1
|
Le Scanff M, Marcourt L, Rutz A, Albertin W, Wolfender JL, Marchal A. Untargeted metabolomics analyses to identify a new sweet compound released during post-fermentation maceration of wine. Food Chem 2024; 461:140801. [PMID: 39178544 DOI: 10.1016/j.foodchem.2024.140801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024]
Abstract
The sensory quality of a wine is mainly based on its aroma and flavor. Sweetness contributes in the gustatory balance of red wines. The investigation of compounds involved in this flavor was based on empirical observations, such as the increase in wine sweetness during yeast autolysis, concomitant to post-fermentation maceration in red winemaking. An untargeted metabolomics approach using UHPLC-HRMS has been developed to discover a new sweet molecule released during this stage. Among several markers highlighted, one compound was selected to be isolated by various separative techniques. It was unambiguously identified by NMR as N6-succinyladenosine and is reported for the first time in wine at an average concentration of 3.16 mg/L in 85 red wines. Furthermore, sensory analysis has highlighted its sweetness. In addition to discovering a new sweet compound in wine, this study proposes new tools for studying taste-active compounds in natural matrices.
Collapse
Affiliation(s)
- Marie Le Scanff
- Univ. Bordeaux, Bordeaux INP, INRAE, BSA, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Adriano Rutz
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Warren Albertin
- Univ. Bordeaux, Bordeaux INP, INRAE, BSA, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Axel Marchal
- Univ. Bordeaux, Bordeaux INP, INRAE, BSA, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France.
| |
Collapse
|
2
|
Winstel D, Gammacurta M, Waffo-Téguo P, Marchal A. Identification of Two New Taste-Active Compounds in Oak Wood: Structural Elucidation of Potential β-Methyl-γ-octalactone Precursors and Quantification in Spirits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20592-20602. [PMID: 39233330 DOI: 10.1021/acs.jafc.4c04799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Barrel aging is a crucial stage that influences the taste of wines and spirits, particularly increasing their sweetness and bitterness. This increase is caused by nonvolatile compounds released from oak wood. To search for such molecules, we performed a taste-guided inductive fractionation protocol using several analytical techniques. By using HRMS and NMR, two new galloylated derivatives were elucidated. Their enzymatic hydrolysis revealed the formation of β-methyl-γ-octalactone, indicating that they are potential precursors. The taste properties of these isomers revealed a sweet and bitter taste for P-WL-1 and P-WL-2, respectively. An LC-HRMS quantification method was performed to evaluate the influence of aging parameters such as botanical origin and toasting process on their concentrations. Several spirits were also analyzed to confirm their presence in this matrix. These results improve the understanding of the molecular markers responsible for the taste of beverages.
Collapse
Affiliation(s)
- Delphine Winstel
- Univ. Bordeaux, Bordeaux INP, INRAE, BSA, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon,France
| | - Marine Gammacurta
- Univ. Bordeaux, Bordeaux INP, INRAE, BSA, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon,France
| | - Pierre Waffo-Téguo
- Univ. Bordeaux, Bordeaux INP, INRAE, BSA, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon,France
| | - Axel Marchal
- Univ. Bordeaux, Bordeaux INP, INRAE, BSA, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon,France
| |
Collapse
|
3
|
Estier T, Marchal A. Towards an understanding of bitterness in white wines: Contribution of 27 compounds assessed by LC-HRMS and sensory analysis. Food Chem 2024; 451:139503. [PMID: 38714111 DOI: 10.1016/j.foodchem.2024.139503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/09/2024]
Abstract
Whereas bitterness perception can modify the taste balance of white wines, its molecular origin remains largely unclear. This work aimed at determining the influence of a selection of the most cited bitter compounds on the bitterness of commercial dry white wines. Forty-two wines were sensorially characterized by a trained panel and divided into two statistically different groups depending on their bitterness. Twenty-seven bitter compounds were selected and five quantitation methods were developed and validated. The methods were used to measure the levels of all the 27 compounds in dry wine, 25 of them in sweet wine and 22 of them in grape juice. The detected concentrations were generally below the taste detection thresholds. No significant positive correlation between the bitterness intensity of the tasted samples and the concentration of the assayed bitter compounds was observed, suggesting the existence of other markers of bitterness in white wines.
Collapse
Affiliation(s)
- Tom Estier
- Univ. Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France.
| | - Axel Marchal
- Univ. Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France.
| |
Collapse
|
4
|
Li R, Tang J, Li J, Wu B, Tang J, Kan H, Zhao P, Zhang Y, Wang W, Liu Y. Bioactivity-Guided Isolation of Secondary Metabolites with Antioxidant and Antimicrobial Activities from Camellia fascicularis. Foods 2024; 13:2266. [PMID: 39063349 PMCID: PMC11276353 DOI: 10.3390/foods13142266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Camellia fascicularis has important ornamental, medicinal, and food values, which also have tremendous potential for exploiting bioactivities. We performed the bioactivity-guided (antioxidant and antimicrobial) screening of eight fractions obtained from the ethyl acetate phase of C. fascicularis. The antioxidant activity was measured by DPPH, ABTS, and FRAP, and the antibacterial activity was measured by the minimum inhibitory concentration (MIC) of Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. The results of bioactivity-guided isolation indicated that the major antioxidant compounds in the ethanolic extracts of C. fascicularis may be present in fractions (Fr.) (A-G, obtained after silica gel column chromatography). Fr. (D-I, obtained after silica gel column chromatography) is a fraction of C. fascicularis with antimicrobial activity. The structures of compounds were determined by spectral analysis and nuclear magnetic resonance (NMR) combined with the available literature on secondary metabolites of C. fascicularis leaves. In this study, 17 compounds were identified, including four phenolics (1, 3-4, and 14), a phenylpropane (2), five terpenoids (5-7, 12, and 15), four flavonoids and flavonoid glycosides (8-10 and 16), and two lignins (13 and 17). Compounds 4-7, 13-15, and 17 were isolated from the genus Camellia for first time. The remaining compounds were also isolated from C. fascicularis for first time. The evaluation of antioxidant and antimicrobial activities revealed that compounds 1, 3, 9, 11, and 17 exhibited higher antioxidant activity than the positive control drug (ascorbic acid), and compounds 4, 8, 10, and 13 showed similar activity to ascorbic acid. The other compounds had weaker or no significant antioxidant activities. The MIC of antibacterial activity for compounds 4, 7, and 11-13 against P. aeruginosa was comparable to that of the positive control drug tetracycline at 125 µg/mL, and other secondary metabolites inhibited E. coli and S. aureus at 250-500 µg/mL. This is also the first report of antioxidant and antimicrobial activities of compounds 5-7, 13-15, and 17. The results of the study enriched the variety of secondary metabolites of C. fascicularis and laid the foundation for further research on the pharmacological efficacy and biological activity of this plant.
Collapse
Affiliation(s)
- Ruonan Li
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| | - Jiandong Tang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| | - Jingjing Li
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| | - Boxiao Wu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| | - Junrong Tang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| | - Huan Kan
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| | - Ping Zhao
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| | - Yingjun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650224, China;
| | - Weihua Wang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| | - Yun Liu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| |
Collapse
|
5
|
Tian X, Wang X, Xu W, Gong M, Zhou C, Jiang E, Tang Y, Jia L, Zeng L, Deng S, Duan F. Penthorum chinense Pursh leaf tea debittering mechanisms via green tea manufacturing process and its influence on NAFLD-alleviation activities. Food Chem 2024; 445:138715. [PMID: 38382251 DOI: 10.1016/j.foodchem.2024.138715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
The green-tea manufacturing process showed good effect of flavor improving, debittering and shaping in making Penthorum chinensePursh leaf (PL) tea (PLT), which serves as a polyphenol dietary supplement and beverage raw material. GC-MS results showed that its unpleasant grassy odor decreased by 42.8% due to dodecanal, geranylacetone, and (E)-2-nonenal reduction, coupled with 1-hexadecanol increasing. UPLC-ESI-TOF-MS identified 95 compounds and showed that the debittering effect of green-tea manufacturing process was attributed to decreasing of flavonols and lignans, especially quercetins, kaempferols and luteolins, and increasing of dihydrochalcones which act as sweeteners bitterness-masking agents, while astringency was weakened by reducing delphinidin-3,5-O-diglucoside chloride, kaempferol-7-O-β-d-glucopyranoside, and tannins. The increase of pinocembrins and catechins in aqueous extracts of PLT, maintained its hepatoprotective, NAFLD-alleviation, and hepatofibrosis-prevention activities similar to PL in high fat-diet C57BL/6 mice, with flavonoids, tannins, tannic acids, and some newfound chemicals, including norbergenin, gomisin K2, pseudolaric acid B, tanshinol B, as functional ingredients.
Collapse
Affiliation(s)
- Xue Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xingyue Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Wei Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Chuanyuan Zhou
- Sichuan Chunxiangyuan Tea Co., Ltd., Luzhou 646500, China
| | - Ercheng Jiang
- Sichuan Neautus Traditional Chinese Medicine Co., Ltd., Chengdu 610000, China
| | - Yongqing Tang
- Luzhou Institute of Advanced Technology, Luzhou 646000, China
| | - Lirong Jia
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Li Zeng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Sha Deng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Feixia Duan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Othón-Díaz ED, Fimbres-García JO, Flores-Sauceda M, Silva-Espinoza BA, López-Martínez LX, Bernal-Mercado AT, Ayala-Zavala JF. Antioxidants in Oak (Quercus sp.): Potential Application to Reduce Oxidative Rancidity in Foods. Antioxidants (Basel) 2023; 12:antiox12040861. [PMID: 37107236 PMCID: PMC10135015 DOI: 10.3390/antiox12040861] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
This review explores the antioxidant properties of oak (Quercus sp.) extracts and their potential application in preventing oxidative rancidity in food products. Oxidative rancidity negatively impacts food quality, causing changes in color, odor, and flavor and reducing the shelf life of products. The use of natural antioxidants from plant sources, such as oak extracts, has gained increasing interest due to potential health concerns associated with synthetic antioxidants. Oak extracts contain various antioxidant compounds, including phenolic acids, flavonoids, and tannins, which contribute to their antioxidative capacity. This review discusses the chemical composition of oak extracts, their antioxidative activity in different food systems, and the safety and potential challenges related to their application in food preservation. The potential benefits and limitations of using oak extracts as an alternative to synthetic antioxidants are highlighted, and future research directions to optimize their application and determine their safety for human consumption are suggested.
Collapse
Affiliation(s)
- Elsa Daniela Othón-Díaz
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| | - Jorge O. Fimbres-García
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| | - Marcela Flores-Sauceda
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| | - Brenda A. Silva-Espinoza
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| | - Leticia X. López-Martínez
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| | - Ariadna T. Bernal-Mercado
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico
| | - Jesus F. Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| |
Collapse
|
7
|
Tardugno R, Cicero N, Costa R, Nava V, Vadalà R. Exploring Lignans, a Class of Health Promoting Compounds, in a Variety of Edible Oils from Brazil. Foods 2022; 11:1386. [PMID: 35626956 PMCID: PMC9141677 DOI: 10.3390/foods11101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Lignans, a group of polyphenols, have been identified in eight cold pressed oils from fruits, nuts, and seeds, retrieved from the Brazilian market. The oils under investigation were avocado, Brazilian nut, canola, coconut, grapeseed, macadamia, palm, and pequi. Olive oil was selected as a reference oil, since numerous data on its lignan content are available in literature. The qualitative and quantitative profiles were obtained, after extraction, by means of UFLC-ESI-MS/MS analyses. The total lignan content showed a high variability, ranging from 0.69 mg·Kg-1 (pequi) to 7.12 mg·Kg-1 (grapeseed), with the highest content registered for olive oil. Seven lignans were quantified, matairesinol and pinoresinol being the most abundant. The LC-MS/MS method was validated, showing linearity in the range of 12.5-212.5 mg·Kg-1, LOD in the range of 0.18-11.37 mg·Kg-1, and LOQ in the range of 0.53-34.45 mg·Kg-1. Additionally, part of the study was focused on the evaluation of the flavor profile, this being a key element in consumers' evaluations, by means of HS-SPME-GC. In total, 150 volatile compounds were determined in the eight oils, with identified fractions ranging from 91.85% (avocado) to 96.31% (canola), with an average value of 94.1%. Groups of components contributed characteristically to the flavour of each oil.
Collapse
Affiliation(s)
- Roberta Tardugno
- Science4Life s.r.l., Spin Off Company, University of Messina, 98122 Messina, Italy; (R.T.); (N.C.)
| | - Nicola Cicero
- Science4Life s.r.l., Spin Off Company, University of Messina, 98122 Messina, Italy; (R.T.); (N.C.)
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, 98122 Messina, Italy; (V.N.); (R.V.)
- Consorzio di Ricerca sul Rischio Biologico in Agricoltura (Co.Ri.Bi.A.), 90100 Palermo, Italy
| | - Rosaria Costa
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, 98122 Messina, Italy; (V.N.); (R.V.)
| | - Vincenzo Nava
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, 98122 Messina, Italy; (V.N.); (R.V.)
| | - Rossella Vadalà
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, 98122 Messina, Italy; (V.N.); (R.V.)
| |
Collapse
|
8
|
Buche G, Colas C, Fougère L, Destandau E. Oak Species Quercus robur L. and Quercus petraea Liebl. Identification Based on UHPLC-HRMS/MS Molecular Networks. Metabolites 2021; 11:684. [PMID: 34677399 PMCID: PMC8540037 DOI: 10.3390/metabo11100684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022] Open
Abstract
Two species of oak are dominant in French forests: pedunculate oak (Quercus robur L.) and sessile oak (Quercus petraea Liebl.). Their differentiation is not straightforward but is essential to better understand their respective molecular content in order to better valorize them. Thus, to improve oak species identification, an untargeted UHPLC-HRMS/MS method associated with a two-step data treatment was developed to analyze a wide range of specialized metabolites enabling the comparison of both species of oak extracts. Pooled extracts from sessile and pedunculate oaks, composed of extracts from several trees of pure species from various origins, were compared using first the Venn diagram, as a quick way to get an initial idea of how close the extracts are, and then using a molecular network to visualize, on the one hand, the ions shared between the two species and, on the other hand, the compounds specific to one species. The molecular network showed that the two species shared common clusters mainly representative of tannins derivatives and that each species has specific molecules with similar fragmentation patterns, associated in specific clusters. This methodology was then applied to compare these two pooled extracts to unknown individuals in order to determine the species. The Venn diagram allowed for the quick presumption of the species of the individual and then the species could be assigned more precisely with the molecular network, at the level of specific clusters. This method, developed for the first time, has several interests. First, it makes it possible to discriminate the species and to correctly assign the species of unknown samples. Moreover, it gave an overview of the metabolite composition of each sample to better target oak tree utilization and valorization.
Collapse
Affiliation(s)
- Gaëlle Buche
- Institut de Chimie Organique et Analytique, Université d’Orléans-CNRS, UMR 7311 BP 6759, CEDEX 2, 45067 Orléans, France; (G.B.); (C.C.); (L.F.)
| | - Cyril Colas
- Institut de Chimie Organique et Analytique, Université d’Orléans-CNRS, UMR 7311 BP 6759, CEDEX 2, 45067 Orléans, France; (G.B.); (C.C.); (L.F.)
- Centre de Biophysique Moléculaire, CNRS-Université d’Orléans, UPR 4301, CEDEX 2, 45071 Orléans, France
| | - Laëtitia Fougère
- Institut de Chimie Organique et Analytique, Université d’Orléans-CNRS, UMR 7311 BP 6759, CEDEX 2, 45067 Orléans, France; (G.B.); (C.C.); (L.F.)
| | - Emilie Destandau
- Institut de Chimie Organique et Analytique, Université d’Orléans-CNRS, UMR 7311 BP 6759, CEDEX 2, 45067 Orléans, France; (G.B.); (C.C.); (L.F.)
| |
Collapse
|
9
|
Li H, Li LF, Zhang ZJ, Wu CJ, Yu SJ. Sensory evaluation, chemical structures, and threshold concentrations of bitter-tasting compounds in common foodstuffs derived from plants and maillard reaction: A review. Crit Rev Food Sci Nutr 2021; 63:2277-2317. [PMID: 34542344 DOI: 10.1080/10408398.2021.1973956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The bitterness of foodstuffs is often associated with toxicity, which negatively influences product acceptability. However, bitter compounds have many benefits, and a slight bitter taste is sometimes favored. In this review, we summarize the methods used to isolate and evaluate the taste of bitter compounds in different foods. The chemical structures and threshold concentrations of these compounds are also recapped. Although the structures and thresholds of many bitter compounds have been confirmed, further studies are needed to develop detailed bitter-masking strategies and establish the relation between functional groups (hetero-cyclic substituents and bonding types) and taste quality. Furthermore, a comprehensive bitterness database and chemometric data must be provided in order to quickly assess the bitterness of unfamiliar products.
Collapse
Affiliation(s)
- He Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan, China.,College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Li-Feng Li
- School of Environment and Safety Engineering, North University of China, Taiyuan, China
| | - Zhi-Jun Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, China
| | - Chun-Jian Wu
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Shu-Juan Yu
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
10
|
Winstel D, Bahammou D, Albertin W, Waffo-Téguo P, Marchal A. Untargeted LC-HRMS profiling followed by targeted fractionation to discover new taste-active compounds in spirits. Food Chem 2021; 359:129825. [PMID: 33940473 DOI: 10.1016/j.foodchem.2021.129825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/19/2022]
Abstract
Taste is a key driver of food and beverage acceptability due to its role in consumers' pleasure. The great interest that natural food and beverages now arouse lies notably in the complexity of their taste, which in turn is related to a wide range of taste-active compounds. Going beyond the classic divide between targeted and untargeted strategies, an integrative methodology to spirits was applied. Untargeted profiling of several cognac spirits was implemented by LC-HRMS to identify compounds of interest among hundreds of ions. A targeted fractionation protocol was then developed. By using HRMS and NMR, dihydrodehydrodiconiferyl alcohol was identified and described for the first time in spirits and oak wood. It was characterized as sweet at 2 mg/L in two matrices and was quantified in spirits up to 4 mg/L. These findings demonstrated how this methodology is relevant and effective to discover new taste-active compounds.
Collapse
Affiliation(s)
- Delphine Winstel
- Univ. Bordeaux, Unité de Recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, 33882 Villenave d'Ornon Cedex, France.
| | - Delphine Bahammou
- Univ. Bordeaux, Unité de Recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, 33882 Villenave d'Ornon Cedex, France.
| | - Warren Albertin
- Univ. Bordeaux, Unité de Recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, 33882 Villenave d'Ornon Cedex, France.
| | - Pierre Waffo-Téguo
- Univ. Bordeaux, Unité de Recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, 33882 Villenave d'Ornon Cedex, France.
| | - Axel Marchal
- Univ. Bordeaux, Unité de Recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, 33882 Villenave d'Ornon Cedex, France.
| |
Collapse
|
11
|
High-temperature oxidation reduces the bitterness of honeybush infusions depending on changes in phenolic composition. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Balík J, Híc P, Tříska J, Vrchotová N, Smetana P, Smutek L, Rohlik BA, Houška M. Beer and beer-based beverage contain lignans. Journal of Food Science and Technology 2021; 58:581-585. [PMID: 33568851 DOI: 10.1007/s13197-020-04570-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 11/28/2022]
Abstract
Lignans are members of a broad group of plant phenols that can positively affect human health. They occur in negligible quantities in processed foodstuffs such as lager beer. The aim of this work was to utilize the high levels of lignans in the knots of spruce trees (Picea abies) to increase the lignans content in beer, without negatively impacting the natural taste and aroma. By means of lignans addition in the forms of spruce knot chips or different extracts made from spruce knots during the wort boiling were produced beer and beer-based beverages with lignans content ranging from 34 to 174 mg/L.
Collapse
Affiliation(s)
- Josef Balík
- Faculty of Horticulture, Mendel University in Brno, Brno, Czech Republic
| | - Pavel Híc
- Faculty of Horticulture, Mendel University in Brno, Brno, Czech Republic
| | - Jan Tříska
- Global Change Research Institute Brno, CAS, Brno, Czech Republic
| | | | - Pavel Smetana
- Faculty of Agriculture, The University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Libor Smutek
- Faculty of Agriculture, The University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Bo-Anne Rohlik
- University of Chemistry and Technology in Prague, Prague 10, Czech Republic
| | - Milan Houška
- Food Research Institute Prague, Radiová 7, 102 00 Prague 10, Czech Republic
| |
Collapse
|
13
|
Solovyev PA, Fauhl-Hassek C, Riedl J, Esslinger S, Bontempo L, Camin F. NMR spectroscopy in wine authentication: An official control perspective. Compr Rev Food Sci Food Saf 2021; 20:2040-2062. [PMID: 33506593 DOI: 10.1111/1541-4337.12700] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/30/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
Wine authentication is vital in identifying malpractice and fraud, and various physical and chemical analytical techniques have been employed for this purpose. Besides wet chemistry, these include chromatography, isotopic ratio mass spectrometry, optical spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy, which have been applied in recent years in combination with chemometric approaches. For many years, 2 H NMR spectroscopy was the method of choice and achieved official recognition in the detection of sugar addition to grape products. Recently, 1 H NMR spectroscopy, a simpler and faster method (in terms of sample preparation), has gathered more and more attention in wine analysis, even if it still lacks official recognition. This technique makes targeted quantitative determination of wine ingredients and nontargeted detection of the metabolomic fingerprint of a wine sample possible. This review summarizes the possibilities and limitations of 1 H NMR spectroscopy in analytical wine authentication, by reviewing its applications as reported in the literature. Examples of commercial and open-source solutions combining NMR spectroscopy and chemometrics are also examined herein, together with its opportunities of becoming an official method.
Collapse
Affiliation(s)
- Pavel A Solovyev
- Department of Food Quality and Nutrition, Research and Innovation Center, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige, 38010, Italy
| | - Carsten Fauhl-Hassek
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, Unit Product Identity, Supply Chains and Traceability, Max-Dohrn Strasse, 8-10, Berlin, 10589, Germany
| | - Janet Riedl
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, Unit Product Identity, Supply Chains and Traceability, Max-Dohrn Strasse, 8-10, Berlin, 10589, Germany
| | - Susanne Esslinger
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, Unit Product Identity, Supply Chains and Traceability, Max-Dohrn Strasse, 8-10, Berlin, 10589, Germany
| | - Luana Bontempo
- Department of Food Quality and Nutrition, Research and Innovation Center, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige, 38010, Italy
| | - Federica Camin
- Department of Food Quality and Nutrition, Research and Innovation Center, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige, 38010, Italy.,Center Agriculture Food Environment (C3A), University of Trento, via Mach 1, San Michele all'Adige, Tennessee, 38010, Italy
| |
Collapse
|
14
|
Fruehwirth S, Steinschaden R, Woschitz L, Richter P, Schreiner M, Hoffmann B, Hoffmann W, Pignitter M. Oil-assisted extraction of polyphenols from press cake to enhance oxidative stability of flaxseed oil. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
A Comprehensive Review of Phytochemistry and Biological Activities of Quercus Species. FORESTS 2020. [DOI: 10.3390/f11090904] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Quercus genus provides a large amount of biomaterial with many applications in fields like pharmaceutics, cosmetics, and foodstuff areas. Due to the worldwide dissemination of the genus, many species were used for centuries in traditional healing methods or in the wine maturing process. This review aims to bring together the results about phytoconstituents from oak extracts and their biological applicability as antioxidants, antimicrobial, anticancer, etc. The literature data used in this paper were collected via PubMed, Scopus, and Science Direct (2010–June 2020). The inclusion criteria were papers published in English, with information about phytoconstituents from Quercus species (leaves, bark and seeds/acorns) and biological activities such as antioxidant, antibacterial, antiobesity, anti-acne vulgaris, antifungal, anticancer, antiviral, antileishmanial, antidiabetic, anti-inflammatory. The exclusion criteria were the research of other parts of the Quercus species (e.g., galls, wood, and twigs); lack of information about phytochemistry and biological activities; non-existent Quercus species reported by the authors. The most studied Quercus species, in terms of identified biomolecules and biological activity, are Q. brantii, Q. infectoria and Q. robur. The Quercus species have been reported to contain several phytoconstituents. The main bioactive phytochemicals are phenolic compounds, volatile organic compounds, sterols, aliphatic alcohols and fatty acids. The, Quercus species are intensely studied due to their antioxidant, anti-inflammatory, antimicrobial, and anticancer activities, provided by their phytochemical composition. The general conclusion is that oak extracts can be exploited for their biological activity and can be used in research fields, such as pharmaceutical, nutraceutical and medical.
Collapse
|
16
|
Gammacurta M, Waffo-Teguo P, Winstel D, Dubourdieu D, Marchal A. Isolation of Taste-Active Triterpenoids from Quercus robur: Sensory Assessment and Identification in Wines and Spirit. JOURNAL OF NATURAL PRODUCTS 2020; 83:1611-1622. [PMID: 32343138 DOI: 10.1021/acs.jnatprod.0c00106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Six new triterpenoids (1-6), two known genins (7 and 8), and five known functionalized triterpenoids (9-13) were isolated from a Quercus robur heartwood extract. The purification protocol was guided by LC-HRMS by searching for structural analogues of bartogenic acid on the basis of their putative empirical formula. The structures of the new compounds were unequivocally elucidated using HRESIMS and 1D/2D NMR experiments. Sensory analyses were performed in water and in a non-oaked white wine on the pure compounds 1-13 at 5 mg/L. All molecules were perceived as bitter in water and wine, but they were mostly reported as modifying the wine taste balance. Using LC-HRMS, compounds 1-13 were observed in oaked red wine and cognac and were semiquantified in oak wood extracts. The influence of two cooperage parameters, oak species and toasting process, on compounds 1-13 content was studied. All compounds were found in quantities significantly higher in pedunculate than in sessile oak wood. Toasting is a key step in barrel manufacture and modulates the concentration of the discussed compounds. Significantly higher quantities were observed in untoasted wood compared to medium or highly toasted wood. These findings provide new insights into the molecular origin of taste changes due to oak aging.
Collapse
Affiliation(s)
- Marine Gammacurta
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, 33882 Villenave d'Ornon Cedex, France
| | - Pierre Waffo-Teguo
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, 33882 Villenave d'Ornon Cedex, France
| | - Delphine Winstel
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, 33882 Villenave d'Ornon Cedex, France
| | - Denis Dubourdieu
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, 33882 Villenave d'Ornon Cedex, France
| | - Axel Marchal
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, 33882 Villenave d'Ornon Cedex, France
| |
Collapse
|
17
|
Luo Y, Kong L, Xue R, Wang W, Xia X. Bitterness in alcoholic beverages: The profiles of perception, constituents, and contributors. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
18
|
Alexander L, de Beer D, Muller M, van der Rijst M, Joubert E. Potential of benzophenones and flavanones to modulate the bitter intensity of Cyclopia genistoides herbal tea. Food Res Int 2019; 125:108519. [PMID: 31554050 DOI: 10.1016/j.foodres.2019.108519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 02/01/2023]
Abstract
Variation in the bitter taste of Cyclopia genistoides (honeybush) herbal tea and reported modulation between its major xanthones, mangiferin and isomangiferin, prompted further investigation into the potential modulatory effects of honeybush phenolics. Combinations of crude benzophenone (BF)-, xanthone (XF)-, and flavanone (FF)-rich fractions and their major individual phenolic compounds were analysed by descriptive sensory analysis. The fractions were prepared from a bitter, hot water extract of green C. genistoides. Fraction BF, which is below the bitter threshold (intensity 10 on 100-point scale), enhanced the bitter intensity of XF and FF slightly (p < 0.05), although none of the major individual benzophenones retained this bitter enhancing effect. On the contrary, 3-β-d-glucopyranosyl-4-β-d-glucopyranosyloxyiriflophenone, the major benzophenone in BF, significantly (p < 0.05) decreased the bitter taste of XF, at a low concentration, whereas FF suppressed the bitter intensity of XF and mangiferin, the major xanthone present in XF. Hesperidin, however, had no effect on the bitter intensity of XF. In contrast, (2S)-5-[α-L-rhamnopyranosyl-(1→2)-β-d-glucopyranosyloxy]-naringenin, the major compound of FF, significantly (p < 0.05) enhanced the bitter taste of XF when added at concentrations comparable to that of 'fermented' honeybush tea infusions. The concentration-dependence of these bitter taste interactions may be responsible for the variable bitter intensity of C. genistoides herbal tea.
Collapse
Affiliation(s)
- Lara Alexander
- Plant Bioactives Group, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council (ARC), Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa; Department of Food Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa.
| | - Dalene de Beer
- Plant Bioactives Group, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council (ARC), Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa; Department of Food Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa.
| | - Magdalena Muller
- Department of Food Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa.
| | - Marieta van der Rijst
- Biometry Unit, Agricultural Research Council (ARC), Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa.
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council (ARC), Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa; Department of Food Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa.
| |
Collapse
|
19
|
Lignans in Spirits: Chemical Diversity, Quantification, and Sensory Impact of (±)-Lyoniresinol. Molecules 2018; 24:molecules24010117. [PMID: 30598007 PMCID: PMC6337434 DOI: 10.3390/molecules24010117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/24/2018] [Accepted: 12/25/2018] [Indexed: 11/17/2022] Open
Abstract
During barrel aging, spirits undergo organoleptic changes caused by the release of aroma and taste compounds. Recently, studies have revealed the bitter properties of oak wood lignans, such as (±)-lyoniresinol, and their contribution to wine taste. To evaluate the impact of lignans in spirits, a targeted screening of 11 compounds was set up and served to validate their presence in this matrix, implying their release by oak wood during aging. After development and validation of a quantification method, the most abundant and the bitterest lignan, (±)-lyoniresinol, was assayed by liquid chromatography–high resolution mass spectrometry (LC-HRMS) in spirits. Its gustatory detection threshold was established at 2.6 mg/L in spirits. A large number of samples quantified were above this detection threshold, which suggests its effect of increased bitterness in spirit taste. Significant variations were observed in commercial spirits, with concentrations ranging from 0.2 to 11.8 mg/L, which could be related to differences in barrel aging processes. In “eaux-de-vie” of cognac, concentrations of (±)-lyoniresinol were observed in the range from 1.6 mg/L to 12 mg/L. Lower concentrations were measured for older vintages.
Collapse
|
20
|
Phenolic Composition and Related Properties of Aged Wine Spirits: Influence of Barrel Characteristics. A Review. BEVERAGES 2017. [DOI: 10.3390/beverages3040055] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|