1
|
Weiss MB, Borges RM, Sullivan P, Domingues JPB, da Silva FHS, Trindade VGS, Luo S, Orjala J, Crnkovic CM. Chemical diversity of cyanobacterial natural products. Nat Prod Rep 2024. [PMID: 39540765 DOI: 10.1039/d4np00040d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Covering: 2010 to 2023Cyanobacterial natural products are a diverse group of molecules with promising biotechnological applications. This review examines the chemical diversity of 995 cyanobacterial metabolites reported from 2010 to 2023. A computational analysis using similarity networking was applied to visualize the chemical space and to compare the diversity of cyanobacterial metabolites among taxonomic orders and environmental sources. Key examples are highlighted, detailing their sources, biological activities, and discovery processes.
Collapse
Affiliation(s)
- Márcio B Weiss
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| | - Ricardo M Borges
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, CEP 21941-599, Rio de Janeiro, RJ, Brazil
| | - Peter Sullivan
- Helmholtz Institute for Pharmaceutical Research Saarland, Saarland University, 66123, Saarbrücken, Germany
| | - João P B Domingues
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| | - Francisco H S da Silva
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| | - Victória G S Trindade
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, CEP 21941-599, Rio de Janeiro, RJ, Brazil
| | - Shangwen Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jimmy Orjala
- College of Pharmacy, University of Illinois at Chicago, 60612, Chicago, IL, USA
| | - Camila M Crnkovic
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Weiss MB, Médice RV, Jacinavicius FR, Pinto E, Crnkovic CM. Metabolomics Applied to Cyanobacterial Toxins and Natural Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:21-49. [PMID: 37843804 DOI: 10.1007/978-3-031-41741-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The biological and chemical diversity of Cyanobacteria is remarkable. These ancient prokaryotes are widespread in nature and can be found in virtually every habitat on Earth where there is light and water. They are producers of an array of secondary metabolites with important ecological roles, toxic effects, and biotechnological applications. The investigation of cyanobacterial metabolites has benefited from advances in analytical tools and bioinformatics that are employed in metabolomic analyses. In this chapter, we review selected articles highlighting the use of targeted and untargeted metabolomics in the analyses of secondary metabolites produced by cyanobacteria. Here, cyanobacterial secondary metabolites have been didactically divided into toxins and natural products according to their relevance to toxicological studies and drug discovery, respectively. This review illustrates how metabolomics has improved the chemical analysis of cyanobacteria in terms of speed, sensitivity, selectivity, and/or coverage, allowing for broader and more complex scientific questions.
Collapse
Affiliation(s)
- Márcio Barczyszyn Weiss
- School of Pharmaceutical Sciences, Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
| | - Rhuana Valdetário Médice
- School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Fernanda Rios Jacinavicius
- School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Ernani Pinto
- Centre for Nuclear Energy in Agriculture, Division of Tropical Ecosystem Functioning, University of São Paulo, Piracicaba, Brazil
| | - Camila Manoel Crnkovic
- School of Pharmaceutical Sciences, Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Flores-Bocanegra L, Raja HA, Bacon JW, Maldonado AC, Burdette JE, Pearce CJ, Oberlies NH. Cytotoxic Naphthoquinone Analogues, Including Heterodimers, and Their Structure Elucidation Using LR-HSQMBC NMR Experiments. JOURNAL OF NATURAL PRODUCTS 2021; 84:771-778. [PMID: 33006889 PMCID: PMC8005429 DOI: 10.1021/acs.jnatprod.0c00856] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Approximately 1700 naphthoquinones have been reported from a range of natural product source materials, but only 283 have been isolated from fungi, fewer than 75 of those were dimers, and only 2 were heterodimers with a head-to-tail linkage. During a search for anticancer leads from fungi, a series of new naphthoquinones (1-4), including two heterodimers (3 and 4), were isolated from Pyrenochaetopsis sp. (strain MSX63693). In addition, the previously reported 5-hydroxy-6-(1-hydroxyethyl)-2,7-dimethoxy-1,4-naphthalenedione (5), misakimycin (6), 5-hydroxy-6-[1-(acetyloxy)ethyl]-2,7-dimethoxy-1,4-naphthalenedione (7), 6-ethyl-2,7-dimethoxyjuglone (8), and kirschsteinin (9) were isolated. While the structure elucidation of 1-9 was achieved using procedures common for natural products chemistry studies (high-resolution electrospray ionization mass spectrometry (HRESIMS), 1D and 2D NMR), the elucidation of the heterodimers was facilitated substantially by data from the long-range heteronuclear single quantum multiple bond correlation (LR-HSQMBC) experiment. The absolute configuration of 1 was established by analysis of the measured vs calculated ECD data. The racemic mixture of 4 was established via X-ray crystallography of an analogue that incorporated a heavy atom. All compounds were evaluated for cytotoxicity against the human cancer cells lines MDA-MB-435 (melanoma), MDA-MB-231 (breast), and OVCAR3 (ovarian), where the IC50 values ranged between 1 and 20 μM.
Collapse
Affiliation(s)
- Laura Flores-Bocanegra
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Jeffrey W Bacon
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Amanda C Maldonado
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Cedric J Pearce
- Mycosynthetix, Inc., Hillsborough, North Carolina 27278, United States
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| |
Collapse
|
4
|
Wang L, Wang P, Guo T, Xiong W, Kang B, Qi C, Luo G, Luo Y, Jiang H. Copper-catalyzed four-component reaction of alkenes, Togni's reagent, amines and CO 2: stereoselective synthesis of ( Z)-enol carbamates. Org Chem Front 2021. [DOI: 10.1039/d0qo01607a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A copper-catalyzed four-component reaction of alkenes, Togni's reagent, amines and CO2 was disclosed, providing an efficient and straightforward access to a range of stereodefined (Z)-enol carbamates.
Collapse
Affiliation(s)
- Lu Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Pan Wang
- State Key Lab of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Tianzuo Guo
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Wenfang Xiong
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Bangxiong Kang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Chaorong Qi
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Gen Luo
- Institutes of Physical Science and Information Technology
- Anhui University
- Hefei 230601
- P. R. China
- State Key Lab of Fine Chemicals
| | - Yi Luo
- State Key Lab of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| |
Collapse
|
5
|
Kil YS, Risinger AL, Petersen CL, Liang H, Grkovic T, O’Keefe BR, Mooberry SL, Cichewicz RH. Using the Cancer Dependency Map to Identify the Mechanism of Action of a Cytotoxic Alkenyl Derivative from the Fruit of Choerospondias axillaris. JOURNAL OF NATURAL PRODUCTS 2020; 83:584-592. [PMID: 32105068 PMCID: PMC7864215 DOI: 10.1021/acs.jnatprod.9b00896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
An extract prepared from the fruit of Choerospondias axillaris exhibited differential cytotoxic effects when tested in a panel of pediatric cancer cell lines [Ewing sarcoma (A-673), rhabdomyosarcoma (SJCRH30), medulloblastoma (D283), and hepatoblastoma (Hep293TT)]. Bioassay-guided fractionation led to the purification of five new hydroquinone-based metabolites, choerosponols A-E (1-5), bearing unsaturated hydrocarbon chains. The structures of the natural products were determined using a combination of 1D and 2D NMR, HRESIMS, ECD spectroscopy, and Mosher ester analyses. The purified compounds were evaluated for their antiproliferative and cytotoxic activities, revealing that 1, which contains a benzofuran moiety, exhibited over 50-fold selective antiproliferative activity against Ewing sarcoma and medulloblastoma cells with growth inhibitory (GI50) values of 0.19 and 0.07 μM, respectively. The effects of 1 were evaluated in a larger panel of cancer cell lines, and these data were used in turn to interrogate the Project Achilles cancer dependency database, leading to the identification of the MCT1 transporter as a functional target of 1. These data highlight the utility of publicly available cancer dependency databases such as Project Achilles to facilitate the identification of the mechanisms of action of compounds with selective activities among cancer cell lines, which can be a major challenge in natural products drug discovery.
Collapse
Affiliation(s)
- Yun-Seo Kil
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - April L. Risinger
- Department of Pharmacology, Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas, 78229, United States
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas, 78229, United States
| | - Cora L. Petersen
- Department of Pharmacology, Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas, 78229, United States
| | - Huiyun Liang
- Department of Pharmacology, Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas, 78229, United States
| | - Tanja Grkovic
- Natural Products Support Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, United States
| | - Barry R. O’Keefe
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland, 21702, United States
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, United States
| | - Susan L. Mooberry
- Department of Pharmacology, Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas, 78229, United States
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas, 78229, United States
| | - Robert H. Cichewicz
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
6
|
May DS, Crnkovic CM, Krunic A, Wilson TA, Fuchs JR, Orjala JE. 15N Stable Isotope Labeling and Comparative Metabolomics Facilitates Genome Mining in Cultured Cyanobacteria. ACS Chem Biol 2020; 15:758-765. [PMID: 32083834 DOI: 10.1021/acschembio.9b00993] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As genome mining becomes a more widely used approach to identify bacterial natural products, the challenge of matching biosynthetic gene clusters to their cognate secondary metabolites has become more apparent. Bioinformatic platforms such as AntiSMASH have made great progress in predicting chemical structures from genetic information, however the predicted structures are often incomplete. This complicates identifying the predicted compounds by mass spectrometry. Secondary metabolites produced by cyanobacteria represent a unique opportunity for bridging this gap. Cultured cyanobacteria incorporate inorganic nitrogen provided in chemically defined media into all nitrogen-containing secondary metabolites. Thus, stable isotope labeling with 15N labeled nitrate and subsequent comparative metabolomics can be used to match biosynthetic gene clusters to their cognate compounds in cell extracts. Analysis of the sequenced genome of Nostoc sp. UIC 10630 identified six biosynthetic gene clusters predicted to encode the production of a secondary metabolite with at least one nitrogen atom. Comparative metabolomic analysis of the 15N labeled and unlabeled cell extracts revealed four nitrogen containing compounds that contained the same number of nitrogen atoms as were predicted in the biosynthetic gene clusters. Two of the four compounds were new secondary metabolites, and their structures were elucidated by NMR, HRESIMS, and MS/MS.
Collapse
Affiliation(s)
- Daniel S. May
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Camila M. Crnkovic
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Federal District 70040-020, Brazil
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo 05508-000, Brazil
| | - Aleksej Krunic
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Tyler A. Wilson
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - James R. Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jimmy E. Orjala
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
7
|
Rodríguez JPG, Bernardi DI, Gubiani JR, Magalhães de Oliveira J, Morais-Urano RP, Bertonha AF, Bandeira KF, Bulla JIQ, Sette LD, Ferreira AG, Batista JM, Silva TDS, Santos RAD, Martins CHG, Lira SP, Cunha MGD, Trivella DBB, Grazzia N, Gomes NES, Gadelha F, Miguel DC, Cauz ACG, Brocchi M, Berlinck RGS. Water-Soluble Glutamic Acid Derivatives Produced in Culture by Penicillium solitum IS1-A from King George Island, Maritime Antarctica. JOURNAL OF NATURAL PRODUCTS 2020; 83:55-65. [PMID: 31895573 DOI: 10.1021/acs.jnatprod.9b00635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A new method of screening was developed to generate 770 organic and water-soluble fractions from extracts of nine species of marine sponges, from the growth media of 18 species of marine-derived fungi, and from the growth media of 13 species of endophytic fungi. The screening results indicated that water-soluble fractions displayed significant bioactivity in cytotoxic, antibiotic, anti-Leishmania, anti-Trypanosoma cruzi, and inhibition of proteasome assays. Purification of water-soluble fractions from the growth medium of Penicillium solitum IS1-A provided the new glutamic acid derivatives solitumine A (1), solitumine B (2), and solitumidines A-D (3-6). The structures of compounds 1-6 have been established by analysis of spectroscopic data, chemical derivatizations, and vibrational circular dichroism calculations. Although no biological activity could be observed for compounds 1-6, the new structures reported for 1-6 indicate that the investigation of water-soluble natural products represents a relevant strategy in finding new secondary metabolites.
Collapse
Affiliation(s)
- Julie P G Rodríguez
- Instituto de Química de São Carlos , Universidade de São Paulo , CP 780, CEP 13560-970 , São Carlos , SP , Brazil
| | - Darlon I Bernardi
- Instituto de Química de São Carlos , Universidade de São Paulo , CP 780, CEP 13560-970 , São Carlos , SP , Brazil
| | - Juliana R Gubiani
- Instituto de Química de São Carlos , Universidade de São Paulo , CP 780, CEP 13560-970 , São Carlos , SP , Brazil
| | | | - Raquel P Morais-Urano
- Instituto de Química de São Carlos , Universidade de São Paulo , CP 780, CEP 13560-970 , São Carlos , SP , Brazil
| | - Ariane F Bertonha
- Instituto de Química de São Carlos , Universidade de São Paulo , CP 780, CEP 13560-970 , São Carlos , SP , Brazil
| | - Karin F Bandeira
- Instituto de Química de São Carlos , Universidade de São Paulo , CP 780, CEP 13560-970 , São Carlos , SP , Brazil
| | - Jairo I Q Bulla
- Instituto de Química de São Carlos , Universidade de São Paulo , CP 780, CEP 13560-970 , São Carlos , SP , Brazil
| | - Lara D Sette
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências , Universidade Estadual Paulista "Júlio de Mesquita Filho" , Campus Rio Claro, Avenida 24-A , 1515 , Rio Claro , SP , Brazil
| | - Antonio G Ferreira
- Departamento de Química , Universidade Federal de São Carlos , 13565-905 , São Carlos , SP , Brazil
| | - João M Batista
- Instituto de Ciência e Tecnologia , Universidade Federal de São Paulo , 12231-280 , São José dos Campos , SP , Brazil
| | - Thayná de Souza Silva
- Núcleo de Pesquisa em Ciência e Tecnologia , Universidade de Franca , Avenida Dr. Armando Salles Oliveira, 201. Pq. Universitário , 14404-600 , Franca , SP , Brazil
| | - Raquel Alves Dos Santos
- Núcleo de Pesquisa em Ciência e Tecnologia , Universidade de Franca , Avenida Dr. Armando Salles Oliveira, 201. Pq. Universitário , 14404-600 , Franca , SP , Brazil
| | - Carlos H G Martins
- Núcleo de Pesquisa em Ciência e Tecnologia , Universidade de Franca , Avenida Dr. Armando Salles Oliveira, 201. Pq. Universitário , 14404-600 , Franca , SP , Brazil
| | - Simone P Lira
- Departamento de Ciências Exatas, Escola Superior de Agricultura Luiz de Queiroz , Universidade de São Paulo , Avenida Pádua Dias, 11, CP 9, Agronomia, CEP 13418-900 , Piracicaba , SP , Brazil
| | - Marcos G da Cunha
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Material, Giuseppe Maximo Scolfaro , 10000, Pólo II de Alta Tecnologia de Campinas , 13083-970 Campinas , SP , Brazil
| | - Daniela B B Trivella
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Material, Giuseppe Maximo Scolfaro , 10000, Pólo II de Alta Tecnologia de Campinas , 13083-970 Campinas , SP , Brazil
| | - Nathalia Grazzia
- Instituto de Biologia , Universidade Estadual de Campinas , CEP 13083-862 , Campinas , SP , Brazil
| | - Natália E S Gomes
- Instituto de Biologia , Universidade Estadual de Campinas , CEP 13083-862 , Campinas , SP , Brazil
| | - Fernanda Gadelha
- Instituto de Biologia , Universidade Estadual de Campinas , CEP 13083-862 , Campinas , SP , Brazil
| | - Danilo C Miguel
- Instituto de Biologia , Universidade Estadual de Campinas , CEP 13083-862 , Campinas , SP , Brazil
| | - Ana Carolina G Cauz
- Instituto de Biologia , Universidade Estadual de Campinas , CEP 13083-862 , Campinas , SP , Brazil
| | - Marcelo Brocchi
- Instituto de Biologia , Universidade Estadual de Campinas , CEP 13083-862 , Campinas , SP , Brazil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos , Universidade de São Paulo , CP 780, CEP 13560-970 , São Carlos , SP , Brazil
| |
Collapse
|
8
|
Knowles SL, Vu N, Todd DA, Raja HA, Rokas A, Zhang Q, Oberlies NH. Orthogonal Method for Double-Bond Placement via Ozone-Induced Dissociation Mass Spectrometry (OzID-MS). JOURNAL OF NATURAL PRODUCTS 2019; 82:3421-3431. [PMID: 31823607 PMCID: PMC7004233 DOI: 10.1021/acs.jnatprod.9b00787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Most often, the structures of secondary metabolites are solved using a suite of NMR techniques. However, there are times when it can be challenging to position double bonds, particularly those that are fully substituted or when there are multiple double bonds in similar chemical environments. Ozone-induced dissociation mass spectrometry (OzID-MS) serves as an orthogonal structure elucidation tool, using predictable fragmentation patterns that are generated after ozonolysis across a carbon-carbon double bond. This technique is finding growing use in the lipidomics community, suggestive of its potential value for secondary metabolites. This methodology was evaluated by confirming the double-bond positions in five fungal secondary metabolites, specifically, ent-sartorypyrone E (1), sartorypyrone A (2), sorbicillin (3), trichodermic acid A (4), and AA03390 (5). This demonstrated its potential with a variety of chemotypes, ranging from polyketides to terpenoids and including those in both conjugated and nonconjugated polyenes. In addition, the potential of using this methodology in the context of a mixture was piloted by studying Aspergillus fischeri, first examining a traditional extract and then sampling a live fungal culture in situ. While the intensity of signals varied from pure compound to extract to in situ, the utility of the technique was preserved.
Collapse
Affiliation(s)
- Sonja L. Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| | - Ngoc Vu
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| | - Daniel A. Todd
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235
| | - Qibin Zhang
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC 28081
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| |
Collapse
|
9
|
Oberlies NH, Knowles SL, Amrine CSM, Kao D, Kertesz V, Raja HA. Droplet probe: coupling chromatography to the in situ evaluation of the chemistry of nature. Nat Prod Rep 2019; 36:944-959. [PMID: 31112181 PMCID: PMC6640111 DOI: 10.1039/c9np00019d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to 2019The chemistry of nature can be beautiful, inspiring, beneficial and poisonous, depending on perspective. Since the isolation of the first secondary metabolites roughly two centuries ago, much of the chemical research on natural products has been both reductionist and static. Typically, compounds were isolated and characterized from the extract of an entire organism from a single time point. While there could be subtexts to that approach, the general premise has been to determine the chemistry with very little in the way of tools to differentiate spatial and/or temporal changes in secondary metabolite profiles. However, the past decade has seen exponential advances in our ability to observe, measure, and visualize the chemistry of nature in situ. Many of those techniques have been reviewed in this journal, and most are tapping into the power of mass spectrometry to analyze a plethora of sample types. In nearly all of the other techniques used to study chemistry in situ, the element of chromatography has been eliminated, instead using various ionization sources to coax ions of the secondary metabolites directly into the mass spectrometer as a mixture. Much of that science has been driven by the great advances in ambient ionization techniques used with a suite of mass spectrometry platforms, including the alphabet soup from DESI to LAESI to MALDI. This review discusses the one in situ analysis technique that incorporates chromatography, being the droplet-liquid microjunction-surface sampling probe, which is more easily termed "droplet probe". In addition to comparing and contrasting the droplet probe with other techniques, we provide perspective on why scientists, particularly those steeped in natural products chemistry training, may want to include chromatography in in situ analyses. Moreover, we provide justification for droplet sampling, especially for samples with delicate and/or non-uniform topographies. Furthermore, while the droplet probe has been used the most in the analysis of fungal cultures, we digest a variety of other applications, ranging from cyanobacteria, to plant parts, and even delicate documents, such as herbarium specimens.
Collapse
Affiliation(s)
- Nicholas H Oberlies
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Sonja L Knowles
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Chiraz Soumia M Amrine
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Diana Kao
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Vilmos Kertesz
- Mass Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Huzefa A Raja
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| |
Collapse
|