1
|
Demir SA, Seyrantepe V. Abnormally accumulated GM2 ganglioside contributes to skeletal deformity in Tay-Sachs mice. J Mol Med (Berl) 2024; 102:1517-1526. [PMID: 39514043 DOI: 10.1007/s00109-024-02498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/03/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Tay-Sachs Disease is a rare lysosomal storage disorder caused by mutations in the HEXA gene, responsible for the degradation of ganglioside GM2. In addition to progressive neurodegeneration, Tay-Sachs patients display bone anomalies, including kyphosis. Tay-Sachs disease mouse model (Hexa-/-Neu3-/-) shows both neuropathological and clinical abnormalities of the infantile-onset disease phenotype. In this study, we investigated the effects of GM2 accumulation on bone remodeling activity. Here, we evaluated the bone phenotype of 5-month-old Hexa-/-Neu3-/- mice with age-matched control groups using gene expression analysis, bone plasma biomarker analysis, and micro-computed tomography. We demonstrated lower plasma alkaline phosphatase activity and calcium levels with increased tartrate-resistant acid phosphatase levels, indicating reduced bone remodeling activity in mice. Consistently, gene expression analysis confirmed osteoblast reduction and osteoclast induction in the femur of mice. Micro-computed tomography and analysis show reduced trabecular bone volume, mineral density, number, and thickness in Hexa-/-Neu3-/- mice. In conclusion, we demonstrated that abnormal GM2 ganglioside accumulation significantly triggers skeletal abnormality in Tay-Sachs mice. We suggest that further investigation of the molecular basis of bone structure anomalies is necessary to elucidate new therapeutic targets that prevent the progression of bone symptoms and improve the life standards of Tay-Sachs patients. KEY MESSAGES: We detected the markers of bone loss-associated disorders such as osteopenia and osteoporosis in the Tay-Sachs disease mice model Hexa-/-Neu3-/-. We also demonstrated for the first time there is an increase in trabecular spacing and a reduction in trabecular thickness and number indicating skeletal abnormalities in mice model using micro-CT analysis.
Collapse
Affiliation(s)
| | - Volkan Seyrantepe
- Izmir Institute of Technology, IYTEDEHAM, Urla, Izmir, Turkey.
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey.
| |
Collapse
|
2
|
Maouche A, Boumediene K, Baugé C. Bioactive Compounds in Osteoarthritis: Molecular Mechanisms and Therapeutic Roles. Int J Mol Sci 2024; 25:11656. [PMID: 39519204 PMCID: PMC11546619 DOI: 10.3390/ijms252111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA) is the most common and debilitating form of arthritis. Current therapies focus on pain relief and efforts to slow disease progression through a combination of drug and non-drug treatments. Bioactive compounds derived from plants show significant promise due to their anti-inflammatory, antioxidant, and tissue-protective properties. These natural compounds can help regulate the inflammatory processes and metabolic pathways involved in OA, thereby alleviating symptoms and potentially slowing disease progression. Investigating the efficacy of these natural agents in treating osteoarthritis addresses a growing demand for natural health solutions and creates new opportunities for managing this increasingly prevalent age-related condition. The aim of this review is to provide an overview of the use of some bioactive compounds from plants in modulating the progression of osteoarthritis and alleviating associated pain.
Collapse
Affiliation(s)
| | | | - Catherine Baugé
- UR7451 BIOCONNECT, Université de Caen Normandie, 14032 Caen, France; (A.M.); (K.B.)
| |
Collapse
|
3
|
Zhou C, Shen S, Zhang M, Luo H, Zhang Y, Wu C, Zeng L, Ruan H. Mechanisms of action and synergetic formulas of plant-based natural compounds from traditional Chinese medicine for managing osteoporosis: a literature review. Front Med (Lausanne) 2023; 10:1235081. [PMID: 37700771 PMCID: PMC10493415 DOI: 10.3389/fmed.2023.1235081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/15/2023] [Indexed: 09/14/2023] Open
Abstract
Osteoporosis (OP) is a systemic skeletal disease prevalent in older adults, characterized by substantial bone loss and deterioration of microstructure, resulting in heightened bone fragility and risk of fracture. Traditional Chinese Medicine (TCM) herbs have been widely employed in OP treatment owing to their advantages, such as good tolerance, low toxicity, high efficiency, and minimal adverse reactions. Increasing evidence also reveals that many plant-based compounds (or secondary metabolites) from these TCM formulas, such as resveratrol, naringin, and ginsenoside, have demonstrated beneficial effects in reducing the risk of OP. Nonetheless, the comprehensive roles of these natural products in OP have not been thoroughly clarified, impeding the development of synergistic formulas for optimal OP treatment. In this review, we sum up the pathological mechanisms of OP based on evidence from basic and clinical research; emphasis is placed on the in vitro and preclinical in vivo evidence-based anti-OP mechanisms of TCM formulas and their chemically active plant constituents, especially their effects on imbalanced bone homeostasis regulated by osteoblasts (responsible for bone formation), osteoclasts (responsible for bone resorption), bone marrow mesenchymal stem cells as well as bone microstructure, angiogenesis, and immune system. Furthermore, we prospectively discuss the combinatory ingredients from natural products from these TCM formulas. Our goal is to improve comprehension of the pharmacological mechanisms of TCM formulas and their chemically active constituents, which could inform the development of new strategies for managing OP.
Collapse
Affiliation(s)
- Chengcong Zhou
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Shuchao Shen
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Muxin Zhang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuliang Zhang
- Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, China
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Lingfeng Zeng
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
4
|
Wang M, An M, Fan MS, Zhang SS, Sun Z, Zhao Y, Xiang ZM, Sheng J. FAEE exerts a protective effect against osteoporosis by regulating the MAPK signalling pathway. PHARMACEUTICAL BIOLOGY 2022; 60:467-478. [PMID: 35180021 PMCID: PMC8865110 DOI: 10.1080/13880209.2022.2039216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
CONTEXT Ferulic acid ethyl ester (FAEE) is abundant in Ligusticum chuanxiong Hort. (Apiaceae) and grains, and possesses diverse biological activities; but the effects of FAEE on osteoporosis has not been reported. OBJECTIVE This study investigated whether FAEE can attenuate osteoclastogenesis and relieve ovariectomy-induced osteoporosis via attenuating mitogen-activated protein kinase (MAPK). MATERIALS AND METHODS We stimulated RAW 264.7 cells with receptor activator of NF-κB ligand (RANKL) followed by FAEE. The roles of FAEE in osteoclast production and osteogenic resorption of mature osteoclasts were evaluated by tartrate resistant acid phosphatase (TRAP) staining, expression of osteoclast-specific genes, proteins and MAPK. Ovariectomized (OVX) female Sprague-Dawley rats were administered FAEE (20 mg/kg/day) for 12 weeks to explore its potential in vivo, and then histology was undertaken in combination with cytokines analyses. RESULTS FAEE suppressed RANKL-induced osteoclast formation (96 ± 0.88 vs. 15 ± 1.68) by suppressing the expression of osteoclast-specific genes, proteins and MAPK signalling pathway related proteins (p-ERK/ERK, p-JNK/JNK and p-P38/P38) in vitro. In addition, OVX rats exposed to FAEE maintained their normal calcium (Ca) (2.72 ± 0.02 vs. 2.63 ± 0.03, p < 0.05) balance, increased oestradiol levels (498.3 ± 9.43 vs. 398.7 ± 22.06, p < 0.05), simultaneously reduced levels of bone mineral density (BMD) (0.159 ± 0.0016 vs. 0.153 ± 0.0025, p < 0.05) and bone mineral content (BMC) (0.8 ± 0.0158 vs. 0.68 ± 0.0291, p < 0.01). DISCUSSION AND CONCLUSIONS These findings suggested that FAEE could be used to ameliorate osteoporosis by the MAPK signalling pathway, suggesting that FAEE could be a potential therapeutic candidate for osteoporosis.
Collapse
Affiliation(s)
- Ming‑Yue Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, P. R. China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, P. R. China
| | - Meng‑Fei An
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, P. R. China
- College of Science, Yunnan Agricultural University, Kunming, P. R. China
| | - Mao-Si Fan
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, P. R. China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, P. R. China
| | - Shao-Shi Zhang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, P. R. China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, P. R. China
| | - Ze‑Rui Sun
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, P. R. China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, P. R. China
| | - Yun‑Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
- Yun‑Li Zhao
| | - Ze-Min Xiang
- College of Science, Yunnan Agricultural University, Kunming, P. R. China
- Ze-Min Xiang
| | - Jun Sheng
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, P. R. China
- College of Science, Yunnan Agricultural University, Kunming, P. R. China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, P. R. China
- CONTACT Jun Sheng
| |
Collapse
|
5
|
Wang Y, Liu L, Le Z, Tay A. Analysis of Nanomedicine Efficacy for Osteoarthritis. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yuwen Wang
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Ling Liu
- Institute of Health Innovation and Technology National University of Singapore Singapore 117599 Singapore
| | - Zhicheng Le
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Andy Tay
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
- Institute of Health Innovation and Technology National University of Singapore Singapore 117599 Singapore
- Tissue Engineering Programme National University of Singapore Singapore 117510 Singapore
| |
Collapse
|
6
|
Yun HM, Lee JY, Kim B, Park KR. Suffruticosol B Is an Osteogenic Inducer through Osteoblast Differentiation, Autophagy, Adhesion, and Migration. Int J Mol Sci 2022; 23:ijms232113559. [PMID: 36362346 PMCID: PMC9658763 DOI: 10.3390/ijms232113559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Suffruticosol B (Suf-B) is a stilbene found in Paeonia suffruticosa ANDR., which has been traditionally used in medicine. Stilbenes and their derivatives possess various pharmacological effects, such as anticancer, anti-inflammatory, and anti-osteoporotic activities. This study aimed to explore the bone-forming activities and mechanisms of Suf-B in pre-osteoblasts. Herein, >99.9% pure Suf-B was isolated from P. suffruticosa methanolic extracts. High concentrations of Suf-B were cytotoxic, whereas low concentrations did not affect cytotoxicity in pre-osteoblasts. Under zero levels of cytotoxicity, Suf-B exhibited bone-forming abilities by enhancing alkaline phosphatase enzyme activities, bone matrix calcification, and expression levels with non-collagenous proteins. Suf-B induces intracellular signal transduction, leading to nuclear RUNX2 expression. Suf-B-stimulated differentiation showed increases in autophagy proteins and autophagosomes, as well as enhancement of osteoblast adhesion and transmigration on the ECM. These results indicate that Suf-B has osteogenic qualities related to differentiation, autophagy, adhesion, and migration. This also suggests that Suf-B could have a therapeutic effect as a phytomedicine in skeletal disorders.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Joon Yeop Lee
- National Development Institute for Korean Medicine, Gyeongsan 38540, Korea
| | - Bomi Kim
- National Development Institute for Korean Medicine, Gyeongsan 38540, Korea
| | - Kyung-Ran Park
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Korea
- Correspondence: ; Tel.: +82-62-712-4412; Fax: +82-62-372-4102
| |
Collapse
|
7
|
Gxaba N, Manganyi MC. The Fight against Infection and Pain: Devil’s Claw (Harpagophytum procumbens) a Rich Source of Anti-Inflammatory Activity: 2011–2022. Molecules 2022; 27:molecules27113637. [PMID: 35684573 PMCID: PMC9182060 DOI: 10.3390/molecules27113637] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022] Open
Abstract
Harpagophytum procumbens subsp. procumbens (Burch.) DC. ex Meisn. (Sesame seed Family—Pedaliaceae) is a popular medicinal plant known as Devil’s claw. It is predominantly distributed widely over southern Africa. Its impressive reputation is embedded in its traditional uses as an indigenous herbal plant for the treatment of menstrual problems, bitter tonic, inflammation febrifuge, syphilis or even loss of appetite. A number of bioactive compounds such as terpenoids, iridoid glycosides, glycosides, and acetylated phenolic compounds have been isolated. Harpagoside and harpagide, iridoid glycosides bioactive compounds have been reported in countless phytochemical studies as potential anti-inflammatory agents as well as pain relievers. In-depth studies have associated chronic inflammation with various diseases, such as Alzheimer’s disease, obesity, rheumatoid arthritis, type 2 diabetes, cancer, and cardiovascular and pulmonary diseases. In addition, 60% of chronic disorder fatalities are due to chronic inflammatory diseases worldwide. Inflammation and pain-related disorders have attracted significant attention as leading causes of global health challenges. Articles published from 2011 to the present were obtained and reviewed in-depth to determine valuable data findings as well as knowledge gaps. Various globally recognized scientific search engines/databases including Scopus, PubMed, Google Scholar, Web of Science, and ScienceDirect were utilized to collect information and deliver evidence. Based on the literature results, there was a dramatic decrease in the number of studies conducted on the anti-inflammatory and analgesic activity of Devil’s claw, thereby presenting a potential research gap. It is also evident that currently in vivo clinical studies are needed to validate the prior massive in vitro studies, therefore delivering an ideal anti-inflammatory and analgesic agent in the form of H. procumbens products.
Collapse
|
8
|
Ren R, Guo J, Chen Y, Zhang Y, Chen L, Xiong W. The role of Ca 2+ /Calcineurin/NFAT signalling pathway in osteoblastogenesis. Cell Prolif 2021; 54:e13122. [PMID: 34523757 PMCID: PMC8560623 DOI: 10.1111/cpr.13122] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/18/2022] Open
Abstract
The bone remodelling process is closely related to bone health. Osteoblasts and osteoclasts participate in the bone remodelling process under the regulation of various factors inside and outside. Excessive activation of osteoclasts or lack of function of osteoblasts will cause occurrence and development of multiple bone‐related diseases. Ca2+/Calcineurin/NFAT signalling pathway regulates the growth and development of many types of cells, such as cardiomyocyte differentiation, angiogenesis, chondrogenesis, myogenesis, bone development and regeneration, etc. Some evidences indicate that this signalling pathway plays an extremely important role in bone formation and bone pathophysiologic changes. This review discusses the role of Ca2+/Calcineurin/NFAT signalling pathway in the process of osteogenic differentiation, as well as the influence of regulating each component in this signalling pathway on the differentiation and function of osteoblasts, whereby the relationship between Ca2+/Calcineurin/NFAT signalling pathway and osteoblastogenesis could be deeper understood.
Collapse
Affiliation(s)
- Ranyue Ren
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiachao Guo
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangmengfan Chen
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, BG Trauma Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Yayun Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liangxi Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
9
|
Brendler T. From Bush Medicine to Modern Phytopharmaceutical: A Bibliographic Review of Devil's Claw ( Harpagophytum spp.). Pharmaceuticals (Basel) 2021; 14:726. [PMID: 34451822 PMCID: PMC8398729 DOI: 10.3390/ph14080726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Devil's claw (Harpagophytum spp., Pedaliaceae) is one of the best-documented phytomedicines. Its mode of action is largely elucidated, and its efficacy and excellent safety profile have been demonstrated in a long list of clinical investigations. The author conducted a bibliographic review which not only included peer-reviewed papers published in scientific journals but also a vast amount of grey literature, such as theses and reports initiated by governmental as well as non-governmental organizations, thus allowing for a more holistic presentation of the available evidence. Close to 700 sources published over the course of two centuries were identified, confirmed, and cataloged. The purpose of the review is three-fold: to trace the historical milestones in devil's claw becoming a modern herbal medicine, to point out gaps in the seemingly all-encompassing body of research, and to provide the reader with a reliable and comprehensive bibliography. The review covers aspects of ethnobotany, taxonomy, history of product development and commercialization, chemistry, pharmacology, toxicology, as well as clinical efficacy and safety. It is concluded that three areas stand out in need of further investigation. The taxonomical assessment of the genus is outdated and lacking. A revision is needed to account for intra- and inter-specific, geographical, and chemo-taxonomical variation, including variation in composition. Further research is needed to conclusively elucidate the active compound(s). Confounded by early substitution, intermixture, and blending, it has yet to be demonstrated beyond a reasonable doubt that both (or all) Harpagophytum spp. are equally (and interchangeably) safe and efficacious in clinical practice.
Collapse
Affiliation(s)
- Thomas Brendler
- Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa;
- Plantaphile, Collingswood, NJ 08108, USA
| |
Collapse
|
10
|
Kim KJ, Lee J, Wang W, Lee Y, Oh E, Park KH, Park C, Woo GE, Son YJ, Kang H. Austalide K from the Fungus Penicillium rudallense Prevents LPS-Induced Bone Loss in Mice by Inhibiting Osteoclast Differentiation and Promoting Osteoblast Differentiation. Int J Mol Sci 2021; 22:5493. [PMID: 34071042 PMCID: PMC8197085 DOI: 10.3390/ijms22115493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
Osteoporosis is a chronic disease that has become a serious public health problem due to the associated reduction in quality of life and its increasing financial burden. It is known that inhibiting osteoclast differentiation and promoting osteoblast formation prevents osteoporosis. As there is no drug with this dual activity without clinical side effects, new alternatives are needed. Here, we demonstrate that austalide K, isolated from the marine fungus Penicillium rudallenes, has dual activities in bone remodeling. Austalide K inhibits the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and improves bone morphogenetic protein (BMP)-2-mediated osteoblast differentiation in vitro without cytotoxicity. The nuclear factor of activated T cells c1 (NFATc1), tartrate-resistant acid phosphatase (TRAP), dendritic cell-specific transmembrane protein (DC-STAMP), and cathepsin K (CTSK) osteoclast-formation-related genes were reduced and alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), osteocalcin (OCN), and osteopontin (OPN) (osteoblast activation-related genes) were simultaneously upregulated by treatment with austalide K. Furthermore, austalide K showed good efficacy in an LPS-induced bone loss in vivo model. Bone volume, trabecular separation, trabecular thickness, and bone mineral density were recovered by austalide K. On the basis of these results, austalide K may lead to new drug treatments for bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Kwang-Jin Kim
- Department of Pharmacy, Sunchon National University, 315 Maegok-dong, Suncheon 57922, Korea; (K.-J.K.); (Y.L.)
| | - Jusung Lee
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul 08826, Korea; (J.L.); (W.W.); (E.O.); (K.-H.P.); (G.-E.W.)
| | - Weihong Wang
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul 08826, Korea; (J.L.); (W.W.); (E.O.); (K.-H.P.); (G.-E.W.)
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, NS-80, Seoul 08826, Korea;
| | - Yongjin Lee
- Department of Pharmacy, Sunchon National University, 315 Maegok-dong, Suncheon 57922, Korea; (K.-J.K.); (Y.L.)
| | - Eunseok Oh
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul 08826, Korea; (J.L.); (W.W.); (E.O.); (K.-H.P.); (G.-E.W.)
| | - Kyu-Hyung Park
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul 08826, Korea; (J.L.); (W.W.); (E.O.); (K.-H.P.); (G.-E.W.)
| | - Chanyoon Park
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, NS-80, Seoul 08826, Korea;
| | - Gee-Eun Woo
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul 08826, Korea; (J.L.); (W.W.); (E.O.); (K.-H.P.); (G.-E.W.)
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, 315 Maegok-dong, Suncheon 57922, Korea; (K.-J.K.); (Y.L.)
| | - Heonjoong Kang
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul 08826, Korea; (J.L.); (W.W.); (E.O.); (K.-H.P.); (G.-E.W.)
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, NS-80, Seoul 08826, Korea;
- Research Institute of Oceanography, Seoul National University, NS-80, Seoul 08826, Korea
| |
Collapse
|
11
|
Zhang Q, Liu A, Wang Y. Scrophularia ningpoensis Hemsl: a review of its phytochemistry, pharmacology, quality control and pharmacokinetics. J Pharm Pharmacol 2021; 73:573-600. [PMID: 33772290 DOI: 10.1093/jpp/rgaa036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Scrophularia ningpoensis Hemsl (SNH) is a commonly used medicinal plant in East Asia. Scrophulariae Radix (SR) is the dried roots of SNH, and is one of the most commonly used medicinal parts of SNH, and is an essential traditional medicine and widely used in East Asia for more than 2000 years. SR is used for clearing away heat and cooling blood, nourishing Yin and reducing fire, detoxicating and resolving a mass. The purpose of this paper is to systematically review the phytochemistry, pharmacology, quality control and pharmacokinetics of SNH based on the surveyed and summarized literature. KEY FINDINGS Up to now, iridoids, phenolic glycosides, phenolic acids, alkaloids, flavonoids, triterpenes and other compounds have been isolated and identified from SNH. The extract and chemical components of SNH exerts multiple pharmacological effects, such as hepatoprotective effect, anti-inflammatory effect, neuroprotective effect, anti-ventricular remodeling effect and other activities. Various methods have been developed for the quality control of SNH, mainly for SR. Some bioactive compounds in SNH exhibited different pharmacokinetic behaviours and individual metabolic transformation profiles. SUMMARY This review will contribute to understanding the correlation between the pharmacological activities and the traditional usage of SNH, and useful to rational use and drug development in the future.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Pharmacognosy, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,Laboratory of Traditional Chinese Medicine Chemistry and Quality Evaluation of Traditional Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - An Liu
- Laboratory of Traditional Chinese Medicine Chemistry and Quality Evaluation of Traditional Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuesheng Wang
- Laboratory of Traditional Chinese Medicine Chemistry and Quality Evaluation of Traditional Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Articular cartilage regeneration by activated skeletal stem cells. Nat Med 2020; 26:1583-1592. [PMID: 32807933 DOI: 10.1038/s41591-020-1013-2] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is a degenerative disease resulting in irreversible, progressive destruction of articular cartilage1. The etiology of OA is complex and involves a variety of factors, including genetic predisposition, acute injury and chronic inflammation2-4. Here we investigate the ability of resident skeletal stem-cell (SSC) populations to regenerate cartilage in relation to age, a possible contributor to the development of osteoarthritis5-7. We demonstrate that aging is associated with progressive loss of SSCs and diminished chondrogenesis in the joints of both mice and humans. However, a local expansion of SSCs could still be triggered in the chondral surface of adult limb joints in mice by stimulating a regenerative response using microfracture (MF) surgery. Although MF-activated SSCs tended to form fibrous tissues, localized co-delivery of BMP2 and soluble VEGFR1 (sVEGFR1), a VEGF receptor antagonist, in a hydrogel skewed differentiation of MF-activated SSCs toward articular cartilage. These data indicate that following MF, a resident stem-cell population can be induced to generate cartilage for treatment of localized chondral disease in OA.
Collapse
|
13
|
Lin YT, Mao YW, Imtiyaz Z, Chiou WF, Lee MH. Comprehensive LC-MS/MS-based phytochemical perspectives and osteogenic effects of Uraria crinita. Food Funct 2020; 11:5420-5431. [PMID: 32475999 DOI: 10.1039/d0fo00782j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osteogenesis plays a vital role in the maintenance of bone health. Imbalances in osteogenesis influence the onset of several bone loss-associated diseases. The intake of Uraria crinita (Fabaceae) through dietary supplements is advised for childhood bone dysplasia. This botanical provides edible tonics and detoxifiers, and is also used as a folk beverage. We evaluated the osteogenic effects of a 50% ethanol extract of the root of U. crinita on primary human osteoblasts (HObs) and initiated a novel comprehensive phytochemical strategy using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for quality control of this functional food. Two isoflavones, genistein (5) and 5,7-dihydroxy-3',5'-dihydroxyisoflavone (6), increased the alkaline phosphatase activity (differentiation stage); the flavone glycoside vitexin (1), and the phenolic acid salicylic acid (2) enhanced the mineralization (mature stage). The isoflavone 2'-hydroxygenistein (4) possessed high osteogenic potential among the isolated compounds in HObs. It promoted osteogenesis-related stages and upregulated the gene expressions in a dose-dependent manner. The major compounds in the active fraction were quantitatively analyzed via phytochemical fingerprint detection. These LC-MS/MS-based phytochemical perspectives can act as reference standards in developing food supplements from U. crinita.
Collapse
Affiliation(s)
- Yi-Tzu Lin
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yi-Wen Mao
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Zuha Imtiyaz
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Wen-Fei Chiou
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan.
| | - Mei-Hsien Lee
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan. and Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan and Center for Reproductive Medicine & Sciences, Taipei Medical University Hospital, Taipei 11031, Taiwan
| |
Collapse
|
14
|
Luo Y, Ma Y, Qiao X, Zeng R, Cheng R, Nie Y, Li S, A R, Shen X, Yang M, Xu CC, Xu L. Irisin ameliorates bone loss in ovariectomized mice. Climacteric 2020; 23:496-504. [PMID: 32319323 DOI: 10.1080/13697137.2020.1745768] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Y. Luo
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- The Joint Laboratory for Reproductive Medicine of Sichuan University–The Chinese University of Hong Kong, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Y. Ma
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- The Joint Laboratory for Reproductive Medicine of Sichuan University–The Chinese University of Hong Kong, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - X. Qiao
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- The Joint Laboratory for Reproductive Medicine of Sichuan University–The Chinese University of Hong Kong, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - R. Zeng
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- The Joint Laboratory for Reproductive Medicine of Sichuan University–The Chinese University of Hong Kong, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - R. Cheng
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- The Joint Laboratory for Reproductive Medicine of Sichuan University–The Chinese University of Hong Kong, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Y. Nie
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- The Joint Laboratory for Reproductive Medicine of Sichuan University–The Chinese University of Hong Kong, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - S. Li
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- The Joint Laboratory for Reproductive Medicine of Sichuan University–The Chinese University of Hong Kong, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - R. A
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- The Joint Laboratory for Reproductive Medicine of Sichuan University–The Chinese University of Hong Kong, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - X. Shen
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- The Joint Laboratory for Reproductive Medicine of Sichuan University–The Chinese University of Hong Kong, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - M. Yang
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- The Joint Laboratory for Reproductive Medicine of Sichuan University–The Chinese University of Hong Kong, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - C. C. Xu
- College of Engineering, The Ohio State University, Columbus, OH, USA
| | - L. Xu
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- The Joint Laboratory for Reproductive Medicine of Sichuan University–The Chinese University of Hong Kong, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
15
|
Jiang A, Gao S, Zhao Z, Tan Q, Sun S, Song C, Leng H. Phenotype changes of subchondral plate osteoblasts based on a rat model of ovariectomy-induced osteoarthritis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:476. [PMID: 32395520 PMCID: PMC7210138 DOI: 10.21037/atm.2020.03.93] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Osteoarthritis (OA) is prevalent in postmenopausal women. Subchondral bone in ovariectomized (OVX) rats might play a more important role in cartilage degeneration compared with other types of OA. How subchondral osteoblast changes in OVX rats is still unclear. Understanding of osteoblast changes obtained from OVX subchondral bone might be helpful to clarify pathogenesis of OVX-OA. Methods Female Sprague-Dawley rats were randomly divided into two groups: Sham (n=20) and OVX (n=20). Serum levels of Alkaline phosphatase (ALP) and C-telopeptide of type I collagen (CTX-I) were measured every one or two weeks. All rats were executed at week 9 post surgery. The weight of rats and the wet weight of uterus were assessed. Micro-computed Tomography (micro-CT) was used to analyze the knee microstructure, and toluidine blue staining was employed to evaluate cartilage erosion. Subchondral osteoblast proliferation ability by cell counting kit-8 assay, osteogenic genes expressions by reverse transcription polymerase chain reaction (RT-PCR), differentiation and mineralization ability by ALP staining and alizarin red staining were evaluated and compared between Sham and OVX. Results Ovariectomy induced significant increases of serum ALP and CTX-I as early as at week 2. At week 9 after surgery, the body weight of OVX rats was significantly increased, and uterus weight of OVX rats was remarkably decreased. OVX rats demonstrated significant subchondral bone change and cartilage erosion compared with Sham rats. mRNA levels of early markers of osteogenic differentiation (ALP, type I collagen, Runx2) were enhanced in OVX rats, but the late marker (osteocalcin) was not significantly different. ALP activity of osteoblasts increased, but the mineralization capacity decreased in OVX rats. Conclusions Subchondral osteoblasts in OVX rats exhibited different proliferation, differentiation and mineralization abilities from normal counterparts.
Collapse
Affiliation(s)
- Ai Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China
| | - Shan Gao
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China
| | - Zhenda Zhao
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China
| | - Qizhao Tan
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China
| | - Shang Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China
| | - Chunli Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Lab of Spine Diseases, Beijing 100191, China
| | - Huijie Leng
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
16
|
Wu QC, Tang XY, Dai ZQ, Dai Y, Xiao HH, Yao XS. Sweroside promotes osteoblastic differentiation and mineralization via interaction of membrane estrogen receptor-α and GPR30 mediated p38 signalling pathway on MC3T3-E1 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153146. [PMID: 32028183 DOI: 10.1016/j.phymed.2019.153146] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Dipsaci Radix has been clinically used for thousands of years in China for strengthening muscles and bones. Sweroside is the major active iridoid glycoside isolated from Dipsaci Radix. It has been reported that sweroside can promote alkaline phosphatase (ALP) activity in both the human osteosarcoma cell line MG-63 and rat osteoblasts. However, the underlying mechanism involved in these osteoblastic processes is poorly understood. PURPOSE This study aimed to characterize the bone protective effects of sweroside and to investigate the signaling pathway that is involved in its actions in MC3T3-E1 cells. METHODS Cell proliferation, differentiation and mineralization were evaluated by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, ALP test and Alizarin Red S staining, respectively. The concentration of sweroside in intracellular and extracellular fluids was determined by ultra-performance liquid chromatography coupled to triple quadrupole xevo-mass spectrometry (UPLC/TQ-XS-MS). Proteins associated with the osteoblastic signaling pathway were analysed by western blot and immunofluorescence methods. RESULTS Sweroside did not obviously affect the proliferation but significantly promoted the ALP activity and mineralization of MC3T3-E1 cells. The maximal absorption amount 0.465 ng/ml (1.3 × 10-9 M) of sweroside was extremely lower than the tested concentration of 358.340 ng/ml (10-6 M), indicating an extremely low absorption rate by MC3T3-E1 cells. Moreover, the ALP activity, the protein expression of ER-α and G protein-coupled receptor 30 (GPR30) induced by sweroside were markedly blocked by both the ER antagonist ICI 182780 and the GPR30 antagonist G15. In addition, sweroside also activated the phosphorylation of p38 kinase (p-p38), while the phosphorylation effects together with ALP and mineralization activities were completely blocked by a p38 antagonist, SB203580. Additionally, the phosphorylation of p38 induced by sweroside were markedly blocked by both the ER antagonist ICI 182780 and the GPR30 antagonist G15. CONCLUSIONS The present study indicated that sweroside, as a potential agent in treatment of osteoporosis, might exert beneficial effects on MC3T3-E1 cells by interaction with the membrane estrogen receptor-α and GPR30 that then activates the p38 signaling pathway. This is the first study to report the specific mechanism of the effects of sweroside on osteoblastic differentiation and mineralization of MC3T3-E1 cells.
Collapse
Affiliation(s)
- Qing-Chang Wu
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Xi-Yang Tang
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Zi-Qin Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Yi Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| | - Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, PR China.
| | - Xin-Sheng Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| |
Collapse
|
17
|
Small molecules from natural products targeting the Wnt/β-catenin pathway as a therapeutic strategy. Biomed Pharmacother 2019; 117:108990. [PMID: 31226638 DOI: 10.1016/j.biopha.2019.108990] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
|
18
|
Zhang X, Cheng G, Xing X, Liu J, Cheng Y, Ye T, Wang Q, Xiao X, Li Z, Deng H. Near-Infrared Light-Triggered Porous AuPd Alloy Nanoparticles To Produce Mild Localized Heat To Accelerate Bone Regeneration. J Phys Chem Lett 2019; 10:4185-4191. [PMID: 31295998 DOI: 10.1021/acs.jpclett.9b01735] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The treatment of massive bone defects is still a significant challenge for orthopedists. Here we have engineered synthetic porous AuPd alloy nanoparticles (pAuPds) as a hyperthermia agent for in situ bone regeneration through photothermal therapy (PTT). After being swallowed by cells, pAuPds produced a mild localized heat (MLH) (40-43 °C) under the irradiation of a near-infrared laser, which can greatly accelerate cell proliferation and bone regeneration. Almost 97% of the cranial defect area (8 mm in diameter) was covered by the newly formed bone after 6 weeks of PTT. RNA sequencing analysis was used to obtain insight into the molecular mechanism of the MLH on cell proliferation and bone formation. These results demonstrated that the Wnt signaling pathway was involved in the MLH. This Letter provides a unique strategy with mild heat stimulation and high efficiency for in situ bone regeneration.
Collapse
Affiliation(s)
- Xingang Zhang
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application , Wuhan University , Wuhan 430072 , China
| | - Gu Cheng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education & Department of Oral and Maxillofical Trauma and Plastic Surgery, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , China
| | - Xin Xing
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education & Department of Oral and Maxillofical Trauma and Plastic Surgery, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , China
| | - Jiangchao Liu
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application , Wuhan University , Wuhan 430072 , China
| | - Yuet Cheng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education & Department of Oral and Maxillofical Trauma and Plastic Surgery, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , China
| | - Tianyu Ye
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application , Wuhan University , Wuhan 430072 , China
| | - Qun Wang
- Department of Chemical and Biological Engineering , Iowa State University , Ames , Iowa 50011 , United States
| | - Xiangheng Xiao
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application , Wuhan University , Wuhan 430072 , China
| | - Zubing Li
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education & Department of Oral and Maxillofical Trauma and Plastic Surgery, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , China
| | - Hongbing Deng
- School of Resource and Environmental Science and Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory , Wuhan University , Wuhan 430079 , P. R. China
| |
Collapse
|
19
|
Tang X, Gao Y, Chen Y, Li X, Yu P, Ma Z, Liu R. Evaluation of the effect of CaD on the bone structure and bone metabolic changes in senile osteoporosis rats based on MLP–ANN methods. Food Funct 2019; 10:8026-8041. [DOI: 10.1039/c9fo01322a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Senile osteoporosis (SOP) is a related disease of systematic degenerative changes in bones during natural aging.
Collapse
Affiliation(s)
- Xiufeng Tang
- School of Traditional Chinese Medicine
- Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research
- Beijing 100069
- China
| | - Yingying Gao
- School of Traditional Chinese Medicine
- Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research
- Beijing 100069
- China
| | - Yuheng Chen
- School of Traditional Chinese Medicine
- Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research
- Beijing 100069
- China
| | - Xiaoxi Li
- School of Traditional Chinese Medicine
- Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research
- Beijing 100069
- China
| | - Ping Yu
- School of Traditional Chinese Medicine
- Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research
- Beijing 100069
- China
| | - Zitong Ma
- School of Traditional Chinese Medicine
- Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research
- Beijing 100069
- China
| | - Renhui Liu
- School of Traditional Chinese Medicine
- Capital Medical University and Beijing Key Lab of TCM Collateral Disease Theory Research
- Beijing 100069
- China
| |
Collapse
|
20
|
Pandey MK, Gupta SC, Karelia D, Gilhooley PJ, Shakibaei M, Aggarwal BB. Dietary nutraceuticals as backbone for bone health. Biotechnol Adv 2018; 36:1633-1648. [PMID: 29597029 DOI: 10.1016/j.biotechadv.2018.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/13/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022]
|
21
|
Ahmad Hairi H, Jamal JA, Aladdin NA, Husain K, Mohd Sofi NS, Mohamed N, Mohamed IN, Shuid AN. Demethylbelamcandaquinone B (Dmcq B) Is the Active Compound of Marantodes pumilum var. alata (Blume) Kuntze with Osteoanabolic Activities. Molecules 2018; 23:molecules23071686. [PMID: 29997309 PMCID: PMC6100564 DOI: 10.3390/molecules23071686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022] Open
Abstract
Phytoestrogens have attracted considerable attention for their potential in the prevention of postmenopausal osteoporosis. Recently, a phytoestrogen-rich herbal plant, Marantodes pumilum var. alata (Blume) Kuntze was reported to protect against bone loss in ovariectomized rat. However, the bioactive compound responsible for these effects and the underlying mechanism were not known. Through bioassay-guided isolation, demethylbelamcandaquinone B (Dmcq B) was isolated and identified from Marantodes pumilum var. alata leaf extract. In terms of its bone anabolic effects, Dmcq B was at par with 17β-estradiol (E2), in promoting the proliferation, differentiation and mineralization of osteoblast cells. Dmcq-B increased early differentiation markers, collagen content and enzymatic ALP activity. It was demonstrated to regulate BMP2 signaling pathway which further activated the transcription factor, osterix. Subsequently, Dmcq B was able to increase the osteocalcin expression which promoted matrix mineralization as evidenced by the increase in calcium deposition. Dmcq B also reduced the protein level of receptor activator of NF-κβ ligand (RANKL) and promoted osteoprotegerin (OPG) protein expression by osteoblast cells, therefore hastening bone formation rate by decreasing RANKL/OPG ratio. Moreover, Dmcq B was able to increase ER expression, postulating its phytoestrogen property. As the conclusion, Dmcq B is the active compound isolated from Marantodes pumilum var. alata leaves, regulating osteoanabolic activities potentially through the BMP2 and ER signaling pathways.
Collapse
Affiliation(s)
- Haryati Ahmad Hairi
- Department of Pharmacology, Faculty of Medicine, Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia.
| | - Jamia Azdina Jamal
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.
| | - Nor Ashila Aladdin
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.
| | - Khairana Husain
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.
| | - Noor Suhaili Mohd Sofi
- Department of Pharmacology, Faculty of Medicine, Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia.
| | - Norazlina Mohamed
- Department of Pharmacology, Faculty of Medicine, Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia.
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia.
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia.
| |
Collapse
|
22
|
Wang MY, Shen C, An MF, Xie CQ, Wu X, Zhu QQ, Sun B, Huang YP, Zhao YL, Wang XJ, Sheng J. Combined treatment with Dendrobium candidum and black tea extract promotes osteoprotective activity in ovariectomized estrogen deficient rats and osteoclast formation. Life Sci 2018; 200:31-41. [DOI: 10.1016/j.lfs.2018.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/06/2018] [Accepted: 03/11/2018] [Indexed: 11/25/2022]
|
23
|
The Anti-Inflammatory Effects of Shinbaro3 Is Mediated by Downregulation of the TLR4 Signalling Pathway in LPS-Stimulated RAW 264.7 Macrophages. Mediators Inflamm 2018; 2018:4514329. [PMID: 29849490 PMCID: PMC5907526 DOI: 10.1155/2018/4514329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/11/2018] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
Shinbaro3, a formulation derived from the hydrolysed roots of Harpagophytum procumbens var. sublobatum (Engl.) Stapf, has been clinically used in the pharamacopuncture treatment of arthritis in Korea. In the present study, Shinbaro3 inhibited NO generation in LPS-induced RAW 264.7 cells in a dose-dependent manner. Shinbaro3 also downregulated the mRNA and protein expression of inflammatory mediators in a dose-dependent manner. Three mechanisms explaining the effects of Shinbaro3 in RAW 264.7 cells were identified as follows: (1) inhibition of the extracellular signal-regulated kinase 1 and 2 (ERK1/2), stress-activated protein kinase (SAPK)/c-Jun N-terminal protein kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) pathways; (2) suppression of IκB kinase-α/β (IKK-α/β) phosphorylation and nuclear factor-kappa B (NF-κB) subunits in the NF-κB pathway, which are involved in MyD88-dependent signalling; and (3) downregulation of IFN-β mRNA expression via inhibition of interferon regulatory factor 3 (IRF3) and Janus-activated kinase 1 (JAK1)/signal transducer and activator of transcription 1 (STAT1) phosphorylation, which is involved in TRIF-dependent signalling. Shinbaro3 exerted anti-inflammatory effects in LPS-stimulated RAW 264.7 macrophage cells through modulation of the TLR4/MyD88 pathways, suggesting that Shinbaro3 is a novel anti-inflammatory therapeutic candidate in the field of pharmacopuncture.
Collapse
|
24
|
Li J, Xiang L, Jiang X, Teng B, Sun Y, Chen G, Chen J, Zhang JV, Ren PG. Investigation of bioeffects of G protein-coupled receptor 1 on bone turnover in male mice. J Orthop Translat 2017; 10:42-51. [PMID: 29662759 PMCID: PMC5822970 DOI: 10.1016/j.jot.2017.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/30/2017] [Accepted: 05/02/2017] [Indexed: 12/12/2022] Open
Abstract
Maintenance of healthy bone quality and quantity requires a well-coordinated balance between bone formation by osteoblasts and bone resorption by osteoclasts. Chemerin is a novel adipokine with known functions such as regulating immunity and energy homeostasis through activation of chemokine-like receptor 1 (CMKLR1). G protein-coupled receptor 1 (GPR1) is the second mammalian chemerin receptor with similar binding affinity as CMKLR1. In male GPR1-/- mice, a phenotype with significantly low bone mineral density was observed. We hypothesise that GPR1 might participate the process of bone remodelling. In this study, we investigated the role of GPR1 in regulating bone mass maintenance in male mice, and for the first time, revealed that GPR1-/- male mice manifested seriously trabecular bone loss and lower serum testosterone levels compared to the wild type animals. Accordingly, the mRNA expression of biomarkers related to both osteoblast [collagen type I alpha 2 (Col1A2), osteocalcin (OCN)] and osteoclast [tartrate-resistant acid phosphatase (TRAP), Cathepsin K, NFATc1] were significantly decreased or increased in GPR1-/- mice relative to the wild type, respectively. However, other osteogenic markers, Osterix and ALP levels, were increased. Microcomputed tomography scanning and histological analyses proved that there was a myriad of trabecular bone loss in GPR1-/- mice. In the meantime, GPR1-/- mice presented a significant decrease in serum testosterone level. Taken together, these findings suggested that chemerin-GPR1 signalling might be directly or indirectly communicated with testosterone synthesis on bone turnover regulation. Further detailed studies are required to unveil how chemerin-GPR1 participates in bone metabolism. The translational potential of this article: More studies and knowledge about GPR1 regulating function in bone turnover might supply a novel therapeutic target for osteoporosis in the future.
Collapse
Affiliation(s)
- Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Liang Xiang
- Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Xiaotong Jiang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Bin Teng
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yutao Sun
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Guanlian Chen
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Jie Chen
- Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Jian V Zhang
- Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Pei-Gen Ren
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| |
Collapse
|