolesnikova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia
| |
Collapse
|
7
|
Salas-Oropeza J, Jimenez-Estrada M, Perez-Torres A, Castell-Rodriguez AE, Becerril-Millan R, Rodriguez-Monroy MA, Jarquin-Yañez K, Canales-Martinez MM. Wound Healing Activity of α-Pinene and α-Phellandrene. Molecules 2021; 26:molecules26092488. [PMID: 33923276 PMCID: PMC8123182 DOI: 10.3390/molecules26092488] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Bursera morelensis is used in Mexican folk medicine to treat wounds on the skin. Recently, it was shown that the essential oil (EO) of B. morelensis has wound healing activity, accelerating cutaneous wound closure and generating scars with good tensile strength. α-pinene (PIN) and α-phellandrene (FEL) are terpenes that have been found in this EO, and it has been shown in different studies that both have anti-inflammatory activity. The aim of this study was to determine the wound healing activity of these two terpenes. The results of in vitro tests demonstrate that PIN and FEL are not cytotoxic at low concentrations and that they do not stimulate fibroblast cell proliferation. In vivo tests showed that the terpenes produce stress-resistant scars and accelerate wound contraction, due to collagen deposition from the early stages, in wounds treated with both terpenes. Therefore, we conclude that both α-pinene and α-phellandrene promote the healing process; this confirms the healing activity of the EO of B. morelensis, since having these terpenes as part of its chemical composition explains part of its demonstrated activity.
Collapse
Affiliation(s)
- Judith Salas-Oropeza
- Laboratorio de Farmacognosia, UBIPRO Facultad de Estudios Superiores Iztacala, UNAM, 54108 Tlalnepantla, Mexico; (J.S.-O.); (R.B.-M.)
| | - Manuel Jimenez-Estrada
- Instituto de Quimica, UNAM, Circuito Exterior, Ciudad Universitaria, 02860 D.F., Mexico;
| | - Armando Perez-Torres
- Facultad de Medicina, UNAM, Circuito Exterior, Ciudad Universitaria, 02860 D.F., Mexico; (A.P.-T.); (A.E.C.-R.); (K.J.-Y.)
| | - Andres Eliu Castell-Rodriguez
- Facultad de Medicina, UNAM, Circuito Exterior, Ciudad Universitaria, 02860 D.F., Mexico; (A.P.-T.); (A.E.C.-R.); (K.J.-Y.)
| | - Rodolfo Becerril-Millan
- Laboratorio de Farmacognosia, UBIPRO Facultad de Estudios Superiores Iztacala, UNAM, 54108 Tlalnepantla, Mexico; (J.S.-O.); (R.B.-M.)
| | | | - Katia Jarquin-Yañez
- Facultad de Medicina, UNAM, Circuito Exterior, Ciudad Universitaria, 02860 D.F., Mexico; (A.P.-T.); (A.E.C.-R.); (K.J.-Y.)
| | - Maria Margarita Canales-Martinez
- Laboratorio de Farmacognosia, UBIPRO Facultad de Estudios Superiores Iztacala, UNAM, 54108 Tlalnepantla, Mexico; (J.S.-O.); (R.B.-M.)
- Correspondence: ; Tel.: +52-55-2-769-21-73; Fax: +52-55-5-623-12-25
| |
Collapse
|
8
|
Phytochemical investigation on the fruits of Camptotheca acuminata and their chemotaxonomic significance. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Torres-Moreno H, Marcotullio MC, Velázquez C, Ianni F, Garibay-Escobar A, Robles-Zepeda RE. Cucurbitacin IIb, a steroidal triterpene from Ibervillea sonorae induces antiproliferative and apoptotic effects on cervical and lung cancer cells. Steroids 2020; 157:108597. [PMID: 32068079 DOI: 10.1016/j.steroids.2020.108597] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/07/2019] [Accepted: 02/05/2020] [Indexed: 01/28/2023]
Abstract
Chemical studies on Ibervillea sonorae (S. Watson) Greene root led to isolation and chemical characterization of diverse cucurbitacin triterpenoid compounds such as kinoin A, B, C, and their glucosides. In previous studies, we demonstrated that kinoin A inhibits the cell proliferation on diverse cell line and induce apoptosis in HeLa cells. Therefore, the study of the isolated compounds from the extracts continued to be necessary. The objective of the present work was to isolate and chemically characterize the active compounds of the methanolic extract of the roots of I. sonorae and to evaluate their antiproliferative activity and induction of apoptosis. By chromatographic column separation and using NMR spectroscopy experiments, cucurbitacin IIb (CIIb), known as 23,24-dihydrocucurbitacin F or hemslecin B, was isolated and identified for the first time as a chemical constituent of the crude methanolic extract of this plant. The antiproliferative activity of CIIb was evaluated by MTT assay, and the apoptosis induction capacity was monitored by annexin V-FITC/propidium iodide using flow cytometry. CIIb showed a pronounced effect on the proliferation of HeLa and A549 tumor cells, with IC50 of 7.3 and 7.8 µM, respectively, but was less effective against L929 non-cancerous murine cell line. Apoptosis induction capacity of CIIb on HeLa and A549 was monitored by annexin V-FITC/propidium iodide using flow cytometry. Exposure of HeLa and A549 with CIIb (8 µM) for 24 h increased 56.9 and 52.3% respectively of the total apoptosis compared to the negative control (p < 0.005). CIIb, isolated for the first time from I. sonorae, showed antiproliferative activity against HeLa and A549 cell lines by inducing cell death by apoptosis.
Collapse
Affiliation(s)
- Heriberto Torres-Moreno
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora 83000, Mexico; Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Avenida Universidad e Irigoyen, Caborca, Sonora 83621, Mexico
| | - Maria Carla Marcotullio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia - Via del Liceo, 1, 06123 Perugia, Italy
| | - Carlos Velázquez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora 83000, Mexico
| | - Federica Ianni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia - Via Fabretti, 48-06123 Perugia, Italy
| | - Adriana Garibay-Escobar
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora 83000, Mexico
| | - Ramón Enrique Robles-Zepeda
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora 83000, Mexico.
| |
Collapse
|
10
|
Bioassay-Guided Isolation of Antiproliferative Compounds from Limbarda crithmoides (L.) Dumort. Molecules 2020; 25:molecules25081893. [PMID: 32325960 PMCID: PMC7221903 DOI: 10.3390/molecules25081893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
Limbarda crithmoides (L.) Dumort (Asteraceae) n-hexane extract displayed high cell proliferation inhibitory activity against acute myeloid leukaemia cells (OCI-AML3) and was therefore subjected to a bioassay-guided multistep separation procedure. Two thymol derivatives, namely 10-acetoxy-8,9-epoxythymol tiglate (1) and 10-acetoxy-9-chloro-8,9-dehydrothymol (2), were isolated and identified by means of NMR spectroscopy. Both of them exhibited a significant dose-dependent inhibition of cell proliferation.
Collapse
|
11
|
Salas-Oropeza J, Jimenez-Estrada M, Perez-Torres A, Castell-Rodriguez AE, Becerril-Millan R, Rodriguez-Monroy MA, Canales-Martinez MM. Wound Healing Activity of the Essential Oil of Bursera morelensis, in Mice. Molecules 2020; 25:molecules25081795. [PMID: 32295241 PMCID: PMC7221833 DOI: 10.3390/molecules25081795] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 01/22/2023] Open
Abstract
Bursera morelensis is used in Mexican folk medicine to treat wounds on the skin. It is an endemic tree known as “aceitillo”, and the antibacterial and antifungal activity of its essential oil has been verified; it also acts as an anti-inflammatory. All of these reported biological activities make the essential oil of B. morelensis a candidate to accelerate the wound-healing process. The objective was to determine the wound-healing properties of B. morelensis’ essential oil on a murine model. The essential oil was obtained by hydro-distillation, and the chemical analysis was performed by gas chromatography-mass spectrometry (GC-MS). In the murine model, wound-healing efficacy (WHE) and wound contraction (WC) were evaluated. Cytotoxic activity was evaluated in vitro using peritoneal macrophages from BALB/c mice. The results showed that 18 terpenoid-type compounds were identified in the essential oil. The essential oil had remarkable WHE regardless of the dose and accelerated WC and was not cytotoxic. In vitro tests with fibroblasts showed that cell viability was dose-dependent; by adding 1 mg/mL of essential oil (EO) to the culture medium, cell viability decreased below 80%, while, at doses of 0.1 and 0.01 mg/mL, it remained around 90%; thus, EO did not intervene in fibroblast proliferation, but it did influence fibroblast migration when wound-like was done in monolayer cultures. The results of this study demonstrated that the essential oil was a pro-wound-healing agent because it had good healing effectiveness with scars with good tensile strength and accelerated repair. The probable mechanism of action of the EO of B. morelensis, during the healing process, is the promotion of the migration of fibroblasts to the site of the wound, making them active in the production of collagen and promoting the remodeling of this collagen.
Collapse
Affiliation(s)
- Judith Salas-Oropeza
- Laboratorio de Farmacognosia, UBIPRO, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo, Mex 54090, Mexico; (J.S.-O.); (R.B.-M.)
| | - Manuel Jimenez-Estrada
- Instituto de Química, UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacan CDMX 04510, Mexico;
| | - Armando Perez-Torres
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, CDMX 04510, Mexico; (A.P.-T.); (A.E.C.-R.)
| | - Andres Eliu Castell-Rodriguez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, CDMX 04510, Mexico; (A.P.-T.); (A.E.C.-R.)
| | - Rodolfo Becerril-Millan
- Laboratorio de Farmacognosia, UBIPRO, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo, Mex 54090, Mexico; (J.S.-O.); (R.B.-M.)
| | - Marco Aurelio Rodriguez-Monroy
- Carrera de Medicina, Facultad de Estudios Superiores-Iztacala, UNAM, Av. de los Barrios No. 1, Los Reyes Iztacala Tlalnepantla, Edo, Mex 54090, Mexico;
| | - Maria Margarita Canales-Martinez
- Laboratorio de Farmacognosia, UBIPRO, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo, Mex 54090, Mexico; (J.S.-O.); (R.B.-M.)
- Correspondence: ; Tel.: +52-55-5-623-11-27; Fax: +52-55-5-623-12-25
| |
Collapse
|
12
|
Sánchez-Monroy MB, León-Rivera I, Llanos-Romero RE, García-Bores AM, Guevara-Fefer P. Cytotoxic activity and triterpenes content of nine Mexican species of Bursera. Nat Prod Res 2020; 35:4881-4885. [PMID: 32174184 DOI: 10.1080/14786419.2020.1739680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The genus Bursera (Burseraceae) is considered an interesting source of antitumour compounds. This study aimed to evaluate the cytotoxic activity of the dichloromethane-soluble extracts from the bark of nine Mexican Bursera species. The chemical components of the extracts were determined by NMR and mass spectroscopy, whereas its cytotoxicity was tested using the sulphorhodamine (SRB) method on seven cell lines. Triterpenes and fatty acids were the most abundant components found in the extracts. A quantification by HPTLC - densitometry, showed that the species B. copallifera had the highest content of amyrins (287 µg/mg extract) followed by B. submoniliformis (159.5 µg/mg) and B. bicolor (156.5 µg/mg). Regarding cytotoxicicity, the species B. bicolor caused the highest growth inhibition (>90%) in colon (HCT-15) and lung (SK-LU1) lines; while B. fagaroides, B. grandifolia, B. morelensis, B. bicolor and B. linanoe were active in the SK-LU1cell line.
Collapse
Affiliation(s)
- Ma Beatriz Sánchez-Monroy
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, CdMx, México
| | - Ismael León-Rivera
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - R Enrique Llanos-Romero
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, CdMx, México
| | - Ana María García-Bores
- Laboratorio de Fitoquímica, UBIPRO, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Edo. de México, México
| | - Patricia Guevara-Fefer
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, CdMx, México
| |
Collapse
|
13
|
Abstract
This review covers newly isolated triterpenoids that have been reported during 2015.
Collapse
|
14
|
Palframan MJ, Pattenden G. The verticillenes. Pivotal intermediates in the biosynthesis of the taxanes and the phomactins. Nat Prod Rep 2019; 36:108-121. [DOI: 10.1039/c8np00034d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent enzymatic studies, quantum chemical calculations and biomimetic conversions consolidate the role of verticillenes in the biosynthesis of taxanes and phomactins.
Collapse
Affiliation(s)
| | - Gerald Pattenden
- School of Chemistry
- The University of Nottingham
- University Park
- Nottingham
- UK
| |
Collapse
|
15
|
Domínguez F, Maycotte P, Acosta-Casique A, Rodríguez-Rodríguez S, Moreno DA, Ferreres F, Flores-Alonso JC, Delgado-López MG, Pérez-Santos M, Anaya-Ruiz M. Bursera copallifera Extracts Have Cytotoxic and Migration-Inhibitory Effects in Breast Cancer Cell Lines. Integr Cancer Ther 2018; 17:654-664. [PMID: 29652200 PMCID: PMC6142086 DOI: 10.1177/1534735418766416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/09/2018] [Accepted: 02/12/2018] [Indexed: 11/16/2022] Open
Abstract
Plants from the Bursera genus are widely distributed in the tropical dry forests of Mexico. In traditional medicine, extracts from different species of Bursera have been used for a wide range of biological activities, including the treatment of cancer-related symptoms. Compounds present in the Bursera genus include lignans, flavonoids, steroids, short-chain aliphatic alkanes, acetates, alcohols, ketones, and terpenoids. In some instances, secondary metabolites of these classes of compounds may induce cytotoxicity, and therefore we sought to investigate the effects of B. copallifera leaf extracts in breast cancer cell lines to evaluate their potential therapeutic value for the treatment of breast cancer, one of the most prevalent types of cancer in women worldwide. Two B. copallifera leaf extracts exerted cytotoxic effects on both the MCF7 and MDA-MB-231 breast cancer cell line models. The cytotoxic effect was more evident in the MDA-MB-231 triple negative cell line inhibiting also the migration of these cells. We identified hydroxycinnamic acid and flavonol derivatives as major phenolic components of the extracts. Our results strongly suggest a potential use of the Bursera leaf extracts rich in phenolic compounds, their individual phenolic compounds, or their combinations for the treatment of breast cancer.
Collapse
Affiliation(s)
| | - Paola Maycotte
- Instituto Mexicano del Seguro Social,
Atlixco, Puebla, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
An Ethnopharmacological, Phytochemical and Pharmacological Review on Lignans from Mexican Bursera spp. Molecules 2018; 23:molecules23081976. [PMID: 30096772 PMCID: PMC6222726 DOI: 10.3390/molecules23081976] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/01/2018] [Accepted: 08/05/2018] [Indexed: 11/28/2022] Open
Abstract
The genus Bursera belongs to the family Burseraceae and has been used in traditional Mexican medicine for treating various pathophysiological disorders. The most representative phytochemicals isolated from this genus are terpenoids and lignans. Lignans are phenolic metabolites known for their antioxidant, apoptotic, anti-cancer, anti-inflammatory, anti-bacterial, anti-viral, anti-fungal, and anti-protozoal properties. Though the genus includes more than 100 species, we have attempted to summarize the biological activities of the 34 lignans isolated from selected Mexican Bursera plants.
Collapse
|
17
|
Palframan MJ, Bandi KK, Hamilton JG, Pattenden G. Sobralene, a new sex-aggregation pheromone and likely shunt metabolite of the taxadiene synthase cascade, produced by a member of the sand fly Lutzomyia longipalpis species complex. Tetrahedron Lett 2018; 59:1921-1923. [PMID: 29780183 PMCID: PMC5937913 DOI: 10.1016/j.tetlet.2018.03.088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/21/2018] [Accepted: 03/29/2018] [Indexed: 11/30/2022]
Abstract
A new sex-aggregation pheromone, sobralene, produced by the sand fly Lutzomyia longipalpis from Sobral (Ceará State, Brazil) is shown to have the novel 6,12-membered ring-fused diterpene structure 3. It is proposed that sobralene is a likely shunt metabolite of the taxadiene synthase-catalysed cyclisation of geranygeranyl diphosphate.
Collapse
Affiliation(s)
- Matthew J. Palframan
- School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Krishna K. Bandi
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - James G.C. Hamilton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Gerald Pattenden
- School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
18
|
Adorisio S, Fierabracci A, Gigliarelli G, Muscari I, Cannarile L, Liberati AM, Marcotullio MC, Riccardi C, Curini M, Robles Zepeda RE, Delfino DV. The Hexane Fraction of Bursera microphylla A. Gray Induces p21-Mediated Anti-Proliferative and Pro-Apoptotic Effects in Human Cancer-Derived Cell Lines. Integr Cancer Ther 2018; 17:138-147. [PMID: 29235378 PMCID: PMC5950952 DOI: 10.1177/1534735417696721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 11/15/2022] Open
Abstract
Bursera microphylla (BM), one of the common elephant trees, is widely distributed in the Sonoran Desert in Mexico. The Seri ethnic group in the Sonoran Desert uses BM as an anti-inflammatory and painkiller drug for the treatment of sore throat, herpes labialis, abscessed tooth, and wound healing. Dried stems and leaves of BM are used in a tea to relieve painful urination and to stimulate bronchial secretion. Furthermore, BM is used for fighting venereal diseases. To investigate the effects of the hexane fraction of resin methanol extract (BM-H) on cell growth, the acute myeloid cell line (OCI-AML3) was treated with 250, 25, or 2.5 µg/mL of BM-H. The first 2 concentrations were able to significantly decrease OCI-AML3 cell number. This reduced cell number was associated with decreased S-phase, blockade of the G2/M phase of the cell cycle, and increased cell death. Similar results were obtained on all tested tumor cell lines of different origins. We found that blockade of the cell cycle was due to upregulation of p21 protein in a p53-independent way. Increase of p21 was possibly due to upstream upregulation of p-ERK (which stabilizes p21 protein) and downregulation of p-38 (which promotes its degradation). Regarding cell death, activation of caspase-3, but not of caspase-8 or -9, was detectable after BM-H treatment. In conclusion, these data suggest that the BM's hexane fraction inhibited proliferation of cell lines mainly by a p21-dependent, p53-independent mechanism and promoted apoptosis through activation of caspase-3, but not caspase-8 or -9.
Collapse
Affiliation(s)
- Sabrina Adorisio
- Section of Pharmacology, Department of
Medicine, University of Perugia, Perugia, Italy
| | - Alessandra Fierabracci
- Infettivology and Clinical Trials Area,
Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Giulia Gigliarelli
- Department of Pharmaceutical Sciences,
University of Perugia, Perugia, Italy
| | - Isabella Muscari
- Section of Onco-hematology, S. Maria Terni
Hospital, Department of Surgery and Medical Sciences, University of Perugia, Perugia,
Italy
| | - Lorenza Cannarile
- Section of Pharmacology, Department of
Medicine, University of Perugia, Perugia, Italy
| | - Anna Marina Liberati
- Section of Onco-hematology, S. Maria Terni
Hospital, Department of Surgery and Medical Sciences, University of Perugia, Perugia,
Italy
| | | | - Carlo Riccardi
- Section of Pharmacology, Department of
Medicine, University of Perugia, Perugia, Italy
| | - Massimo Curini
- Department of Pharmaceutical Sciences,
University of Perugia, Perugia, Italy
| | | | - Domenico V. Delfino
- Section of Pharmacology, Department of
Medicine, University of Perugia, Perugia, Italy
- Foligno Nursing School, Department of
Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
19
|
Liu B, Yang Y, Liu H, Xie Z, Li Q, Deng M, Li F, Peng J, Wu H. Screening for cytotoxic chemical constituents from Justicia procumbens by HPLC-DAD-ESI-MS and NMR. Chem Cent J 2018; 12:6. [PMID: 29372338 PMCID: PMC5785455 DOI: 10.1186/s13065-018-0371-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/08/2018] [Indexed: 11/10/2022] Open
Abstract
Background The Acanthaceae family is an important source of therapeutic drugs and ethno medicines. There are many famous medicinal plants from this family, such as Andrographis paniculata, Baphicacanthus cusia, and Dicliptera chinensis. Justicia procumbens (J. procumbens) is widely distributed in tropical and sub-tropical of the world. It has long been used in traditional Chinese medicine for cancer. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed the ethyl acetate extract of J. procumbens had a cytotoxic activity. Therefore, qualitative and quantitative analysis of the chemical constituents in the ethyl acetate extract was important for understanding its pharmacological mechanism. Results A high-performance liquid chromatography with diode array detection coupled to electrospray ionisation quadrupole time-of-flight tandem mass spectrometry procedure was established. Eleven dibenzylbutanes and four arylnaphthalenes were confirmed by HPLC–DAD–ESI–QTOF–MS analysis. A novel dibenzylbutane (5-methoxy-4,4′-di-O-methylsecolariciresinol-9′-monoacetate) and seven isomers of arylnaphthalene were isolated and characterized by NMR and QTOF–MS. Compounds 1, 2, and 13 were detected for the first time. The content of six lignans were determinated in the ethyl acetate extract. Conclusions This study showed that the cytotoxic activity assay of J. procumbens could be mainly attributed to the constituents of lignans. The bioactivity of the ethyl acetate extract and determined compounds support the traditional use of this plant in cancer. These chemical constituents may be developed as novel therapeutics.
Collapse
Affiliation(s)
- Bo Liu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, No.1, Huangjiahu West Road, Wuhan, 430065, China
| | - Yanfang Yang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, No.1, Huangjiahu West Road, Wuhan, 430065, China.,Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, 430065, People's Republic of China.,Collaborative Innovation Center of Traditional Chinese Medicine of New Products for Geriatrics Hubei Province, Wuhan, 430065, China
| | - Hongbin Liu
- Wuhan Institute of Physics and Mathematics (WIPM) of Chinese Academy of Sciences, West No.30 Xiao Hong Shan, Wuhan, 430071, China
| | - Zhoutao Xie
- Faculty of Pharmacy, Hubei University of Chinese Medicine, No.1, Huangjiahu West Road, Wuhan, 430065, China
| | - Qun Li
- Faculty of Pharmacy, Hubei University of Chinese Medicine, No.1, Huangjiahu West Road, Wuhan, 430065, China
| | - Meng Deng
- Faculty of Pharmacy, Hubei University of Chinese Medicine, No.1, Huangjiahu West Road, Wuhan, 430065, China
| | - Fangping Li
- Faculty of Pharmacy, Hubei University of Chinese Medicine, No.1, Huangjiahu West Road, Wuhan, 430065, China
| | - Jingling Peng
- Faculty of Pharmacy, Hubei University of Chinese Medicine, No.1, Huangjiahu West Road, Wuhan, 430065, China
| | - Hezhen Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, No.1, Huangjiahu West Road, Wuhan, 430065, China. .,Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, 430065, People's Republic of China. .,Collaborative Innovation Center of Traditional Chinese Medicine of New Products for Geriatrics Hubei Province, Wuhan, 430065, China.
| |
Collapse
|
20
|
Gigliarelli G, Zadra C, Cossignani L, Robles Zepeda RE, Rascón-Valenzuela LA, Velázquez-Contreras CA, Marcotullio MC. Two new lignans from the resin of Bursera microphylla A. gray and their cytotoxic activity. Nat Prod Res 2017; 32:2646-2651. [DOI: 10.1080/14786419.2017.1375922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Giulia Gigliarelli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Claudia Zadra
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Lina Cossignani
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Ramon Enrique Robles Zepeda
- Departamento de Ciencias Químico Biológicas, División de Ciencias Biológicas y de la Salud, Universidad de Sonora, Hermosillo, Mexico
| | - Luisa Alondra Rascón-Valenzuela
- Departamento de Ciencias Químico Biológicas, División de Ciencias Biológicas y de la Salud, Universidad de Sonora, Hermosillo, Mexico
| | - Carlos Arturo Velázquez-Contreras
- Departamento de Ciencias Químico Biológicas, División de Ciencias Biológicas y de la Salud, Universidad de Sonora, Hermosillo, Mexico
| | | |
Collapse
|
21
|
Hajjar D, Kremb S, Sioud S, Emwas AH, Voolstra CR, Ravasi T. Anti-cancer agents in Saudi Arabian herbals revealed by automated high-content imaging. PLoS One 2017; 12:e0177316. [PMID: 28609451 PMCID: PMC5469452 DOI: 10.1371/journal.pone.0177316] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 04/25/2017] [Indexed: 12/14/2022] Open
Abstract
Natural products have been used for medical applications since ancient times. Commonly, natural products are structurally complex chemical compounds that efficiently interact with their biological targets, making them useful drug candidates in cancer therapy. Here, we used cell-based phenotypic profiling and image-based high-content screening to study the mode of action and potential cellular targets of plants historically used in Saudi Arabia’s traditional medicine. We compared the cytological profiles of fractions taken from Juniperus phoenicea (Arar), Anastatica hierochuntica (Kaff Maryam), and Citrullus colocynthis (Hanzal) with a set of reference compounds with established modes of action. Cluster analyses of the cytological profiles of the tested compounds suggested that these plants contain possible topoisomerase inhibitors that could be effective in cancer treatment. Using histone H2AX phosphorylation as a marker for DNA damage, we discovered that some of the compounds induced double-strand DNA breaks. Furthermore, chemical analysis of the active fraction isolated from Juniperus phoenicea revealed possible anti-cancer compounds. Our results demonstrate the usefulness of cell-based phenotypic screening of natural products to reveal their biological activities.
Collapse
Affiliation(s)
- Dina Hajjar
- KAUST Environmental Epigenetics Program, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Stephan Kremb
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Salim Sioud
- Analytical Core Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdul-Hamid Emwas
- NMR Core Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Christian R. Voolstra
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- * E-mail: (TR); (CRV)
| | - Timothy Ravasi
- KAUST Environmental Epigenetics Program, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- * E-mail: (TR); (CRV)
| |
Collapse
|
22
|
Islam MT. Diterpenes and Their Derivatives as Potential Anticancer Agents. Phytother Res 2017; 31:691-712. [PMID: 28370843 DOI: 10.1002/ptr.5800] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 12/21/2022]
Abstract
As therapeutic tools, diterpenes and their derivatives have gained much attention of the medicinal scientists nowadays. It is due to their pledging and important biological activities. This review congregates the anticancer diterpenes. For this, a search was made with selected keywords in PubMed, Science Direct, Web of Science, Scopus, The American Chemical Society and miscellaneous databases from January 2012 to January 2017 for the published articles. A total 28, 789 published articles were seen. Among them, 240 were included in this study. More than 250 important anticancer diterpenes and their derivatives were seen in the databases, acting in the different pathways. Some of them are already under clinical trials, while others are in the nonclinical and/or pre-clinical trials. In conclusion, diterpenes may be one of the lead molecules in the treatment of cancer. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Southern University Bangladesh, Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, 64.049-550, Brazil
| |
Collapse
|
23
|
Adorisio S, Fierabracci A, Gigliarelli G, Muscari I, Cannarile L, Liberati AM, Marcotullio MC, Riccardi C, Curini M, Robles Zepeda RE, Delfino DV. The Hexane Fraction of Bursera microphylla A Gray Induces p21-Mediated Antiproliferative and Proapoptotic Effects in Human Cancer-Derived Cell Lines. Integr Cancer Ther 2017; 16:426-435. [PMID: 28110563 PMCID: PMC5759934 DOI: 10.1177/1534735416688413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bursera microphylla (BM), one of the common elephant trees, is widely distributed in the Sonoran desert in Mexico. The Seri ethnic group in the Sonoran desert uses BM as an anti-inflammatory and painkiller drug for the treatment of sore throat, herpes labialis, abscessed tooth, and wound healing. Dried stems and leaves of BM are used in a tea to relieve painful urination and to stimulate bronchial secretion. Furthermore, BM is used for fighting venereal diseases. To investigate the effects of the hexane fraction of resin methanol extract (BM-H) on cell growth, the acute myeloid cell line (OCI-AML3) was treated with 250, 25, or 2.5 µg/mL of BM-H. The first 2 concentrations were able to significantly decrease OCI-AML3 cell number. This reduced cell number was associated with decreased S-phase, blockade of G2/M phase of the cell cycle, and increased cell death. Similar results were obtained on all tested tumor cell lines of different origins. We found that blockade of the cell cycle was a result of upregulation of p21 protein in a p53-independent way. Increase of p21 was possibly a result of upstream upregulation of p-ERK (which stabilizes p21 protein) and downregulation of p-38 (which promotes its degradation). Regarding cell death, activation of caspase-3, but not of caspase-8 or -9, was detectable after BM-H treatment. In conclusion, these data suggest that BM-H inhibited proliferation of cell lines mainly by a p21-dependent, p53-independent mechanism and promoted apoptosis through activation of caspase-3 but not caspase-8 or -9.
Collapse
Affiliation(s)
- Sabrina Adorisio
- 1 Section of Pharmacology, Department of Medicine, University of Perugia, Italy
| | - Alessandra Fierabracci
- 2 Infectivology and Clinical Trials Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Isabella Muscari
- 4 Section of Onco-hematology, S. Maria Terni Hospital, Department of Surgery and Medical Sciences, University of Perugia, Italy
| | - Lorenza Cannarile
- 1 Section of Pharmacology, Department of Medicine, University of Perugia, Italy
| | - Anna Marina Liberati
- 4 Section of Onco-hematology, S. Maria Terni Hospital, Department of Surgery and Medical Sciences, University of Perugia, Italy
| | | | - Carlo Riccardi
- 1 Section of Pharmacology, Department of Medicine, University of Perugia, Italy
| | - Massimo Curini
- 3 Department of Pharmaceutical Sciences, University of Perugia, Italy
| | | | - Domenico V Delfino
- 1 Section of Pharmacology, Department of Medicine, University of Perugia, Italy.,6 Foligno Nursing School, Department of Medicine, University of Perugia, Italy
| |
Collapse
|
24
|
Romero-Estrada A, Maldonado-Magaña A, González-Christen J, Bahena SM, Garduño-Ramírez ML, Rodríguez-López V, Alvarez L. Anti-inflammatory and antioxidative effects of six pentacyclic triterpenes isolated from the Mexican copal resin of Bursera copallifera. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:422. [PMID: 27784308 PMCID: PMC5081879 DOI: 10.1186/s12906-016-1397-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 10/11/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Bursera copallifera (Burseraceae) releases a resin known as "copal ancho" which has been used, since pre-Colombian times, as ceremonially burned incense and to treat tooth ache, tumors, arthritis, cold, cough, and various inflammatory conditions; however, its anti-inflammatory potential is poorly studied. The aim of the present study was to isolate, quantify, and to investigate the anti-inflammatory activity of triterpene compounds isolated from the copal resin of B. copallifera. METHODS The constituents present in the total resin of B. copallifera were obtained by successive chromatographic procedures, and quantitative analysis was performed by High Performance Liquid Chromatography (HPLC). Anti-inflammatory effects of the isolated triterpenes were investigated to determine their inhibitory effects on phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced edema in mice, viability and nitric oxide (NO) production inhibition on lipopolysaccharide (LPS)-activated RAW 264.7 macrophages, and inhibition of cyclooxygenase (COX)-1, COX-2 and secretory Phospholipase A2 (sPLA2) activities in vitro. RESULTS Quantitative phytochemical analysis of the copal resin showed the presence of six pentacyclic triterpenes of which, 3-epilupeol (59.75 % yield) and α-amyrin (21.1 % yield) are the most abundant. Among the isolated triterpenes, 3-epilupeol formiate (Inhibitory Concentration 50 % (IC50) = 0.96 μmol), α.amyrin acetate (IC50 = 1.17 μmol), lupenone (IC50 = 1.05 μmol), and 3-epilupeol (IC50 = 0.83 μmol) showed marked inhibition of the edema induced by TPA in mice. α-amyrin acetate and 3-epilupeol acetate, at 70 μM, also inhibited the activity of COX-2 by 62.85 and 73.28 % respectively, while α-amyrin and 3-epilupeol were the best inhibitors of the production of NO in LPS-activated RAW 264.7 cells with IC50 values of 15.5 and 8.98 μM respectively, and did not affected its viability. All compounds moderately inhibited the activity of PLA2. CONCLUSIONS This work supports the folk use of B. copallifera and provides the basis for future investigations about the therapeutic use of this resin in treating inflammation.
Collapse
Affiliation(s)
- Antonio Romero-Estrada
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Chamilpa, Cuernavaca, Morelos, 62209, Mexico
| | - Amalia Maldonado-Magaña
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Chamilpa, Cuernavaca, Morelos, 62209, Mexico
| | - Judith González-Christen
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Chamilpa, Cuernavaca, Morelos, 62209, Mexico
| | - Silvia Marquina Bahena
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Chamilpa, Cuernavaca, Morelos, 62209, Mexico
| | - María Luisa Garduño-Ramírez
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Chamilpa, Cuernavaca, Morelos, 62209, Mexico
| | - Verónica Rodríguez-López
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Chamilpa, Cuernavaca, Morelos, 62209, Mexico
| | - Laura Alvarez
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Chamilpa, Cuernavaca, Morelos, 62209, Mexico.
| |
Collapse
|
25
|
Abstract
This review covers the isolation and chemistry of diterpenoids from terrestrial as opposed to marine sources and includes labdanes, clerodanes, pimaranes, abietanes, kauranes, cembranes and their cyclization products. The literature from January to December, 2015 is reviewed.
Collapse
|
26
|
Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.). Molecules 2015; 20:22383-94. [PMID: 26703535 PMCID: PMC6332072 DOI: 10.3390/molecules201219849] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 11/19/2022] Open
Abstract
Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus) and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal.
Collapse
|