1
|
Luo P, Huang JH, Lv JM, Wang GQ, Hu D, Gao H. Biosynthesis of fungal terpenoids. Nat Prod Rep 2024; 41:748-783. [PMID: 38265076 DOI: 10.1039/d3np00052d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Covering: up to August 2023Terpenoids, which are widely distributed in animals, plants, and microorganisms, are a large group of natural products with diverse structures and various biological activities. They have made great contributions to human health as therapeutic agents, such as the anti-cancer drug paclitaxel and anti-malarial agent artemisinin. Accordingly, the biosynthesis of this important class of natural products has been extensively studied, which generally involves two major steps: hydrocarbon skeleton construction by terpenoid cyclases and skeleton modification by tailoring enzymes. Additionally, fungi (Ascomycota and Basidiomycota) serve as an important source for the discovery of terpenoids. With the rapid development of sequencing technology and bioinformatics approaches, genome mining has emerged as one of the most effective strategies to discover novel terpenoids from fungi. To date, numerous terpenoid cyclases, including typical class I and class II terpenoid cyclases as well as emerging UbiA-type terpenoid cyclases, have been identified, together with a variety of tailoring enzymes, including cytochrome P450 enzymes, flavin-dependent monooxygenases, and acyltransferases. In this review, our aim is to comprehensively present all fungal terpenoid cyclases identified up to August 2023, with a focus on newly discovered terpenoid cyclases, especially the emerging UbiA-type terpenoid cyclases, and their related tailoring enzymes from 2015 to August 2023.
Collapse
Affiliation(s)
- Pan Luo
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Jia-Hua Huang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Gao-Qian Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Dan Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Ruan Z, Jiao J, Zhao J, Liu J, Liang C, Yang X, Sun Y, Tang G, Li P. Genome sequencing and comparative genomics reveal insights into pathogenicity and evolution of Fusarium zanthoxyli, the causal agent of stem canker in prickly ash. BMC Genomics 2024; 25:502. [PMID: 38773367 PMCID: PMC11110190 DOI: 10.1186/s12864-024-10424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Fusarium zanthoxyli is a destructive pathogen causing stem canker in prickly ash, an ecologically and economically important forest tree. However, the genome lack of F. zanthoxyli has hindered research on its interaction with prickly ash and the development of precise control strategies for stem canker. RESULTS In this study, we sequenced and annotated a relatively high-quality genome of F. zanthoxyli with a size of 43.39 Mb, encoding 11,316 putative genes. Pathogenicity-related factors are predicted, comprising 495 CAZymes, 217 effectors, 156 CYP450s, and 202 enzymes associated with secondary metabolism. Besides, a comparative genomics analysis revealed Fusarium and Colletotrichum diverged from a shared ancestor approximately 141.1 ~ 88.4 million years ago (MYA). Additionally, a phylogenomic investigation of 12 different phytopathogens within Fusarium indicated that F. zanthoxyli originated approximately 34.6 ~ 26.9 MYA, and events of gene expansion and contraction within them were also unveiled. Finally, utilizing conserved domain prediction, the results revealed that among the 59 unique genes, the most enriched domains were PnbA and ULP1. Among the 783 expanded genes, the most enriched domains were PKc_like kinases and those belonging to the APH_ChoK_Like family. CONCLUSION This study sheds light on the genetic basis of F. zanthoxyli's pathogenicity and evolution which provides valuable information for future research on its molecular interactions with prickly ash and the development of effective strategies to combat stem canker.
Collapse
Affiliation(s)
- Zhao Ruan
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jiahui Jiao
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Junchi Zhao
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jiaxue Liu
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chaoqiong Liang
- Shaanxi Academy of Forestry, Xi'an, Shaanxi, 710082, People's Republic of China
| | - Xia Yang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yan Sun
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Guanghui Tang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Peiqin Li
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
3
|
Cong Z, Yin Q, Tian K, Mukoma NJ, Ouyang L, Hsiang T, Zhang L, Jiang L, Liu X. Genome Mining of Fungal Unique Trichodiene Synthase-like Sesquiterpene Synthases. J Fungi (Basel) 2024; 10:350. [PMID: 38786705 PMCID: PMC11122449 DOI: 10.3390/jof10050350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Sesquiterpenoids served as an important source for natural product drug discovery. Although genome mining approaches have revealed numerous novel sesquiterpenoids and biosynthetic enzymes, the comprehensive landscape of fungal sesquiterpene synthases (STSs) remains elusive. In this study, 123 previously reported fungal STSs were subjected to phylogenetic analysis, resulting in the identification of a fungi-specific STS family known as trichodiene synthase-like sesquiterpene synthases (TDTSs). Subsequently, the application of hidden Markov models allowed the discovery of 517 TDTSs from our in-house fungi genome library of over 400 sequenced genomes, and these TDTSs were defined into 79 families based on a sequence similarity network. Based on the novelty of protein sequences and the completeness of their biosynthetic gene clusters, 23 TDTS genes were selected for heterologous expression in Aspergillus oryzae. In total, 10 TDTSs were active and collectively produced 12 mono- and sesquiterpenes, resulting in the identification of the first chamipinene synthase, as well as the first fungi-derived cedrene, sabinene, and camphene synthases. Additionally, with the guidance of functionally characterized TDTSs, we found that TDTSs in Family 1 could produce bridged-cyclic sesquiterpenes, while those in Family 2 could synthesize spiro- and bridged-cyclic sesquiterpenes. Our research presents a new avenue for the genome mining of fungal sesquiterpenoids.
Collapse
Affiliation(s)
- Zhanren Cong
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| | - Qiang Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| | - Kunhong Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| | - Njeru Joe Mukoma
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| | - Lan Jiang
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing 210093, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| |
Collapse
|
4
|
Bakanas I, Lusi RF, Wiesler S, Hayward Cooke J, Sarpong R. Strategic application of C-H oxidation in natural product total synthesis. Nat Rev Chem 2023; 7:783-799. [PMID: 37730908 DOI: 10.1038/s41570-023-00534-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/22/2023]
Abstract
The oxidation of unactivated C-H bonds has emerged as an effective tactic in natural product synthesis and has altered how chemists approach the synthesis of complex molecules. The use of C-H oxidation methods has simplified the process of synthesis planning by expanding the choice of starting materials, limiting functional group interconversion and protecting group manipulations, and enabling late-stage diversification. In this Review, we propose classifications for C-H oxidations on the basis of their strategic purpose: type 1, which installs functionality that is used to establish the carbon skeleton of the target; type 2, which is used to construct a heterocyclic ring; and type 3, which installs peripheral functional groups. The reactions are further divided based on whether they are directed or undirected. For each classification, examples from recent literature are analysed. Finally, we provide two case studies of syntheses from our laboratory that were streamlined by the judicious use of C-H oxidation reactions.
Collapse
Affiliation(s)
- Ian Bakanas
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Robert F Lusi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Stefan Wiesler
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Jack Hayward Cooke
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
5
|
Lusi RF, Sennari G, Sarpong R. Strategy Evolution in a Skeletal Remodeling and C-H Functionalization-Based Synthesis of the Longiborneol Sesquiterpenoids. J Am Chem Soc 2022; 144:17277-17294. [PMID: 36098550 DOI: 10.1021/jacs.2c08136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Detailed herein are our synthesis studies of longiborneol and related natural products. Our overarching goals of utilizing a "camphor first" strategy enabled by skeletal remodeling of carvone, and late-stage diversification using C-H functionalizations, led to divergent syntheses of the target natural products. Our initial approach proposed a lithiate addition to unite two fragments followed by a Conia-ene or Pd-mediated cycloalkylation reaction sequence to install the seven-membered ring emblematic of the longibornane core. This approach was unsuccessful and evolved into a revised plan that employed a Wittig coupling and a radical cyclization to establish the core. A reductive radical cyclization, which was explored first, led to a synthesis of copaborneol, a structural isomer of longiborneol. Alternatively, a metal-hydride hydrogen atom transfer-initiated cyclization was effective for a synthesis of longiborneol. Late-stage C-H functionalization of the longibornane core led to a number of hydroxylated longiborneol congeners. The need for significant optimization of the strategies that were employed as well as the methods for C-H functionalization to implement these strategies highlights the ongoing challenges in applying these powerful reactions. Nevertheless, the reported approach enables functionalization of every natural product-relevant C-H bond in the longibornane skeleton.
Collapse
Affiliation(s)
- Robert F Lusi
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| | - Goh Sennari
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States.,O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Richmond Sarpong
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Lusi RF, Perea MA, Sarpong R. C-C Bond Cleavage of α-Pinene Derivatives Prepared from Carvone as a General Strategy for Complex Molecule Synthesis. Acc Chem Res 2022; 55:746-758. [PMID: 35170951 PMCID: PMC9616203 DOI: 10.1021/acs.accounts.1c00783] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The preparation of complex molecules (e.g., biologically active secondary metabolites) remains an important pursuit in chemical synthesis. By virtue of their sophisticated architectures, complex natural products inspire total synthesis campaigns that can lead to completely new ways of building molecules. In the twentieth century, one such paradigm which emerged was the use of naturally occurring "chiral pool terpenes" as starting materials for total synthesis. These inexpensive and naturally abundant molecules provide an easily accessed source of enantioenriched material for the enantiospecific preparation of natural products. The most common applications of chiral pool terpenes are in syntheses where their structure can, entirely or largely, be superimposed directly onto a portion of the target structure. Less straightforward uses, where the structure of the starting chiral pool terpene is not immediately evident in the structure of the target, can be more challenging to implement. Nevertheless, these "nonintuitive" approaches illustrate the ultimate promise of chiral pool-based strategies: that any single chiral pool terpene could be applied to syntheses of an indefinite number of structurally diverse complex synthetic targets.By definition, such strategies require carefully orchestrated sequences of C-C bond forming and C-C cleaving reactions which result in remodeling of the terpene architecture. The combination of traditional rearrangement chemistry and transition-metal-catalyzed C-C cleavage methods, the latter of which were primarily developed in the early twenty-first century, provide a rich and powerful toolbox for implementing this remodeling approach. In this Account, we detail our efforts to use a variety of C-C cleavage tactics in the skeletal remodeling of carvone, a chiral pool terpene. This skeletal remodeling strategy enabled the reorganization of the carvone scaffold into synthetic intermediates with a variety of carboskeletons, which we, then, leveraged for the total syntheses of structurally disparate terpene natural products.We begin by describing our initial investigations into various, mechanistically distinct C-C cleavage processes involving cyclobutanols synthesized from carvone. These initial studies showcased how electrophile-mediated semipinacol rearrangements of these cyclobutanols can lead to [2.2.1]bicyclic intermediates, and how Rh- and Pd-catalyzed C-C cleavage can lead to a variety of densely functionalized cyclohexenes pertinent to natural product synthesis. We, then, present several total syntheses using these synthetic intermediates, beginning with the bridged, polycyclic sesquiterpenoid longiborneol, which was synthesized from a carvone-derived [2.2.1]bicycle following a key semipinacol rearrangement. Next, we discuss how several members of the macrocyclic phomactin family were synthesized from a cyclohexene derivative prepared through a Rh-catalyzed C-C cleavage reaction. Finally, we describe our synthesis of the marine diterpene xishacorene B, which was prepared using a key Pd-catalyzed C-C cleavage/cross-coupling that facilitated the assembly of the core [3.3.1]bicycle that is resident in the natural product structure.
Collapse
Affiliation(s)
- Robert F Lusi
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Melecio A Perea
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Total synthesis of nine longiborneol sesquiterpenoids using a functionalized camphor strategy. Nat Chem 2022; 14:450-456. [DOI: 10.1038/s41557-021-00870-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/24/2021] [Indexed: 01/01/2023]
|
8
|
Chen X, Wei J, Tang J, Wu B. Two new prenylated glycine derivatives from the marine-derived fungus Fusarium sp. TW56-10. Chem Biodivers 2021; 19:e202100899. [PMID: 34957670 DOI: 10.1002/cbdv.202100899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022]
Abstract
Two new prenylated glycine derivatives (2-(4-((3-methylbut-2-en-1-yl)oxy)phenyl)acetyl)glycine (1) and methyl (2-(4-((3-methylbut-2-en-1yl)oxy)phenyl)acetyl)glycinate (2), along with nine known compounds (3-11) were purified from the marine-derived fungus Fusarium sp. TW56-10. Their chemical structures were determined by spectroscopic evidence, including extensive nuclear magnetic resonance (NMR), high-resolution electrospray ionization mass spectroscopy (HRESIMS) data, infrared radiation (IR) and Ultraviolet spectra (UV). Compound 4 (8-O-methyl-fusarubin) exhibited cytotoxic activity with IC50 value of 11.45 μM for A549 cells.
Collapse
Affiliation(s)
- Xuexia Chen
- Zhejiang University, Ocean College, Yuhangtang Road, No.688, 310058, Hangzhou, CHINA
| | - Jihua Wei
- Zhejiang University, Ocean College, Yuhangtang Road, No.688, 310058, Hangzhou, CHINA
| | - Jinshan Tang
- Jinan University, College of Pharmacy, Shougouling Road, 337, 510632, Guangzhou, CHINA
| | - Bin Wu
- Zhejiang University, Ocean College, Yuhangtang Road, No.866, 310058, Hangzhou, CHINA
| |
Collapse
|
9
|
Ding Y, Gardiner DM, Kazan K. Transcriptome analysis reveals infection strategies employed by Fusarium graminearum as a root pathogen. Microbiol Res 2021; 256:126951. [PMID: 34972022 DOI: 10.1016/j.micres.2021.126951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/27/2021] [Accepted: 10/15/2021] [Indexed: 10/19/2022]
Abstract
The fungal pathogen Fusarium graminearum (Fg) infects both heads and roots of cereal crops causing several economically important diseases such as head blight, seedling blight, crown rot and root rot. Trichothecene mycotoxins such as deoxynivalenol (DON), a well-known virulence factor, produced by Fg during disease development is also an important health concern. Although how Fg infects above-ground tissues is relatively well studied, very little is known about molecular processes employed by the pathogen during below-ground infection. Also unknown is the role of DON during root infection. In the present study, we analyzed the transcriptome of Fg during root infection of the model cereal Brachypodium distachyon (Bd). We also compared our Fg transcriptome data obtained during Bd root infection with those reported during wheat head infection. These analyses suggested that both shared and unique infection strategies were employed by the pathogen during colonization of different host tissues. Several metabolite biosynthesis genes induced in Fg during root infection could be linked to phytohormone production, implying that the pathogen likely interferes with root specific defenses. In addition, to understand the role of DON in Fg root infection, we analyzed the transcriptome of the DON deficient Tri5 mutant. These analyses showed that the absence of DON had a significant effect on fungal transcriptional responses. Although DON was produced in infected roots, this mycotoxin did not act as a Fg virulence factor during root infection. Our results reveal new mechanistic insights into the below-ground strategies employed by Fg that may benefit the development of new genetic tools to combat this important cereal pathogen.
Collapse
Affiliation(s)
- Yi Ding
- The Plant Breeding Institute, School of Life & Environmental Sciences, Faculty of Science, The University of Sydney, Cobbitty, 2570, New South Wales, Australia; Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, 306 Carmody Road, St Lucia, 4067, Queensland, Australia.
| | - Donald M Gardiner
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, St Lucia, 4067, Queensland, Australia; Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, 306 Carmody Road, St Lucia, 4067, Queensland, Australia
| | - Kemal Kazan
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, St Lucia, 4067, Queensland, Australia; Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, 306 Carmody Road, St Lucia, 4067, Queensland, Australia.
| |
Collapse
|
10
|
Dai Q, Zhang FL, Feng T. Sesquiterpenoids Specially Produced by Fungi: Structures, Biological Activities, Chemical and Biosynthesis (2015-2020). J Fungi (Basel) 2021; 7:1026. [PMID: 34947008 PMCID: PMC8705726 DOI: 10.3390/jof7121026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 12/28/2022] Open
Abstract
Fungi are widely distributed in the terrestrial environment, freshwater, and marine habitat. Only approximately 100,000 of these have been classified although there are about 5.1 million characteristic fungi all over the world. These eukaryotic microbes produce specialized metabolites and participate in a variety of ecological functions, such as quorum detection, chemical defense, allelopathy, and maintenance of symbiosis. Fungi therefore remain an important resource for the screening and discovery of biologically active natural products. Sesquiterpenoids are arguably the richest natural products from plants and micro-organisms. The rearrangement of the 15 high-ductility carbons gave rise to a large number of different skeletons. At the same time, abundant structural variations lead to a diversification of biological activity. This review examines the isolation, structural determination, bioactivities, and synthesis of sesquiterpenoids that were specially produced by fungi over the past five years (2015-2020).
Collapse
Affiliation(s)
| | | | - Tao Feng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Q.D.); (F.-L.Z.)
| |
Collapse
|
11
|
Laraba I, McCormick SP, Vaughan MM, Geiser DM, O’Donnell K. Phylogenetic diversity, trichothecene potential, and pathogenicity within Fusarium sambucinum species complex. PLoS One 2021; 16:e0245037. [PMID: 33434214 PMCID: PMC7802971 DOI: 10.1371/journal.pone.0245037] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/21/2020] [Indexed: 01/01/2023] Open
Abstract
The Fusarium sambucinum species complex (FSAMSC) is one of the most taxonomically challenging groups of fusaria, comprising prominent mycotoxigenic plant pathogens and other species with various lifestyles. Among toxins produced by members of the FSAMSC, trichothecenes pose the most significant threat to public health. Herein a global collection of 171 strains, originating from diverse hosts or substrates, were selected to represent FSAMSC diversity. This strain collection was used to assess their species diversity, evaluate their potential to produce trichothecenes, and cause disease on wheat. Maximum likelihood and Bayesian analyses of a combined 3-gene dataset used to infer evolutionary relationships revealed that the 171 strains originally received as 48 species represent 74 genealogically exclusive phylogenetically distinct species distributed among six strongly supported clades: Brachygibbosum, Graminearum, Longipes, Novel, Sambucinum, and Sporotrichioides. Most of the strains produced trichothecenes in vitro but varied in type, indicating that the six clades correspond to type A, type B, or both types of trichothecene-producing lineages. Furthermore, five strains representing two putative novel species within the Sambucinum Clade produced two newly discovered type A trichothecenes, 15-keto NX-2 and 15-keto NX-3. Strains of the two putatively novel species together with members of the Graminearum Clade were aggressive toward wheat when tested for pathogenicity on heads of the susceptible cultivar Apogee. In planta, the Graminearum Clade strains produced nivalenol or deoxynivalenol and the aggressive Sambucinum Clade strains synthesized NX-3 and 15-keto NX-3. Other strains within the Brachygibbosum, Longipes, Novel, Sambucinum, and Sporotrichioides Clades were nonpathogenic or could infect the inoculated floret without spreading within the head. Moreover, most of these strains did not produce any toxin in the inoculated spikelets. These data highlight aggressiveness toward wheat appears to be influenced by the type of toxin produced and that it is not limited to members of the Graminearum Clade.
Collapse
Affiliation(s)
- Imane Laraba
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit. 1815 N. University, Peoria, IL, United States of America
| | - Susan P. McCormick
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit. 1815 N. University, Peoria, IL, United States of America
| | - Martha M. Vaughan
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit. 1815 N. University, Peoria, IL, United States of America
| | - David M. Geiser
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, PA, United States of America
| | - Kerry O’Donnell
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit. 1815 N. University, Peoria, IL, United States of America
| |
Collapse
|
12
|
Zhang X, Guo J, Cheng F, Li S. Cytochrome P450 enzymes in fungal natural product biosynthesis. Nat Prod Rep 2021; 38:1072-1099. [PMID: 33710221 DOI: 10.1039/d1np00004g] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Covering: 2015 to the end of 2020 Fungal-derived polyketides, non-ribosomal peptides, terpenoids and their hybrids contribute significantly to the chemical space of total natural products. Cytochrome P450 enzymes play essential roles in fungal natural product biosynthesis with their broad substrate scope, great catalytic versatility and high frequency of involvement. Due to the membrane-bound nature, the functional and mechanistic understandings for fungal P450s have been limited for quite a long time. However, recent technical advances, such as the efficient and precise genome editing techniques and the development of several filamentous fungal strains as heterologous P450 expression hosts, have led to remarkable achievements in fungal P450 studies. Here, we provide a comprehensive review to cover the most recent progresses from 2015 to 2020 on catalytic functions and mechanisms, research methodologies and remaining challenges in the fast-growing field of fungal natural product biosynthetic P450s.
Collapse
Affiliation(s)
- Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China. and Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Jiawei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Fangyuan Cheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China. and Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
13
|
Chemistry and bioactivities of secondary metabolites from the genus Fusarium. Fitoterapia 2020; 146:104638. [DOI: 10.1016/j.fitote.2020.104638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/14/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
|
14
|
Wipfler R, McCormick SP, Proctor R, Teresi J, Hao G, Ward T, Alexander N, Vaughan MM. Synergistic Phytotoxic Effects of Culmorin and Trichothecene Mycotoxins. Toxins (Basel) 2019; 11:E555. [PMID: 31547160 PMCID: PMC6833022 DOI: 10.3390/toxins11100555] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/07/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
Species of the fungus Fusarium cause Fusarium head blight (FHB) of cereal crops and contaminate grain with sesquiterpenoid mycotoxins, including culmorin (CUL) and trichothecenes. While the phytotoxicity of trichothecenes, such as deoxynivalenol (DON), and their role in virulence are well characterized, less is known about the phytotoxicity of CUL and its role in the development of FHB. Herein, we evaluated the phytotoxic effects of purified CUL and CUL-trichothecene mixtures using Chlamydomonas reinhardtii growth and Triticum aestivum (wheat) root elongation assays. By itself, CUL did not affect growth in either system. However, mixtures of CUL with DON, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, or NX-3, but not with nivalenol, inhibited growth in a synergistic manner. Synergistic phytotoxic effects of CUL and DON were also observed on multiple plant varieties and species. The severity of wheat FHB caused by 15 isolates of Fusarium graminearum was negatively correlated with the CUL/DON ratio, but positively correlated with the sum of both CUL and DON. Additionally, during the first week of infection, CUL biosynthetic genes were more highly expressed than the TRI5 trichothecene biosynthetic gene. Furthermore, genomic analysis of Fusarium species revealed that CUL and trichothecene biosynthetic genes consistently co-occur among species closely related to F. graminearum.
Collapse
Affiliation(s)
- Rebecca Wipfler
- United States Department of Agriculture, Agricultural Research Services, National Center of Agricultural Utilization Research, Peoria, IL 61604, USA.
| | - Susan P McCormick
- United States Department of Agriculture, Agricultural Research Services, National Center of Agricultural Utilization Research, Peoria, IL 61604, USA.
| | - Robert Proctor
- United States Department of Agriculture, Agricultural Research Services, National Center of Agricultural Utilization Research, Peoria, IL 61604, USA.
| | - Jennifer Teresi
- United States Department of Agriculture, Agricultural Research Services, National Center of Agricultural Utilization Research, Peoria, IL 61604, USA.
| | - Guixia Hao
- United States Department of Agriculture, Agricultural Research Services, National Center of Agricultural Utilization Research, Peoria, IL 61604, USA.
| | - Todd Ward
- United States Department of Agriculture, Agricultural Research Services, National Center of Agricultural Utilization Research, Peoria, IL 61604, USA.
| | - Nancy Alexander
- United States Department of Agriculture, Agricultural Research Services, National Center of Agricultural Utilization Research, Peoria, IL 61604, USA.
| | - Martha M Vaughan
- United States Department of Agriculture, Agricultural Research Services, National Center of Agricultural Utilization Research, Peoria, IL 61604, USA.
| |
Collapse
|
15
|
Hao G, McCormick S, Vaughan MM, Naumann TA, Kim HS, Proctor R, Kelly A, Ward TJ. Fusarium graminearum arabinanase (Arb93B) Enhances Wheat Head Blight Susceptibility by Suppressing Plant Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:888-898. [PMID: 30759350 DOI: 10.1094/mpmi-06-18-0170-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Fusarium head blight (FHB) of wheat and barley caused by the fungus Fusarium graminearum reduces crop yield and contaminates grain with mycotoxins. In this study, we investigated two exo-1,5-α-L-arabinanases (Arb93A and Arb93B) secreted by F. graminearum and their effect on wheat head blight development. Arabinan is an important component of plant cell walls but it was not known whether these arabinanases play a role in FHB. Both ARB93A and ARB93B were induced during the early stages of infection. arb93A mutants did not exhibit a detectable change in ability to cause FHB, whereas arb93B mutants caused lower levels of FHB symptoms and deoxynivalenol contamination compared with the wild type. Furthermore, virulence and deoxynivalenol contamination were restored to wild-type levels in ARB93B complemented mutants. Fusion proteins of green fluorescent protein (GFP) with the predicted chloroplast peptide or the mature protein of Arb93B were not observed in the chloroplast. Reactive oxygen species (ROS) production was reduced in the infiltrated zones of Nicotiana benthamiana leaves expressing ARB93B-GFP. Coexpression of ARB93B-GFP and Bax in N. benthamiana leaves significantly suppressed Bax-programmed cell death. Our results indicate that Arb93B enhances plant disease susceptibility by suppressing ROS-associated plant defense responses.
Collapse
Affiliation(s)
- Guixia Hao
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture-Agricultural Research Service, Peoria, IL, U.S.A
| | - Susan McCormick
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture-Agricultural Research Service, Peoria, IL, U.S.A
| | - Martha M Vaughan
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture-Agricultural Research Service, Peoria, IL, U.S.A
| | - Todd A Naumann
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture-Agricultural Research Service, Peoria, IL, U.S.A
| | - Hye-Seon Kim
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture-Agricultural Research Service, Peoria, IL, U.S.A
| | - Robert Proctor
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture-Agricultural Research Service, Peoria, IL, U.S.A
| | - Amy Kelly
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture-Agricultural Research Service, Peoria, IL, U.S.A
| | - Todd J Ward
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture-Agricultural Research Service, Peoria, IL, U.S.A
| |
Collapse
|
16
|
Villani A, Proctor RH, Kim HS, Brown DW, Logrieco AF, Amatulli MT, Moretti A, Susca A. Variation in secondary metabolite production potential in the Fusarium incarnatum-equiseti species complex revealed by comparative analysis of 13 genomes. BMC Genomics 2019; 20:314. [PMID: 31014248 PMCID: PMC6480918 DOI: 10.1186/s12864-019-5567-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 02/25/2019] [Indexed: 11/29/2022] Open
Abstract
Background The Fusarium incarnatum-equiseti species complex (FIESC) comprises 33 phylogenetically distinct species that have been recovered from diverse biological sources, but have been most often isolated from agricultural plants and soils. Collectively, members of FIESC can produce diverse mycotoxins. However, because the species diversity of FIESC has been recognized only recently, the potential of species to cause mycotoxin contamination of crop plants is unclear. In this study, therefore, we used comparative genomics to investigate the distribution of and variation in genes and gene clusters responsible for the synthesis of mycotoxins and other secondary metabolites (SMs) in FIESC. Results We examined genomes of 13 members of FIESC that were selected based primarily on their phylogenetic diversity and/or occurrence on crops. The presence and absence of SM biosynthetic gene clusters varied markedly among the genomes. For example, the trichothecene mycotoxin as well as the carotenoid and fusarubin pigment clusters were present in all genomes examined, whereas the enniatin, fusarin, and zearalenone mycotoxin clusters were present in only some genomes. Some clusters exhibited discontinuous patterns of distribution in that their presence and absence was not correlated with the phylogenetic relationships of species. We also found evidence that cluster loss and horizontal gene transfer have contributed to such distribution patterns. For example, a combination of multiple phylogenetic analyses suggest that five NRPS and seven PKS genes were introduced into FIESC from other Fusarium lineages. Conclusion Our results suggest that although the portion of the genome devoted to SM biosynthesis has remained similar during the evolutionary diversification of FIESC, the ability to produce SMs could be affected by the different distribution of related functional and complete gene clusters. Electronic supplementary material The online version of this article (10.1186/s12864-019-5567-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alessandra Villani
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Robert H Proctor
- Department of Agriculture Peoria, National Center for Agricultural Utilization Research, U.S., Peoria, IL, USA
| | - Hye-Seon Kim
- Department of Agriculture Peoria, National Center for Agricultural Utilization Research, U.S., Peoria, IL, USA
| | - Daren W Brown
- Department of Agriculture Peoria, National Center for Agricultural Utilization Research, U.S., Peoria, IL, USA
| | - Antonio F Logrieco
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Maria Teresa Amatulli
- Institute of Sciences of Food Production, National Research Council, Bari, Italy.,Thales Alenia Space Italia, Torino, Italy
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council, Bari, Italy.
| | - Antonia Susca
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| |
Collapse
|
17
|
Yuan Y, Litzenburger M, Cheng S, Bian G, Hu B, Yan P, Cai Y, Deng Z, Bernhardt R, Liu T. Sesquiterpenoids Produced by Combining Two Sesquiterpene Cyclases with Promiscuous Myxobacterial CYP260B1. Chembiochem 2019; 20:677-682. [PMID: 30484946 DOI: 10.1002/cbic.201800670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Indexed: 01/09/2023]
Abstract
Sesquiterpenes represent a class of important terpenoids with high structural diversity and a wide range of applications. The cyclized core skeletons are generated by sesquiterpene cyclases, and the structural diversity is further increased by a series of modification steps. Cytochromes P450 (P450s) are a class of monooxygenases and one of the main contributors to the structural diversity of natural products. Some of these P450s show a broad substrate range and might be promising candidates for the implementation of cascade reactions. In this study, a combinatorial biosynthesis approach was utilized by the combination of a promiscuous myxobacterial P450 (CYP260B1) with two sesquiterpene cyclases (FgJ01056, FgJ09920) of filamentous fungi. Two oxygenated products, culmorin and culmorone, and a new compound, koraidiol, were successfully generated and characterized. This approach suggests the potential use of noncognate P450s to produce novel oxygenated terpenoids, or to generate a novel biosynthetic route for known terpenoids by a combinatorial biosynthesis strategy.
Collapse
Affiliation(s)
- Yujie Yuan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P.R. China
| | - Martin Litzenburger
- Department of Biochemistry, Saarland University, Campus B2.2, 66123, Saarbrücken, Germany
| | - Shu Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P.R. China
| | - Guangkai Bian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P.R. China
| | - Ben Hu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P.R. China
| | - Pan Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P.R. China
| | - Yousheng Cai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P.R. China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P.R. China
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, Campus B2.2, 66123, Saarbrücken, Germany
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P.R. China.,Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan, 430075, P.R. China
| |
Collapse
|
18
|
Flynn CM, Broz K, Jonkers W, Schmidt-Dannert C, Kistler HC. Expression of the Fusarium graminearum terpenome and involvement of the endoplasmic reticulum-derived toxisome. Fungal Genet Biol 2019; 124:78-87. [PMID: 30664933 DOI: 10.1016/j.fgb.2019.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/29/2018] [Accepted: 01/14/2019] [Indexed: 12/26/2022]
Abstract
The sesquiterpenoid deoxynivalenol (DON) is an important trichothecene mycotoxin produced by the cereal pathogen Fusarium graminearum. DON is synthesized in specialized subcellular structures called toxisomes. The first step in DON synthesis is catalyzed by the sesquiterpene synthase (STS), Tri5 (trichodiene synthase), resulting in the cyclization of farnesyl diphosphate (FPP) to produce the sesquiterpene trichodiene. Tri5 is one of eight putative STSs in the F. graminearum genome. To better understand the F. graminearum terpenome, the volatile and soluble fractions of fungal cultures were sampled. Stringent regulation of sesquiterpene accumulation was observed. When grown in trichothecene induction medium, the fungus produces trichothecenes as well as several volatile non-trichothecene related sesquiterpenes, whereas no volatile terpenes were detected when grown in non-inducing medium. Surprisingly, a Δtri5 deletion strain grown in inducing conditions not only ceased accumulation of trichothecenes, but also failed to produce the non-trichothecene related sesquiterpenes. To test whether Tri5 from F. graminearum may be a promiscuous STS directly producing all observed sesquiterpenes, Tri5 was cloned and expressed in E. coli and shown to produce primarily trichodiene in addition to minor, related cyclization products. Therefore, while Tri5 expression in F. graminearum is necessary for non-trichothecene sesquiterpene biosynthesis, direct catalysis by Tri5 does not explain the sesquiterpene deficient phenotype observed in the Δtri5 strain. To test whether Tri5 protein, separate from its enzymatic activity, may be required for non-trichothecene synthesis, the Tri5 locus was replaced with an enzymatically inactive, but structurally unaffected tri5N225D S229T allele. This allele restores non-trichothecene synthesis but not trichothecene synthesis. The tri5N225D S229T allele also restores toxisome structure which is lacking in the Δtri5 deletion strain. Our results indicate that the Tri5 protein, but not its enzymatic activity, is also required for the synthesis of non-trichothecene related sesquiterpenes and the formation of toxisomes. Toxisomes thus not only may be important for DON synthesis, but also for the synthesis of other sesquiterpene mycotoxins such as culmorin by F. graminearum.
Collapse
Affiliation(s)
- Christopher M Flynn
- University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics, Saint Paul, MN, USA
| | - Karen Broz
- USDA ARS Cereal Disease Laboratory, Saint Paul, MN, USA
| | | | - Claudia Schmidt-Dannert
- University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics, Saint Paul, MN, USA
| | | |
Collapse
|
19
|
Comparative proteomic analysis reveals the regulatory network of the veA gene during asexual and sexual spore development of Aspergillus cristatus. Biosci Rep 2018; 38:BSR20180067. [PMID: 29773679 PMCID: PMC6066658 DOI: 10.1042/bsr20180067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022] Open
Abstract
Aspergillus cristatus is the predominant fungal population during fermentation of Chinese Fuzhuan brick tea, and belongs to the homothallic fungal group that undergoes a sexual stage without asexual conidiation under hypotonic conditions, while hypertonic medium induces initiation of the asexual stage and completely blocks sexual development. However, the veA deletion mutant only produces conidia in hypotonic medium after a 24-h culture, but both asexual and sexual spores are observed after 72 h. The veA gene is one of the key genes that positively regulates sexual and negatively regulates asexual development in A. cristatus. To elucidate the molecular mechanism of how VeA regulates asexual and sexual spore development in A. cristatus, 2D electrophoresis (2-DE) combined with MALDI-tandem ToF MS analysis were applied to identify 173 differentially expressed proteins (DEPs) by comparing the agamotype (24 h) and teleomorph (72 h) with wild-type (WT) A. cristatus strains. Further analysis revealed that the changed expression pattern of Pmk1-MAPK and Ser/Thr phosphatase signaling, heat shock protein (Hsp) 90 (HSP90), protein degradation associated, sulphur-containing amino acid biosynthesis associated, valine, leucine, isoleucine, and arginine biosynthesis involved, CYP450 and cytoskeletal formation associated proteins were involved in the production of conidia in agamotype of A. cristatus. Furthermore, the deletion of veA in A. cristatus resulted in disturbed process of transcription, translation, protein folding, amino acid metabolism, and secondary metabolism. The carbohydrate and energy metabolism were also greatly changed, which lied in the suppression of anabolism through pentose phosphate pathway (PPP) but promotion of catabolism through glycolysis and tricarboxylic acid (TCA) cycle. The energy compounds produced in the agamotype were mainly ATP and NADH, whereas they were NADPH and FAD in the teleomorph. These results will contribute to the existing knowledge on the complex role of VeA in the regulation of spore development in Aspergillus and provide a framework for functional investigations on the identified proteins.
Collapse
|
20
|
Shin J, Kim JE, Lee YW, Son H. Fungal Cytochrome P450s and the P450 Complement (CYPome) of Fusarium graminearum. Toxins (Basel) 2018; 10:E112. [PMID: 29518888 PMCID: PMC5869400 DOI: 10.3390/toxins10030112] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 12/19/2022] Open
Abstract
Cytochrome P450s (CYPs), heme-containing monooxygenases, play important roles in a wide variety of metabolic processes important for development as well as biotic/trophic interactions in most living organisms. Functions of some CYP enzymes are similar across organisms, but some are organism-specific; they are involved in the biosynthesis of structural components, signaling networks, secondary metabolisms, and xenobiotic/drug detoxification. Fungi possess more diverse CYP families than plants, animals, or bacteria. Various fungal CYPs are involved in not only ergosterol synthesis and virulence but also in the production of a wide array of secondary metabolites, which exert toxic effects on humans and other animals. Although few studies have investigated the functions of fungal CYPs, a recent systematic functional analysis of CYP genes in the plant pathogen Fusarium graminearum identified several novel CYPs specifically involved in virulence, asexual and sexual development, and degradation of xenobiotics. This review provides fundamental information on fungal CYPs and a new platform for further metabolomic and biochemical studies of CYPs in toxigenic fungi.
Collapse
Affiliation(s)
| | | | | | - Hokyoung Son
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.S.); (J.-E.K.); (Y.-W.L.)
| |
Collapse
|
21
|
Weber J, Vaclavikova M, Wiesenberger G, Haider M, Hametner C, Fröhlich J, Berthiller F, Adam G, Mikula H, Fruhmann P. Chemical synthesis of culmorin metabolites and their biologic role in culmorin and acetyl-culmorin treated wheat cells. Org Biomol Chem 2018; 16:2043-2048. [PMID: 29465119 DOI: 10.1039/c7ob02460f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The Fusarium metabolite culmorin (1) is receiving increased attention as an "emerging mycotoxin". It co-occurs with trichothecene mycotoxins and potentially influences their toxicity. Its ecological role and fate in plants is unknown. We synthesized sulfated and glucosylated culmorin conjugates as potential metabolites, which are expected to be formed in planta, and used them as reference compounds. An efficient procedure for the synthesis of culmorin sulfates was developed. Diastereo- and regioselective glucosylation of culmorin (1) was achieved by exploiting or preventing unexpected acyl transfer when using different glucosyl donors. The treatment of a wheat suspension culture with culmorin (1) revealed an in planta conversion of culmorin into culmorin-8-glucoside (6) and culmorin acetate, but no sulfates or culmorin-11-glucoside (7) was found. The treatment of wheat cells with the fungal metabolite 11-acetylculmorin (2) revealed its rapid deacetylation, but also showed the formation of 11-acetylculmorin-8-glucoside (8). These results show that plants are capable of extensively metabolizing culmorin.
Collapse
Affiliation(s)
- Julia Weber
- Institute of Applied Synthetic Chemistry, Vienna University of Technology (TU Wien), Austria.
| | - Marta Vaclavikova
- Department of Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | - Gerlinde Wiesenberger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Maximilian Haider
- Institute of Applied Synthetic Chemistry, Vienna University of Technology (TU Wien), Austria.
| | - Christian Hametner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology (TU Wien), Austria.
| | - Johannes Fröhlich
- Institute of Applied Synthetic Chemistry, Vienna University of Technology (TU Wien), Austria.
| | - Franz Berthiller
- Department of Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry, Vienna University of Technology (TU Wien), Austria.
| | - Philipp Fruhmann
- Institute of Applied Synthetic Chemistry, Vienna University of Technology (TU Wien), Austria. and Center for Electrochemical Surface Technology (CEST), Wiener Neustadt, Austria
| |
Collapse
|
22
|
Brown NA, Evans J, Mead A, Hammond‐Kosack KE. A spatial temporal analysis of the Fusarium graminearum transcriptome during symptomless and symptomatic wheat infection. MOLECULAR PLANT PATHOLOGY 2017; 18:1295-1312. [PMID: 28466509 PMCID: PMC5697668 DOI: 10.1111/mpp.12564] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/10/2017] [Accepted: 04/24/2017] [Indexed: 05/20/2023]
Abstract
Fusarium head blight of wheat is one of the most serious and hazardous crop diseases worldwide. Here, a transcriptomic investigation of Fusarium graminearum reveals a new model for symptomless and symptomatic wheat infection. The predicted metabolic state and secretome of F. graminearum were distinct within symptomless and symptomatic wheat tissues. Transcripts for genes involved in the biosynthesis of the mycotoxin, deoxynivalenol, plus other characterized and putative secondary metabolite clusters increased in abundance in symptomless tissue. Transcripts encoding for genes of distinct groups of putative secreted effectors increased within either symptomless or symptomatic tissue. Numerous pathogenicity-associated gene transcripts and transcripts representing PHI-base mutations that impacted on virulence increased in symptomless tissue. In contrast, hydrolytic carbohydrate-active enzyme (CAZyme) and lipase gene transcripts exhibited a different pattern of expression, resulting in elevated transcript abundance during the development of disease symptoms. Genome-wide comparisons with existing datasets confirmed that, within the wheat floral tissue, at a single time point, different phases of infection co-exist, which are spatially separated and reminiscent of both early and late infection. This study provides novel insights into the combined spatial temporal coordination of functionally characterized and hypothesized virulence strategies.
Collapse
Affiliation(s)
- Neil A. Brown
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpenden, Hertfordshire AL5 2JQ, UK
| | - Jess Evans
- Computational and Analytical SciencesRothamsted ResearchHarpenden, Hertfordshire AL5 2JQ, UK
| | - Andrew Mead
- Computational and Analytical SciencesRothamsted ResearchHarpenden, Hertfordshire AL5 2JQ, UK
| | - Kim E. Hammond‐Kosack
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpenden, Hertfordshire AL5 2JQ, UK
| |
Collapse
|
23
|
Etzerodt T, Wetterhorn K, Dionisio G, Rayment I. Functional characterization of a soluble NADPH-cytochrome P450 reductase from Fusarium graminearum. Protein Expr Purif 2017; 138:69-75. [PMID: 28690182 DOI: 10.1016/j.pep.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/24/2017] [Accepted: 07/03/2017] [Indexed: 12/30/2022]
Abstract
Fusarium head blight is a devastating disease in wheat caused by some fungal pathogens of the Fusarium genus mainly F. graminearum, due to accumulation of toxic trichothecenes. Most of the trichothecene biosynthetic pathway has been mapped, although some proteins of the pathway remain uncharacterized, including an NADPH-cytochrome P450 reductase. We subcloned a F. graminearum cytochrome P450 reductase that might be involved in the trichothecene biosynthesis. It was expressed heterologously in E. coli as N-terminal truncated form with an octahistidine tag for purification. The construct yielded a soluble apoprotein and its incubation with flavins yielded the corresponding monomeric holoprotein. It was characterized for activity in the pH range 5.5-9.5, using thiazolyl blue tetrazolium bromide (MTT) or cytochrome c as substrates. Binding of the small molecule MTT was weaker than for cytochrome c, however, the rate of MTT reduction was faster. Contrary to other studies of cytochrome reductase proteins, MTT reduction proceeded in a cooperative manner in our studies. Optimum kinetic activity was found at pH 7.5-8.5 for bothMTT and cytochrome c. This is the first paper presenting characterization of a cytochrome P450 reductase from F. graminearum which most likely is involved in mycotoxin biosynthesis or some primary metabolic pathway such as sterol biosynthesis in F. graminearum.
Collapse
Affiliation(s)
- Thomas Etzerodt
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark.
| | - Karl Wetterhorn
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, United States
| | - Giuseppe Dionisio
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Ivan Rayment
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, United States
| |
Collapse
|
24
|
Shin JY, Bui DC, Lee Y, Nam H, Jung S, Fang M, Kim JC, Lee T, Kim H, Choi GJ, Son H, Lee YW. Functional characterization of cytochrome P450 monooxygenases in the cereal head blight fungus Fusarium graminearum. Environ Microbiol 2017; 19:2053-2067. [PMID: 28296081 DOI: 10.1111/1462-2920.13730] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 11/27/2022]
Abstract
Fusarium graminearum is a prominent plant pathogenic fungus causing Fusarium head blight in major cereal crops worldwide. To understand the molecular mechanisms underlying fungal development and virulence, large collections of F. graminearum mutants have been constructed. Cytochrome P450 monooxygenases (P450s) are widely distributed in organisms and are involved in a diverse array of molecular/metabolic processes; however, no systematic functional analysis of P450s has been attempted in filamentous fungi. In this study, we constructed a genome-wide deletion mutant set covering 102 P450s and analyzed these mutants for changes in 38 phenotypic categories, including fungal development, stress responses and responses to several xenobiotics, to build a comprehensive phenotypic dataset. Most P450 mutants showing defective phenotypes were impaired in a single phenotypic trait, demonstrating that our mutant library is a good genetic resource for further fungal genetic studies. In particular, we identified novel P450s specifically involved in virulence (5) and both asexual (1) and sexual development (2). Most P450s seem to play redundant roles in the degradation of xenobiotics in F. graminearum. This study is the first phenome-based functional analysis of P450s, and it provides a valuable genetic resource for further basic and applied biological research in filamentous fungi and other plant pathogens.
Collapse
Affiliation(s)
- Ji Young Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Duc-Cuong Bui
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoonji Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyejin Nam
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soyun Jung
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Miao Fang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Cheol Kim
- Division of Applied Bioscience and Biotechnology, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Theresa Lee
- Microbial Safety Team, National Academy of Agricultural Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Hun Kim
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Gyung Ja Choi
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Hokyoung Son
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
25
|
An improved water-soluble/stereospecific biotransformation of aporphine alkaloids in Stephania epigaea to 4 R -hydroxyaporphine alkaloids by Clonostachys rogersoniana. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|