1
|
Wang J, Wang L, Zhang Y, Pan S, Lin Y, Wu J, Bu M. Design, Synthesis, and Anticancer Activity of Novel Enmein-Type Diterpenoid Derivatives Targeting the PI3K/Akt/mTOR Signaling Pathway. Molecules 2024; 29:4066. [PMID: 39274913 PMCID: PMC11396751 DOI: 10.3390/molecules29174066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
The enmein-type diterpenoids are a class of anticancer ent-Kaurane diterpnoids that have received much attention in recent years. Herein, a novel 1,14-epoxy enmein-type diterpenoid 4, was reported in this project for the first time. A series of novel enmein-type diterpenoid derivatives were also synthesized and tested for anticancer activities. Among all the derivatives, compound 7h exhibited the most significant inhibitory effect against A549 cells (IC50 = 2.16 µM), being 11.03-folds better than its parental compound 4. Additionally, 7h exhibited relatively weak anti-proliferative activity (IC50 > 100 µM) against human normal L-02 cells, suggesting that it had excellent anti-proliferative selectivity for cancer cells. Mechanism studies suggested that 7h induced G0/G1 arrest and apoptosis in A549 cells by inhibiting the PI3K/AKT/mTOR pathway. This process was associated with elevated intracellular ROS levels and collapsed MMP. In summary, these data identified 7h as a promising lead compound that warrants further investigation of its anticancer properties.
Collapse
Affiliation(s)
- Jiafeng Wang
- College of Pathology, Qiqihar Medical University, Qiqihar 161006, China
| | - Lu Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Yingbo Zhang
- College of Pathology, Qiqihar Medical University, Qiqihar 161006, China
| | - Siwen Pan
- College of Pathology, Qiqihar Medical University, Qiqihar 161006, China
| | - Yu Lin
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Jiale Wu
- College of Life and Health, Hainan University, Haikou 570228, China
| | - Ming Bu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| |
Collapse
|
2
|
Kibet S, Kimani NM, Mwanza SS, Mudalungu CM, Santos CBR, Tanga CM. Unveiling the Potential of Ent-Kaurane Diterpenoids: Multifaceted Natural Products for Drug Discovery. Pharmaceuticals (Basel) 2024; 17:510. [PMID: 38675469 PMCID: PMC11054903 DOI: 10.3390/ph17040510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Natural products hold immense potential for drug discovery, yet many remain unexplored in vast libraries and databases. In an attempt to fill this gap and meet the growing demand for effective drugs, this study delves into the promising world of ent-kaurane diterpenoids, a class of natural products with huge therapeutic potential. With a dataset of 570 ent-kaurane diterpenoids obtained from the literature, we conducted an in silico analysis, evaluating their physicochemical, pharmacokinetic, and toxicological properties with a focus on their therapeutic implications. Notably, these natural compounds exhibit drug-like properties, aligning closely with those of FDA-approved drugs, indicating a high potential for drug development. The ranges of the physicochemical parameters were as follows: molecular weights-288.47 to 626.82 g/mol; number of heavy atoms-21 to 44; the number of hydrogen bond donors and acceptors-0 to 8 and 1 to 11, respectively; the number of rotatable bonds-0 to 11; fraction Csp3-0.65 to 1; and TPSA-20.23 to 189.53 Ų. Additionally, the majority of these molecules display favorable safety profiles, with only 0.70%, 1.40%, 0.70%, and 46.49% exhibiting mutagenic, tumorigenic, reproduction-enhancing, and irritant properties, respectively. Importantly, ent-kaurane diterpenoids exhibit promising biopharmaceutical properties. Their average lipophilicity is optimal for drug absorption, while over 99% are water-soluble, facilitating delivery. Further, 96.5% and 28.20% of these molecules exhibited intestinal and brain bioavailability, expanding their therapeutic reach. The predicted pharmacological activities of these compounds encompass a diverse range, including anticancer, immunosuppressant, chemoprotective, anti-hepatic, hepatoprotectant, anti-inflammation, antihyperthyroidism, and anti-hepatitis activities. This multi-targeted profile highlights ent-kaurane diterpenoids as highly promising candidates for further drug discovery endeavors.
Collapse
Affiliation(s)
- Shadrack Kibet
- Department of Physical Sciences, University of Embu, Embu P.O. Box 6-60100, Kenya; (S.K.); (S.S.M.)
- International Centre of Insects Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya;
| | - Njogu M. Kimani
- Department of Physical Sciences, University of Embu, Embu P.O. Box 6-60100, Kenya; (S.K.); (S.S.M.)
- Natural Product Chemistry and Computational Drug Discovery Laboratory, Embu P.O. Box 6-60100, Kenya
| | - Syombua S. Mwanza
- Department of Physical Sciences, University of Embu, Embu P.O. Box 6-60100, Kenya; (S.K.); (S.S.M.)
- International Centre of Insects Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya;
| | - Cynthia M. Mudalungu
- International Centre of Insects Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya;
- School of Chemistry and Material Science, The Technical University of Kenya, Nairobi P.O. Box 52428-00200, Kenya
| | - Cleydson B. R. Santos
- Graduate Program in Medicinal Chemistry and Molecular Modelling, Health Science Institute, Federal University of Pará, Belém 66075-110, Brazil;
- Laboratory of Modelling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil
| | - Chrysantus M. Tanga
- International Centre of Insects Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya;
| |
Collapse
|
3
|
Mu L, Li T, Wu PL, Cai LQ, Li SY, Wang ZY, Liu YY, Wang J, Yan D, Rao ZY, Wang CJ, Zhang J, Cao Y, Pan K, Yin ZQ. 5-epi-ent-Kaurane diterpenoids from the aerial parts of Isodon eriocalyx and their anti-atherosclerotic potential. PHYTOCHEMISTRY 2023; 209:113621. [PMID: 36893826 DOI: 10.1016/j.phytochem.2023.113621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The phytochemical investigation of the EtOAc extract from the aerial parts of Isodon eriocalyx afforded seventeen diterpenoids, including eight undescribed compounds. Eriocalyxins H-L have unique structural characteristics featuring a 5-epi-ent-kaurane diterpenoid scaffold with eriocalyxins H-K also possess an unusual 6,11-epoxyspiro-lactone ring while eriocalyxin L, a 1,7:3,20-diepoxy-ent kaurene, features an 1,7-oxygen linkage. The structures of these compounds were elucidated by spectroscopic data interpretation, and the absolute configurations of eriocalyxins H, I, L, and M were confirmed by single-crystal X-ray diffraction. The isolates were screened for their inhibitory activities against VCAM-1 and ICAM-1 at 5 μM. While eriocalyxin O, coetsoidin A and laxiflorin P were found to significantly inhibit both VCAM-1 and ICAM-1, 8 (17),13-ent-labdadien-15 → 16-lactone-19-oic acid displayed evidently inhibitory effect against ICAM-1.
Collapse
Affiliation(s)
- Long Mu
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Tian Li
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, China
| | - Peng-Lin Wu
- China Tobacco Jiangsu Industrial Co., Ltd, Nanjing, 210019, China
| | - Ling-Qiao Cai
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shu-Ying Li
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zi-Yuan Wang
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuan-Yuan Liu
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, China
| | - Jie Wang
- Instrumental Analysis Center of CPU, China Pharmaceutical University, Nanjing, 210009, China
| | - Dong Yan
- Institute of Drug Discovery, Hongyun Pharmaceutical Co., Ltd, Chengdu, PR China
| | - Zheng-Yun Rao
- Institute of Drug Discovery, Hongyun Pharmaceutical Co., Ltd, Chengdu, PR China
| | - Chao-Jun Wang
- Institute of Drug Discovery, Hongyun Pharmaceutical Co., Ltd, Chengdu, PR China
| | - Jian Zhang
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Yi Cao
- China Tobacco Jiangsu Industrial Co., Ltd, Nanjing, 210019, China.
| | - Ke Pan
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhi-Qi Yin
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
4
|
Nakamura S, Sugimoto S, Yoneda T, Shinozaki A, Yoshiji M, Matsumoto T, Nakashima S, Matsuda H. Antiproliferative Activities of Diterpenes from Leaves of Isodon trichocarpus against Cancer Stem Cells. Chem Pharm Bull (Tokyo) 2023; 71:502-507. [PMID: 37394598 DOI: 10.1248/cpb.c22-00914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Two new diterpenes named trichoterpene I (1) and trichoterpene II (2) were isolated from the extract from the leaves of Isodon trichocarpus together with 19 known diterpenes. Their chemical structures were elucidated on the basis of chemical and physicochemical properties. Among them, oridonin (3), effusanin A (4), and lasiokaurin (9) with the α,β-unsaturated carbonyl moiety showed antiproliferative activities against breast cancer MDA-MB-231 and human astrocytoma U-251 MG cells [i.e., non-cancer stem cells (non-CSCs)] and their cancer stem cells (CSCs) isolated by sphere formation. In particular, compound 4 (IC50 = 0.51 µM) showed a higher antiproliferative activity against MDA-MB-231 CSCs than against MDA-MB-231 non-CSCs. The antiproliferative activity toward CSCs of compound 4 was equal to adriamycin (positive control, IC50 = 0.60 µM).
Collapse
Affiliation(s)
| | - Sachiko Sugimoto
- Kyoto Pharmaceutical University
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | | | | | | | | | | | | |
Collapse
|
5
|
Hu J, Zou Z, Chen Y, Li S, Gao X, Liu Z, Wang Y, Liu H, Zhang W. Neocucurbols A-H, Phomactin Diterpene Derivatives from the Marine-Derived Fungus Neocucurbitaria unguis-hominis FS685. JOURNAL OF NATURAL PRODUCTS 2022; 85:1967-1975. [PMID: 35866554 DOI: 10.1021/acs.jnatprod.2c00249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Neocucurbols A-D (1-4) are diterpene derivatives that possess a complex 6/6/5/5/6 polycyclic ring system with a characteristic tetrahedrofuran bridge ring skeleton. Neocucurbols E-H (5-8) are diterpenes that feature a 6/8/6 tricyclic ring system. Their structures were unambiguously determined by detailed spectroscopic analyses, X-ray diffractions studies, and ECD calculations. All compounds (1-8) were evaluated for in vitro antimicrobial and cytotoxic activities.
Collapse
Affiliation(s)
- Jinhua Hu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhenxing Zou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Saini Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaoxia Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhaoming Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yanlin Wang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hongxin Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
6
|
Hu JJ, Li BL, Xie JD, Liang HJ, Li QR, Yuan J, Wu JW. Two new 7,20-epoxy- ent-kaurane diterpenoids from the aerial parts of Isodon serra. Nat Prod Res 2022; 36:2021-2027. [PMID: 33131334 DOI: 10.1080/14786419.2020.1841189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Two new compounds (1 and 2), belonging to C-20 oxygenated ent-kauranes-type diterpenoids, were identified from the aerial parts of Isodon serra. Their structures were elucidated by extensive analysis of HRESI-MS and NMR spectroscopic data. Both these two compounds possess a common 7,20-epoxy-ent-kauranes skeleton with a hydroxyl group rarely occurring at C-13. Compounds 1 and 2 were evaluated for their cytotoxic activity against Hela-60 and HepG2 as well as the antibacterial activity against Staphylococcus aureus, Bacillus cereus and Escherichia coli.
Collapse
Affiliation(s)
- Juan-Juan Hu
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Bai-Lin Li
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Jin-Dan Xie
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Hui-Jun Liang
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Qian-Ran Li
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Jie Yuan
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Jie-Wei Wu
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| |
Collapse
|
7
|
Wang T, Chen L, Wang J, Li K, Huang S. A New Diterpenoid from Isodon phyllostachys. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03356-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Identification and characterization of potential antioxidant components in Isodon amethystoides (Benth.) Hara tea leaves by UPLC-LTQ-Orbitrap-MS. Food Chem Toxicol 2021; 148:111961. [DOI: 10.1016/j.fct.2020.111961] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
|
9
|
Ent-kaurane-type diterpenoids from Isodonis Herba activate human hair follicle dermal papilla cells proliferation via the Akt/GSK-3β/β-catenin transduction pathway. J Nat Med 2021; 75:326-338. [PMID: 33417145 DOI: 10.1007/s11418-020-01477-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
A methanol extract from Isodonis Herba demonstrated significant proliferative effect on human hair follicle dermal papilla cells (HFDPC, % of control: 150.0 ± 2.0% at 20 µg/mL, p < 0.01). From the extract, 14 ent-kaurane-type diterpenoids (1-14), two abietane-type diterpenoids (15 and 16) and four triterpenoids (17-20) were isolated. Among the isolates, enmein (1, 160.9 ± 3.0% at 20 µM, p < 0.01), isodocarpin (2, 169.3 ± 4.9% at 5 µM, p < 0.01), nodosin (4, 160.5 ± 12.4% at 20 µM, p < 0.01), and oridonin (8, 165.4 ± 10.6% at 10 µM, p < 0.01) showed the proliferative effects. The principal component enmein (1) activated the expression of vascular endothelial growth factor (VEGF) mRNA, upregulated the production of VEGF and increased levels of phospho-Akt, phospho-GSK-3β, and β-catenin accumulation in HFDPC, which could be the mechanism of these activate proliferation activity.
Collapse
|
10
|
Xing H, An L, Song Z, Li S, Wang H, Wang C, Zhang J, Tuerhong M, Abudukeremu M, Li D, Lee D, Xu J, Lall N, Guo Y. Anti-Inflammatory ent-Kaurane Diterpenoids from Isodon serra. JOURNAL OF NATURAL PRODUCTS 2020; 83:2844-2853. [PMID: 32993289 DOI: 10.1021/acs.jnatprod.9b01281] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ten new ent-kaurane diterpenoids, including two pairs of epimers 1/2 and 4/5 and a 6,7-seco-ent-kauranoid 10, were obtained from the aerial parts of Isodon serra. The structures of the new compounds were confirmed by extensive spectroscopic methods and electronic circular dichroism (ECD) data analysis. An anti-inflammatory assay was applied to evaluate their nitric oxide (NO) inhibitory activities by using LPS-stimulated BV-2 cells. Compounds 1 and 9 exhibited notable NO production inhibition with IC50 values of 15.6 and 7.3 μM, respectively. Moreover, the interactions of some bioactive diterpenoids with inducible nitric oxide synthase (iNOS) were explored by employing molecular docking studies.
Collapse
Affiliation(s)
- Honghong Xing
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Lijun An
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ziteng Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Shanshan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Huimei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Chunyan Wang
- Tianjin Second People's Hospital, Tianjin 300192, People's Republic of China
| | - Jie Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Muhetaer Tuerhong
- College of Chemistry and Environmental Sciences, Kashgar University, Kashgar 844000, People's Republic of China
| | - Munira Abudukeremu
- College of Chemistry and Environmental Sciences, Kashgar University, Kashgar 844000, People's Republic of China
| | - Dihua Li
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Nankai Hospital Affiliated to Nankai University, Tianjin 300100, People's Republic of China
| | - Dongho Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
11
|
Sitarek P, Merecz-Sadowska A, Śliwiński T, Zajdel R, Kowalczyk T. An In Vitro Evaluation of the Molecular Mechanisms of Action of Medical Plants from the Lamiaceae Family as Effective Sources of Active Compounds against Human Cancer Cell Lines. Cancers (Basel) 2020; 12:E2957. [PMID: 33066157 PMCID: PMC7601952 DOI: 10.3390/cancers12102957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022] Open
Abstract
It is predicted that 1.8 million new cancer cases will be diagnosed worldwide in 2020; of these, the incidence of lung, colon, breast, and prostate cancers will be 22%, 9%, 7%, and 5%, respectively according to the National Cancer Institute. As the global medical cost of cancer in 2020 will exceed about $150 billion, new approaches and novel alternative chemoprevention molecules are needed. Research indicates that the plants of the Lamiaceae family may offer such potential. The present study reviews selected species from the Lamiaceae and their active compounds that may have the potential to inhibit the growth of lung, breast, prostate, and colon cancer cells; it examines the effects of whole extracts, individual compounds, and essential oils, and it discusses their underlying molecular mechanisms of action. The studied members of the Lamiaceae are sources of crucial phytochemicals that may be important modulators of cancer-related molecular targets and can be used as effective factors to support anti-tumor treatment.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
| | - Anna Merecz-Sadowska
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Radosław Zajdel
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| |
Collapse
|
12
|
Ling T, Hadi V, Bollinger J, Rivas F. Identification of rapid access to polycyclic systems via a base-catalyzed cascade cyclization reaction and their biological evaluation. Bioorg Chem 2020; 99:103846. [PMID: 32334195 PMCID: PMC7329093 DOI: 10.1016/j.bioorg.2020.103846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/23/2022]
Abstract
A base-mediated cascade reaction between malonate esters and acrolein was developed to access complex polycyclic systems. This novel tandem reaction enables the simultaneous generation of up to seven new bonds and at least three new stereogenic centers. Mechanistic studies indicate a series of nucleophilic 1,4 and 1,6 Michael addition reactions occur, followed by an aldol condensation reaction, culminating in the formation of three fused rings. The compounds were characterized by NMR studies and the stereochemistry was confirmed by X-ray analysis. The ability to generate multigram quantities of such complex molecular scaffolds renders the method promising for medicinal chemistry campaigns. Herein, we also demonstrate that the lead compounds display promising anti-proliferative activities against human cancer cell models.
Collapse
Affiliation(s)
- Taotao Ling
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Victor Hadi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - John Bollinger
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Fatima Rivas
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA.
| |
Collapse
|
13
|
Li H, Gao X, Huang X, Wang X, Xu S, Uchita T, Gao M, Xu J, Hua H, Li D. Hydrogen sulfide donating ent-kaurane and spirolactone-type 6,7-seco-ent-kaurane derivatives: Design, synthesis and antiproliferative properties. Eur J Med Chem 2019; 178:446-457. [PMID: 31202992 DOI: 10.1016/j.ejmech.2019.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/15/2023]
Abstract
Motivated by our interest in hydrogen sulfide bio-chemistry and ent-kaurane diterpenoid chemistry, 14 hydrogen sulfide donating derivatives (9, 11a-c, 12a-c, 13, 14, 16a-c and 17a-b) of ent-kaurane and spirolactone-type 6,7-seco-ent-kaurane were designed and synthesized. Four human cancer cell lines (K562, Bel-7402, SGC-7901 and A549) and two normal cell lines (L-02 and PBMC) were selected for antiproliferative assay. Most derivatives showed more potent activities than the lead ent-kaurane oridonin. Among them, compound 12b exhibited the most potent antiproliferative activities, with IC50 values of 1.01, 0.88, 4.36 and 5.21 μM against above human cancer cell lines, respectively. Further apoptosis-related mechanism study indicated that 12b could arrest Bel-7402 cell cycle at G1 phase and induce apoptosis through mitochondria related pathway. Through Western blot assay, 12b was shown to influence the intrinsic pathway by increasing the expression of Bax, cleaved caspase-3, cytochrome c and cleaved PARP, meanwhile suppressing procaspase-3, Bcl-2, Bcl-xL and PARP.
Collapse
Affiliation(s)
- Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xiang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xiaofang Huang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xianhua Wang
- School of Public Health, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, PR China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Takahiro Uchita
- School of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien, Nishinomiya, 663-8179, Japan
| | - Ming Gao
- School of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien, Nishinomiya, 663-8179, Japan
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
14
|
Bioactive seco-abietane rearranged diterpenoids from the aerial parts of Salvia prionitis. Bioorg Chem 2018; 81:454-460. [DOI: 10.1016/j.bioorg.2018.08.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 01/25/2023]
|
15
|
Zhao F, Sun M, Zhang W, Jiang C, Teng J, Sheng W, Li M, Zhang A, Duan Y, Xue J. Comparative transcriptome analysis of roots, stems and leaves of Isodon amethystoides reveals candidate genes involved in Wangzaozins biosynthesis. BMC PLANT BIOLOGY 2018; 18:272. [PMID: 30409115 PMCID: PMC6225716 DOI: 10.1186/s12870-018-1505-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/26/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Isodon amethystoides (Ben-th) Cy Wu et Hsuan is an important traditional medicinal plant endowed with pharmacological properties effective in the treatment of various diseases, including pulmonary tuberculosis. The tetracyclic diterpenoids, Wangzaozins (Wangzaozin A, glaucocalyxin A, glaucocalyxin B), are the major bioactive compounds of I. amethystoides. However, the molecular information about the biosynthesis of these compounds still remains unclear. RESULTS An examination of the accumulated levels of Wangzaozins in I. amethystoides revealed considerable variations in the root, stem, and leaf tissues of this plant, indicating possible differences in metabolite biosynthesis and accumulation among various tissues. To better elucidate the tetracyclic diterpenoid biosynthesis pathway, we generated transcriptome sequences from the root, stem, and leaf tissues, and performed de novo sequence assembly, yielding 230,974 transcripts and 114,488 unigenes, with average N50 lengths of 1914 and 1241 bp, respectively. Putative functions could be assigned to 73,693 transcripts (31.9%) based on BLAST searches against annotation databases, including GO, KEGG, Swiss-Prot, NR, and Pfam. Moreover, the candidate genes involving in the diterpenoid biosynthesis, such as CPS, KSL, were also analyzed. The expression profiles of eight transcripts, involving the tetracyclic diterpenoid biosynthesis, were validated in different I. amethystoides tissues by qRT-PCR, unraveling the gene expression profile of the pathway. The differential expressions of ISPD, ISPF and ISPH (MEP pathway), and IaCPS and IaKSL (diterpenoid pathway) candidate genes in leaves and roots, may contribute to the high accumulation of Wangzaozins in I. amethystoides leaves. CONCLUSION The genomic dataset and analyses reported here lay the foundations for further research on this important medicinal plant.
Collapse
Affiliation(s)
- Fenglan Zhao
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Mengchu Sun
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Wanjun Zhang
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Chunli Jiang
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Jingtong Teng
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Wei Sheng
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Mingzhi Li
- Genepioneer Biotechnologies Co. Ltd, Nanjing City, China
| | - Aimin Zhang
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Yongbo Duan
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China.
| | - Jianping Xue
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China.
| |
Collapse
|
16
|
Li H, Sun B, Wang M, Hu X, Gao X, Xu S, Xu Y, Xu J, Hua H, Li D. Bioactive enmein-type 6,7-seco-ent-kaurane diterpenoids: natural products, synthetic derivatives and apoptosis related mechanism. Arch Pharm Res 2018; 41:1051-1061. [DOI: 10.1007/s12272-018-1078-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/15/2018] [Indexed: 12/12/2022]
|
17
|
Wang JP, Yu J, Shu Y, Shi YX, Luo P, Cai L, Ding ZT. Peniroquesines A–C: Sesterterpenoids Possessing a 5–6–5–6–5-Fused Pentacyclic Ring System from Penicillium roqueforti YJ-14. Org Lett 2018; 20:5853-5856. [DOI: 10.1021/acs.orglett.8b02534] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jia-Peng Wang
- Key Laboratory of Functional Molecules Analysis and Biotransformation, Yunnan Provincial Department of Education, School of Chemical Science and Technology, Yunnan University, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Kunming 650091, China
| | - Jing Yu
- Key Laboratory of Functional Molecules Analysis and Biotransformation, Yunnan Provincial Department of Education, School of Chemical Science and Technology, Yunnan University, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Kunming 650091, China
| | - Yan Shu
- Key Laboratory of Functional Molecules Analysis and Biotransformation, Yunnan Provincial Department of Education, School of Chemical Science and Technology, Yunnan University, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Kunming 650091, China
| | - Ya-Xian Shi
- Key Laboratory of Functional Molecules Analysis and Biotransformation, Yunnan Provincial Department of Education, School of Chemical Science and Technology, Yunnan University, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Kunming 650091, China
| | - Ping Luo
- Key Laboratory of Functional Molecules Analysis and Biotransformation, Yunnan Provincial Department of Education, School of Chemical Science and Technology, Yunnan University, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Kunming 650091, China
| | - Le Cai
- Key Laboratory of Functional Molecules Analysis and Biotransformation, Yunnan Provincial Department of Education, School of Chemical Science and Technology, Yunnan University, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Kunming 650091, China
| | - Zhong-Tao Ding
- Key Laboratory of Functional Molecules Analysis and Biotransformation, Yunnan Provincial Department of Education, School of Chemical Science and Technology, Yunnan University, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Kunming 650091, China
| |
Collapse
|
18
|
Mahmud I, Shahria N, Yeasmin S, Iqbal A, Mukul EH, Gain S, Shilpi JA, Islam MK. Ethnomedicinal, phytochemical and pharmacological profile of a mangrove plant Ceriops Decandra GriffDin Hou. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2018; 16:jcim-2017-0129. [PMID: 29933245 DOI: 10.1515/jcim-2017-0129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/08/2018] [Indexed: 01/11/2023]
Abstract
Ceriops decandra is a mangrove tree species, reputed for its folkloric uses in the treatment of gastrointestinal disorders, infection, snakebites, inflammation, and cancer. Different parts of the plant are rich with various phytoconstituents which include diterpenoids (ceriopsin A-G), triterpenoids (lupeol, α-amyrin, oleanolic acid, ursolic acid), and phenolics (catechin, procyanidins).These phytoconstituents and their derivatives could form a new basis for developing new drugs against various diseases. The objective of the present study is to compile the phytochemical, ethnobotanical, biological, and pharmacological significance of the plant to provide directions for future research to find out therapeutically active lead compounds for developing new drugs against diseases of current interest including diabetes, inflammation, and cancer.
Collapse
Affiliation(s)
- Imran Mahmud
- Department of Pharmacy, Khwaja Yunus Ali University, Enayetpur, Sirajgonj, Bangladesh.,Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Naznin Shahria
- Department of Pharmacy, Khwaja Yunus Ali University, Enayetpur, Sirajgonj, Bangladesh
| | - Sabina Yeasmin
- Department of Pharmacy, Khwaja Yunus Ali University, Enayetpur, Sirajgonj, Bangladesh
| | - Asif Iqbal
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Emdadul Hasan Mukul
- Department of Pharmacy, Khwaja Yunus Ali University, Enayetpur, Sirajgonj, Bangladesh
| | - Sudipta Gain
- Department of Pharmacy, Khwaja Yunus Ali University, Enayetpur, Sirajgonj, Bangladesh
| | - Jamil Ahmad Shilpi
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Khirul Islam
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh.,Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland
| |
Collapse
|
19
|
Liu H, Zhu G, Fan Y, Du Y, Lan M, Xu Y, Zhu W. Natural Products Research in China From 2015 to 2016. Front Chem 2018; 6:45. [PMID: 29616210 PMCID: PMC5869933 DOI: 10.3389/fchem.2018.00045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
This review covers the literature published by chemists from China during the 2015-2016 on natural products (NPs), with 1,985 citations referring to 6,944 new compounds isolated from marine or terrestrial microorganisms, plants, and animals. The emphasis is on 730 new compounds with a novel skeleton or/and significant bioactivity, together with their source organism and country of origin.
Collapse
Affiliation(s)
- Haishan Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guoliang Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yaqin Fan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuqi Du
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mengmeng Lan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yibo Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Weiming Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
20
|
Ma YC, Ke Y, Zi X, Zhao F, Yuan L, Zhu YL, Fan XX, Zhao NM, Li QY, Qin YH, Liu HM. Induction of the mitochondria-mediated apoptosis in human esophageal cancer cells by DS2, a newly synthetic diterpenoid analog, is regulated by Bax and caused by generation of reactive oxygen species. Oncotarget 2018; 7:86211-86224. [PMID: 27863415 PMCID: PMC5349908 DOI: 10.18632/oncotarget.13367] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/27/2016] [Indexed: 01/22/2023] Open
Abstract
Ent-kaurane diterpene compounds have attracted considerable attention in recent years due to its antitumor, antibacterial, and antiviral activities. However, the clinical development of natural kaurane diterpenes, for example, oridonin for cancer therapy has been hampered by its relatively moderate potency, limited bioavailability. Herein, we report a newly synthetic analog of natural ent-kaurane diterpene, DS2, which exhibits significantly improved activity of antiproliferation against various cancer cell lines relative to oridonin. DS2 treatment triggers the mitochondria-mediated apoptosis and cell cycle arrest in human esophageal cancer cell lines (EC9706, EC109). Interestingly, normal human esophageal epithelial cells (HEECs) and normal human liver cells (HL-7702) are both significantly more resistant to the growth inhibition by DS2 compared with esophageal cancer cells. The DS2-induced apoptosis in EC9706 cells correlated with the drop of mitochondrial membrane potential (MMP), release of cytochrome c into the cytosol and activation of caspase-9 and -3. The induction of proapoptotic proteins p21 and Bax were also observed in DS2-treated cells. The DS2-induced apoptosis was significantly attenuated by knockdown of Bax proteins. Meanwhile, the DS2 treatment caused generation of reactive oxygen species (ROS) in human esophageal cancer cells, but not in HEECs, which was attenuated by pretreatment with ROS scavenger N-acetylcysteine (NAC). More interestingly, the antioxidants pretreatment completely attenuated DS2 mediated loss of the MMP and apoptosis, as well as Bax expression and growth inhibition. In conclusion, the present study reveals that the mitochondria-mediated cell death by DS2 is associated with Bax regulation and ROS generation, and understanding the function and mechanism of DS2 will help us to design better anti-cancer drugs.
Collapse
Affiliation(s)
- Yong-Cheng Ma
- Clinical Pharmacology Laboratory, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Yu Ke
- School of Pharmaceutical Sciences and Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, China
| | - Xiaolin Zi
- Department of Urology, University of California, Irvine, California, USA.,Department of Pharmacology, University of California, Irvine, California, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA
| | - Fei Zhao
- Clinical Pharmacology Laboratory, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Lin Yuan
- Clinical Pharmacology Laboratory, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Ying-Li Zhu
- Clinical Pharmacology Laboratory, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Xia-Xia Fan
- Clinical Pharmacology Laboratory, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Ning-Min Zhao
- Clinical Pharmacology Laboratory, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Qiao-Yan Li
- Clinical Pharmacology Laboratory, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Yu-Hua Qin
- Clinical Pharmacology Laboratory, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences and Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Hu ZX, Liu M, Wang WG, Li XN, Hu K, Li XR, Du X, Zhang YH, Puno PT, Sun HD. 7α,20-Epoxy-ent-kaurane Diterpenoids from the Aerial Parts of Isodon pharicus. JOURNAL OF NATURAL PRODUCTS 2018; 81:106-116. [PMID: 29286250 DOI: 10.1021/acs.jnatprod.7b00723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A phytochemical investigation of an ethyl acetate extract of the aerial parts of Isodon pharicus led to the isolation of 21 new 7α,20-epoxy-ent-kaurane diterpenoids, pharicins C-W (1-21), and 29 known (22-50) analogues. The structural characterization of 1-21 and assignment of their relative configurations were accomplished by spectroscopic data interpretation, while the structures of 1 and 16 were confirmed by X-ray crystallography. The absolute stereostructure of 1 was confirmed by electronic circular dichroism data analysis. Twenty-five of the diterpenoids were screened for their cytotoxic activities against a panel of tumor cell lines, including HL-60, SMMC-7721, A-549, MCF-7, and SW-480. Compounds 11, 16, 38, and 48 exhibited inhibitory activities against these tumor cell lines with IC50 values ranging from 1.01 to 9.62 μM, while 2, 15, 29, and 47 exhibited moderate cytotoxic potency.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Cell Line, Tumor
- Crystallography, X-Ray/methods
- Diterpenes, Kaurane/chemistry
- Diterpenes, Kaurane/pharmacology
- Drug Screening Assays, Antitumor
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacology
- HL-60 Cells
- Humans
- Isodon/chemistry
- MCF-7 Cells
- Plant Components, Aerial/chemistry
Collapse
Affiliation(s)
- Zheng-Xi Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030, People's Republic of China
| | - Miao Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Wei-Guang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Kun Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Xing-Ren Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Xue Du
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Yong-Hui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030, People's Republic of China
| | - Pema-Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| |
Collapse
|
22
|
Dong JW, Cai L, Li XJ, Shu Y, Wang JP, Ding ZT. A novel sesquiterpene derivative with a seven-membered B ring from Illigera aromatica. Nat Prod Res 2018; 32:2589-2595. [DOI: 10.1080/14786419.2018.1428596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jian-Wei Dong
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, P.R. China
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Le Cai
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Xue-Jiao Li
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Yan Shu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Jia-Peng Wang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Zhong-Tao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| |
Collapse
|
23
|
Hu ZX, Xu HC, Hu K, Liu M, Li XN, Li XR, Du X, Zhang YH, Puno PT, Sun HD. Structurally diverse diterpenoids from Isodon pharicus. Org Chem Front 2018. [DOI: 10.1039/c8qo00477c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Twenty-one structurally diverse diterpenoids (1–21), wherein 1, 2, and 4 represented unprecedented architectures, were isolated from Isodon pharicus.
Collapse
|
24
|
Xu S, Yao H, Hu M, Li D, Zhu Z, Xie W, Yao H, Wu L, Chen ZS, Xu J. 6,7-Seco-ent-Kauranoids Derived from Oridonin as Potential Anticancer Agents. JOURNAL OF NATURAL PRODUCTS 2017; 80:2391-2398. [PMID: 28901767 DOI: 10.1021/acs.jnatprod.7b00057] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Structurally unique 6,7-seco-ent-kaurenes, which are widely distributed in the genus Isodon, have attracted considerable attention because of their antitumor activities. Previously, a convenient conversion of commercially available oridonin (1) to 6,7-seco-ent-kaurenes was developed. Herein, several novel spiro-lactone-type ent-kaurene derivatives bearing various substituents at the C-1 and C-14 positions were further designed and synthesized from the natural product oridonin. Moreover, a number of seven-membered C-ring-expanded 6,7-seco-ent-kaurenes were also identified for the first time. It was observed that most of the spiro-lactone-type ent-kaurenes tested markedly inhibited the proliferation of cancer cells, with an IC50 value as low as 0.55 μM. An investigation on its mechanism of action showed that the representative compound 7b affected the cell cycle and induced apoptosis at a low micromolar level in MCF-7 human breast cancer cells. Furthermore, compound 7b inhibited liver tumor growth in an in vivo mouse model and exhibited no observable toxic effects. Collectively, the results warrant further preclinical investigations of these spiro-lactone-type ent-kaurenes as potential novel anticancer agents.
Collapse
Affiliation(s)
- Shengtao Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | - Hong Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | - Mei Hu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | - Dahong Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham , University Park Campus, Nottingham NG7 2RD, U.K
| | - Weijia Xie
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | - Liang Wu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University , Queens, New York 11439, United States
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| |
Collapse
|
25
|
Abstract
Covering: December 2005 to June 2016. Previous review: Nat. Prod. Rep., 2006, 23, 673-698Over the last decade, great efforts have been made to conduct phytochemistry research on the genus Isodon, which have led to the isolation and identification of a number of diterpenoids. At the same time, these newly reported diterpenoids with diverse structures have led to new findings on their biological functions and chemical synthesis research. In this update, we review more than 600 new diterpenoids, including their structures, classifications, biogenetic pathways, bioactivities, and chemical synthesis.
Collapse
Affiliation(s)
- Miao Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, P. R. China.
| | | | | | | |
Collapse
|
26
|
Manse Y, Ninomiya K, Okazaki A, Okada-Nishida E, Imagawa T, Imamura-Mizushima M, Yamano Y, Kaname K, Nakamura S, Morikawa T. Melanogenesis Inhibitory Activity of Diterpenoid and Triterpenoid Constituents from the Aerial Part of Isodon trichocarpus. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A methanol extract from the aerial part of Isodon trichocarpus (Labiatae) demonstrated inhibitory effects on melanogenesis in theophylline-stimulated murine B16 melanoma 4A5 cells (IC50 = 1.6 μg/mL). From the extract, nine diterpenoids (1–9) and four triterpenoids (10–13) were isolated. Among the isolates, enmein (1, IC50 = 0.22 μM), isodocarpin (2, 0.19 μM), nodosin (4, 0.46 μM), and oridonin (6, 0.90 μM) showed an inhibitory effect without notable cytotoxicity at the effective concentrations. These diterpenoids (1, 2, 4, and 6) inhibited the expression of tyrosinase, tyrosine-related protein (TRP)-1, and TRP-2 mRNA, which could be the mechanism of melanogenesis inhibitory activity.
Collapse
Affiliation(s)
- Yoshiaki Manse
- Pharmaceutical Research and Technology Institute, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
- Kaminomoto Co., Ltd., 3-25 Kumochibashi-dori, 3-chome, Chuo-ku, Kobe, Hyogo 651-0055, Japan
| | - Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Akane Okazaki
- Pharmaceutical Research and Technology Institute, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Eriko Okada-Nishida
- Pharmaceutical Research and Technology Institute, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
- Kaminomoto Co., Ltd., 3-25 Kumochibashi-dori, 3-chome, Chuo-ku, Kobe, Hyogo 651-0055, Japan
| | - Takahiro Imagawa
- Pharmaceutical Research and Technology Institute, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Mami Imamura-Mizushima
- Kaminomoto Co., Ltd., 3-25 Kumochibashi-dori, 3-chome, Chuo-ku, Kobe, Hyogo 651-0055, Japan
| | - Yuki Yamano
- Kaminomoto Co., Ltd., 3-25 Kumochibashi-dori, 3-chome, Chuo-ku, Kobe, Hyogo 651-0055, Japan
| | - Kinji Kaname
- Kaminomoto Co., Ltd., 3-25 Kumochibashi-dori, 3-chome, Chuo-ku, Kobe, Hyogo 651-0055, Japan
| | - Sho Nakamura
- Kaminomoto Co., Ltd., 3-25 Kumochibashi-dori, 3-chome, Chuo-ku, Kobe, Hyogo 651-0055, Japan
| | - Toshio Morikawa
- Pharmaceutical Research and Technology Institute, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| |
Collapse
|
27
|
Jiang HY, Wang WG, Tang JW, Liu M, Li XR, Hu K, Du X, Li XN, Zhang HB, Pu JX, Sun HD. Structurally Diverse Diterpenoids from Isodon scoparius and Their Bioactivity. JOURNAL OF NATURAL PRODUCTS 2017; 80:2026-2036. [PMID: 28654256 DOI: 10.1021/acs.jnatprod.7b00163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fourteen new diterpenoids (1-14) based on four skeletal types and two known analogues (15 and 16) were isolated from the aerial parts of Isodon scoparius. Compound 2 is the first ent-kaurane diterpenoid featuring a 1,11-ether bridge, and the structures of these new compounds were established mainly by NMR and MS methods. The absolute configurations of 1 and 5 and the relative configuration of 3 were determined using single-crystal X-ray diffraction. The absolute configuration of 14 was determined by comparison of the experimental and calculated electronic circular dichroism spectra. Compounds 1, 4, and 15 were active against five human tumor cell lines (HL-60, SMMC-7721, A-549, MCF-7, and SW-480), and they also inhibited NO production in LPS-stimulated RAW264.7 cells, with IC50 values of 1.0, 3.1, and 1.8 μM, respectively.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Crystallography, X-Ray
- Diterpenes, Kaurane/chemistry
- Diterpenes, Kaurane/isolation & purification
- Diterpenes, Kaurane/pharmacology
- Drug Screening Assays, Antitumor
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/pharmacology
- HL-60 Cells
- Humans
- Isodon/chemistry
- Lipopolysaccharides/pharmacology
- Macrophages/drug effects
- Molecular Structure
- Nitric Oxide/biosynthesis
- Nuclear Magnetic Resonance, Biomolecular
- Plant Components, Aerial/chemistry
Collapse
Affiliation(s)
- Hua-Yi Jiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University , Kunming 650091, People's Republic of China
| | - Wei-Guang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Jian-Wei Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Miao Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Xing-Ren Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Kun Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Xue Du
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Hong-Bin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University , Kunming 650091, People's Republic of China
| | - Jian-Xin Pu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| |
Collapse
|
28
|
Islam MT. Diterpenes and Their Derivatives as Potential Anticancer Agents. Phytother Res 2017; 31:691-712. [PMID: 28370843 DOI: 10.1002/ptr.5800] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 12/21/2022]
Abstract
As therapeutic tools, diterpenes and their derivatives have gained much attention of the medicinal scientists nowadays. It is due to their pledging and important biological activities. This review congregates the anticancer diterpenes. For this, a search was made with selected keywords in PubMed, Science Direct, Web of Science, Scopus, The American Chemical Society and miscellaneous databases from January 2012 to January 2017 for the published articles. A total 28, 789 published articles were seen. Among them, 240 were included in this study. More than 250 important anticancer diterpenes and their derivatives were seen in the databases, acting in the different pathways. Some of them are already under clinical trials, while others are in the nonclinical and/or pre-clinical trials. In conclusion, diterpenes may be one of the lead molecules in the treatment of cancer. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Southern University Bangladesh, Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, 64.049-550, Brazil
| |
Collapse
|
29
|
Guo L, Tsang SW, Zhang TX, Liu KL, Guan YF, Wang B, Sun HD, Zhang HJ, Wong MS. Efficient Semisynthesis of (-)-Pseudoirroratin A from (-)-Flexicaulin A and Assessment of Their Antitumor Activities. ACS Med Chem Lett 2017; 8:372-376. [PMID: 28337333 DOI: 10.1021/acsmedchemlett.7b00033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/28/2017] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence indicates that natural ent-kaurane diterpenoids show great potential for medical treatment of different pathological conditions including cytotoxicity, antibacterial, and anti-inflammatory activity. Among a variety of diterpenoids tested, (-)-pseudoirroratin A displayed a promising antitumor property in vitro and in vivo. However, this diterpenoid could merely be isolated in a limited amount from a rare source of Isodon pseudoirrorata. To overcome such scanty source, we developed a novel, facile, and efficient semisynthetic strategy to prepare (-)-pseudoirroratin A from natural (-)-flexicaulin A, which can be expediently obtained from I. flexicaulis in a great quantity. The three-dimensional structure and the absolute configuration of our synthetic diterpenoid have been determined and confirmed with the X-ray crystallographic analysis. More importantly, we demonstrated for the first time that pseudoirroratin A exerted significant cytotoxicity against human colorectal carcinoma cells via an induction of apoptosis, as well as a remarkable suppression on tumor growth in a colon cancer xenograft mouse model.
Collapse
Affiliation(s)
- Lei Guo
- Department of Chemistry
and Institute of Advanced Materials, Hong Kong Baptist University, Kowloon
Tong, Hong Kong SAR China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Siu Wai Tsang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR China
| | - Tong-Xin Zhang
- Department
of Pharmacy, Liaocheng University, Shandong, China
| | - Kang-Lun Liu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR China
| | - Yi-Fu Guan
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR China
| | - Bo Wang
- BioTools, Inc., 17546 Bee Line
Hwy, Jupiter, Florida 33458, United States
| | - Han-Dong Sun
- State
Key Laboratory of Phytochemistry and Plant Resources in West China, Chinese Academy of Sciences, Kunming, China
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR China
| | - Man Shing Wong
- Department of Chemistry
and Institute of Advanced Materials, Hong Kong Baptist University, Kowloon
Tong, Hong Kong SAR China
| |
Collapse
|
30
|
Dong JW, Cai L, Li XJ, Mei RF, Wang JP, Luo P, Shu Y, Ding ZT. Fermentation of Illigera aromatica with Clonostachys rogersoniana producing novel cytotoxic menthane-type monoterpenoid dimers. RSC Adv 2017. [DOI: 10.1039/c7ra06078e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Five novel menthane-type monoterpenoid dimers were isolated from non-fermented and Clonostachys rogersoniana fermented Illigera aromatica.
Collapse
Affiliation(s)
- Jian-Wei Dong
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- P. R. China
| | - Le Cai
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- P. R. China
| | - Xue-Jiao Li
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- P. R. China
| | - Rui-Feng Mei
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- P. R. China
| | - Jia-Peng Wang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- P. R. China
| | - Ping Luo
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- P. R. China
| | - Yan Shu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- P. R. China
| | - Zhong-Tao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- P. R. China
| |
Collapse
|
31
|
Abstract
This review covers the isolation and chemistry of diterpenoids from terrestrial as opposed to marine sources and includes labdanes, clerodanes, abietanes, pimaranes, kauranes, cembranes and their cyclization products. The literature from January to December, 2016 is reviewed.
Collapse
|
32
|
Monoterpene esters and aporphine alkaloids from Illigera aromatica with inhibitory effects against cholinesterase and NO production in LPS-stimulated RAW264.7 macrophages. Arch Pharm Res 2016; 40:1394-1402. [PMID: 27848145 DOI: 10.1007/s12272-016-0860-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 11/08/2016] [Indexed: 12/17/2022]
Abstract
Three new monoterpene phenylpropionic acid esters, illigerates A-C (1-3), and one new aporphine alkaloid, illigeranine (4), as well as four known ones, actinodaphnine (5), nordicentrine (6), 8-hydroxy carvacrol (7), and 3-hydroxy-α,4-dimethyl styrene (8), were isolated from the tubers of Illigera aromatica. The structures of 1-4 were identified by HRESIMS, 1D and 2D NMR, and electronic circular dichroism spectra. Compound 1 potently inhibited NO production in LPS-stimulated RAW264.7 cells with an IC50 value of 18.71 ± 0.85 μM; compound 1, 3, and 4 showed moderate butyrylcholinesterase inhibitory activities with the IC50 values of 46.86 ± 0.65, 53.51 ± 0.71, and 31.62 ± 1.15 μM, respectively. Compound 4 showed weak AChE inhibitory activity with an IC50 value of 81.69 ± 2.07 μM, and compounds 5 and 6 possessed moderate AChE inhibitory activities with the IC50 values of 47.74 ± 1.66 and 40.28 ± 2.73 μM, respectively. This paper provides a chemical structure and bioactive foundation for using I. aromatica as an herbal medicine.
Collapse
|
33
|
Wan J, Liu M, Jiang HY, Yang J, Du X, Li XN, Wang WG, Li Y, Pu JX, Sun HD. Bioactive ent-kaurane diterpenoids from Isodon serra. PHYTOCHEMISTRY 2016; 130:244-251. [PMID: 27298277 DOI: 10.1016/j.phytochem.2016.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 05/25/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
Nine 7,20-epoxy-ent-kaurane diterpenoids (15-acetylmegathyrin B, serrin E, 14β-hydroxyrabdocoestin A, serrin F, serrin G, 11-epi-rabdocoestin A, serrin H, serrin I, and 15-acetylenanderianin N), along with seven known ones, were isolated from the aerial parts of Isodon serra. Their structures were elucidated by extensive spectroscopic analysis, and the absolute configuration of 15-acetylmegathyrin B was determined by signal-crystal X-ray diffraction. All of these compounds were evaluated for their cytotoxic activities against five human tumor cell lines (HL-60, SMMC-7721, A-549, MCF-7, SW480). Serrin F, rabdocoestin B and 1α,11β-dihydroxy-1α,11β-acetonide-7α,20-epoxy-ent-kaur-16-en-15-one showed cytotoxic activities against all cell lines, with IC50 values ranging from 0.7 to 4.6 μM; serrin F also strongly inhibited NO production in LPS-stimulated RAW264.7 cells. Otherwise, 14β-hydroxyrabdocoestin A, serrins H and I, as well as enanderianin N and megathyrin B, also exhibited inhibitory effects towards NO production, while no cytotoxicity against five cell lines was detected.
Collapse
Affiliation(s)
- Jun Wan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China; University of Chinese Academy of Sciences, Beijing 10039, PR China
| | - Miao Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China; University of Chinese Academy of Sciences, Beijing 10039, PR China
| | - Hua-Yi Jiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China; University of Chinese Academy of Sciences, Beijing 10039, PR China
| | - Jin Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China; University of Chinese Academy of Sciences, Beijing 10039, PR China
| | - Xue Du
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Wei-Guang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Jian-Xin Pu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China.
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| |
Collapse
|
34
|
Li D, Han T, Liao J, Hu X, Xu S, Tian K, Gu X, Cheng K, Li Z, Hua H, Xu J. Oridonin, a Promising ent-Kaurane Diterpenoid Lead Compound. Int J Mol Sci 2016; 17:E1395. [PMID: 27563888 PMCID: PMC5037675 DOI: 10.3390/ijms17091395] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 12/16/2022] Open
Abstract
Oridonin belongs to ent-kaurane tetracyclic diterpenoid and was first isolated from Isodon species. It exhibits inhibitory activities against a variety of tumor cells, and pharmacological study shows that oridonin could inhibit cell proliferation, DNA, RNA and protein synthesis of cancer cells, induce apoptosis and exhibit an antimutagenic effect. In addition, the large amount of the commercially-available supply is also very important for the natural lead oridonin. Moreover, the good stability, suitable molecular weight and drug-like property guarantee its further generation of a natural-like compound library. Oridonin has become the hot molecule in recent years, and from the year 2010, more than 200 publications can be found. In this review, we summarize the synthetic medicinal chemistry work of oridonin from the first publication 40 years ago and share our research experience of oridonin for about 10 years, which may provide useful information to those who are interested in this research field.
Collapse
Affiliation(s)
- Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Tong Han
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jie Liao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shengtao Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Kangtao Tian
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xiaoke Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou 221004, China.
| | - Keguang Cheng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, and School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China.
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jinyi Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
35
|
Liu T, Liang Q, Xiong NN, Dai LF, Wang JM, Ji XH, Xu WH. A new ent-kaurane diterpene from Euphorbia stracheyi Boiss. Nat Prod Res 2016; 31:233-238. [DOI: 10.1080/14786419.2016.1222385] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tie Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, P.R. China
| | - Qian Liang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, P.R. China
- Department of Medicinal Plant, School of Forestry, Southwest Forestry University, Kunming, P.R. China
| | - Na-Na Xiong
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, P.R. China
| | - Lin-Feng Dai
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, P.R. China
| | - Jun-Ming Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, P.R. China
- Department of Medicinal Plant, School of Forestry, Southwest Forestry University, Kunming, P.R. China
| | - Xiao-Hui Ji
- Department of Applied Chemistry, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, P.R. China
| | - Wen-Hui Xu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, P.R. China
| |
Collapse
|
36
|
Yang J, An Y, Wu H, Liu M, Wang W, Du X, Li Y, Pu J, Sun H. Ent-kaurane and ent-abietane diterpenoids from Isodon phyllostachys. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0049-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Naganawa Y, Aoyama T, Kato K, Nishiyama H. Cu(II)-catalyzed Enantioselective α-Hydroxylation and α-Chlorination of β-Ketoesters withN,N,O-Tridentate Chiral Phenanthroline Ligand. ChemistrySelect 2016. [DOI: 10.1002/slct.201600449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuki Naganawa
- Department of Applied Chemistry; Graduate School of Engineering; Nagoya University; Chikusa Nagoya 464-8603 Japan
| | - Tomotaka Aoyama
- Department of Applied Chemistry; Graduate School of Engineering; Nagoya University; Chikusa Nagoya 464-8603 Japan
| | - Keisuke Kato
- Department of Applied Chemistry; Graduate School of Engineering; Nagoya University; Chikusa Nagoya 464-8603 Japan
| | - Hisao Nishiyama
- Department of Applied Chemistry; Graduate School of Engineering; Nagoya University; Chikusa Nagoya 464-8603 Japan
| |
Collapse
|