1
|
Ngo MT, Han JW, Nguyen MV, Choi Y, Kim B, Gho ES, Kim H, Choi GJ. Discovery of Novel Antioomycete Metabolites from the Marine-Derived Fungus Paraconiothyrium sporulosum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16359-16367. [PMID: 39011851 DOI: 10.1021/acs.jafc.4c04706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
In our screening program for natural products that are effective in controlling plant diseases, we found that the culture filtrate of Paraconiothyrium sporulosum SFC20160907-M11 effectively suppressed the development of tomato late blight disease caused by Phytophthora infestans. Using a bioassay-guided fractionation of antioomycete activity, 12 active compounds (1-12) were obtained from an ethyl acetate extract of the culture filtrate. Chemical structures of five new compounds 1-5 were determined by the extensive analyses of nuclear magnetic resonance (NMR), high resolution mass spectrometry (HRMS), and circular dichroism (CD) data. Interestingly, mycosporulonol (1) and botrallin (8) completely inhibited the growth of P. infestans at concentrations of 8 and 16 μg/mL, respectively. Furthermore, the spray treatment of 1 and 8 (500 μg/mL) successfully protected tomato seedlings against P. infestans with disease control values of 92%. Taken together, these results suggest that the culture filtrates of P. sporulosum SFC20160907-M11 and their bioactive metabolites can be used as new antioomycete agents for Phytophthora late blight control.
Collapse
Affiliation(s)
- Men Thi Ngo
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jae Woo Han
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Minh Van Nguyen
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Yugyeong Choi
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Bomin Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Eun Sol Gho
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hun Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Gyung Ja Choi
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
2
|
Ayon NJ. High-Throughput Screening of Natural Product and Synthetic Molecule Libraries for Antibacterial Drug Discovery. Metabolites 2023; 13:625. [PMID: 37233666 PMCID: PMC10220967 DOI: 10.3390/metabo13050625] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
Due to the continued emergence of resistance and a lack of new and promising antibiotics, bacterial infection has become a major public threat. High-throughput screening (HTS) allows rapid screening of a large collection of molecules for bioactivity testing and holds promise in antibacterial drug discovery. More than 50% of the antibiotics that are currently available on the market are derived from natural products. However, with the easily discoverable antibiotics being found, finding new antibiotics from natural sources has seen limited success. Finding new natural sources for antibacterial activity testing has also proven to be challenging. In addition to exploring new sources of natural products and synthetic biology, omics technology helped to study the biosynthetic machinery of existing natural sources enabling the construction of unnatural synthesizers of bioactive molecules and the identification of molecular targets of antibacterial agents. On the other hand, newer and smarter strategies have been continuously pursued to screen synthetic molecule libraries for new antibiotics and new druggable targets. Biomimetic conditions are explored to mimic the real infection model to better study the ligand-target interaction to enable the designing of more effective antibacterial drugs. This narrative review describes various traditional and contemporaneous approaches of high-throughput screening of natural products and synthetic molecule libraries for antibacterial drug discovery. It further discusses critical factors for HTS assay design, makes a general recommendation, and discusses possible alternatives to traditional HTS of natural products and synthetic molecule libraries for antibacterial drug discovery.
Collapse
Affiliation(s)
- Navid J Ayon
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
3
|
Anti-Fibrotic Potential of Tomentosenol A, a Constituent of Cerumen from the Australian Native Stingless Bee, Tetragonula carbonaria. Antioxidants (Basel) 2022; 11:antiox11081604. [PMID: 36009323 PMCID: PMC9404848 DOI: 10.3390/antiox11081604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Bioactivity-guided fractionation was used to isolate two compounds, tomentosenol A (1) and torellianone A (2), from a cerumen extract from Tetragonula carbonaria. The anti-fibrotic activity of these compounds was examined using human cultured neonatal foreskin fibroblasts (NFF) and immortalised keratinocytes (HaCaTs). Tomentosenol A (1), inhibited NFF and HaCaT cell proliferation and prevented NFF and HaCaT scratch wound repopulation at 12.5-25 µM concentrations. These inhibitory effects were associated with reduced cell viability, determined by tetrazolium dye (MTT) and sulforhodamine B (SRB) assays. Compound 1 further inhibited transforming growth factor-β1 (TGF-β1)-stimulated, NFF-myofibroblast differentiation and soluble collagen production; and was an effective scavenger of the model oxidant, 2,2-diphenyl-1-picrylhydrazyl (DPPH·), with an EC50 value of 44.7 ± 3.1 µM. These findings reveal significant anti-fibrotic potential for cerumen-derived tomentosenol A (1).
Collapse
|
4
|
Li YX, Li N, Li JJ, Zhang M, Zhu HT, Wang D, Zhang YJ. New seco-anthraquinone glucoside from the roots of Rumex crispus. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:29. [PMID: 35918556 PMCID: PMC9346041 DOI: 10.1007/s13659-022-00350-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
A new seco-anthraquinone, crispuside A (1), and three new 3,4-dihydronaphthalen-1(2H)-ones, napthalenones A-C (2-4), were isolated from the roots of Rumex crispus L., along with 10 known anthraquinones (6-14) and naphthalenone (5). Their structures were fully determined by extensive spectroscopic analyses, including ECD, and X-ray crystallography in case of compound 5, whose absolute configuration was determined for the first time. The isolates 1, 6-14 were evaluated for their anti-inflammatory and anti-fungal activity against three skin fungi, e.g., Epidermophyton floccosum, Trichophyton rubrum, and Microsporum gypseum. Most of the isolates showed weak anti-fungal and anti-inflammatory activity. Only compound 9 exhibited obvious anti-fungal activity against E. floccosum (MIC50 = 2.467 ± 0.03 μM) and M. gypseum (MIC50 = 4.673 ± 0.077 μM), while the MIC50 values of the positive control terbinafine were 1.287 ± 0.012 and 0.077 ± 0.00258 μM, respectively. The results indicated that simple emodin type anthraquinone is more potential against skin fungi than its oxyglucosyl, C-glucosyl and glycosylated seco analogues.
Collapse
Affiliation(s)
- Yong-Xiang Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Na Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China
| | - Jing-Juan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China
| | - Man Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China
| | - Hong-Tao Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China
| | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China
| | - Ying-Jun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| |
Collapse
|
5
|
Chen S, Chen Y, Li S, Liu H, Li D, Liu Z, Zhang W. Hawatides A–G, new polyketides from the deep-sea-derived fungus Paraconiothyrium hawaiiense FS482. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Liang X, Cao Y, Li C, Yu H, Yang C, Liu H. MALT1 as a promising target to treat lymphoma and other diseases related to MALT1 anomalies. Med Res Rev 2021; 41:2388-2422. [PMID: 33763890 DOI: 10.1002/med.21799] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/23/2020] [Accepted: 03/03/2021] [Indexed: 12/25/2022]
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a key adaptor protein that regulates the NF-κB pathway, in which MALT1 functions as a scaffold protein and protease to trigger downstream signals. The abnormal expression of MALT1 is closely associated with lymphomagenesis and other diseases, including solid tumors and autoimmune diseases. MALT1 is the only protease in the underlying pathogenesis of these diseases, and its proteolytic activity can be pharmacologically regulated. Therefore, MALT1 is a potential and promising target for anti-lymphoma and other MALT1-related disease treatments. Currently, the development of MALT1 inhibitors is still in its early stages. This review presents an overview of MALT1, particularly its X-ray structures and biological functions, and elaborates on the pathogenesis of diseases associated with its dysregulation. We then summarize previously reported MALT1 inhibitors, focusing on their molecular structure, biological activity, structure-activity relationship, and limitations. Finally, we propose future research directions to accelerate the discovery of novel MALT1 inhibitors with clinical applications. Overall, this review provides a comprehensive and systematic overview of MALT1-related research advances and serves as a theoretical basis for drug discovery and research.
Collapse
Affiliation(s)
- Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - YiChun Cao
- School of Pharmacy, Fudan University, Shanghai, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haolan Yu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chenghua Yang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
7
|
Fontan L, Goldstein R, Casalena G, Durant M, Teater MR, Wilson J, Phillip J, Xia M, Shah S, Us I, Shinglot H, Singh A, Inghirami G, Melnick A. Identification of MALT1 feedback mechanisms enables rational design of potent antilymphoma regimens for ABC-DLBCL. Blood 2021; 137:788-800. [PMID: 32785655 PMCID: PMC7885826 DOI: 10.1182/blood.2019004713] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
MALT1 inhibitors are promising therapeutic agents for B-cell lymphomas that are dependent on constitutive or aberrant signaling pathways. However, a potential limitation for signal transduction-targeted therapies is the occurrence of feedback mechanisms that enable escape from the full impact of such drugs. Here, we used a functional genomics screen in activated B-cell-like (ABC) diffuse large B-cell lymphoma (DLBCL) cells treated with a small molecule irreversible inhibitor of MALT1 to identify genes that might confer resistance or enhance the activity of MALT1 inhibition (MALT1i). We find that loss of B-cell receptor (BCR)- and phosphatidylinositol 3-kinase (PI3K)-activating proteins enhanced sensitivity, whereas loss of negative regulators of these pathways (eg, TRAF2, TNFAIP3) promoted resistance. These findings were validated by knockdown of individual genes and a combinatorial drug screen focused on BCR and PI3K pathway-targeting drugs. Among these, the most potent combinatorial effect was observed with PI3Kδ inhibitors against ABC-DLBCLs in vitro and in vivo, but that led to an adaptive increase in phosphorylated S6 and eventual disease progression. Along these lines, MALT1i promoted increased MTORC1 activity and phosphorylation of S6K1-T389 and S6-S235/6, an effect that was only partially blocked by PI3Kδ inhibition in vitro and in vivo. In contrast, simultaneous inhibition of MALT1 and MTORC1 prevented S6 phosphorylation, yielded potent activity against DLBCL cell lines and primary patient specimens, and resulted in more profound tumor regression and significantly improved survival of ABC-DLBCLs in vivo compared with PI3K inhibitors. These findings provide a basis for maximal therapeutic impact of MALT1 inhibitors in the clinic, by disrupting feedback mechanisms that might otherwise limit their efficacy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Drug Design
- Drug Resistance, Neoplasm
- Drug Synergism
- Feedback, Physiological/drug effects
- Female
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors
- Mechanistic Target of Rapamycin Complex 1/metabolism
- Mice
- Mice, Inbred NOD
- Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/antagonists & inhibitors
- Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/physiology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/physiology
- Organoids/drug effects
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- RNA, Small Interfering/genetics
- Receptors, Antigen, B-Cell/immunology
- Ribosomal Protein S6 Kinases/metabolism
- Signal Transduction/drug effects
- Toll-Like Receptors/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Lorena Fontan
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Rebecca Goldstein
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Gabriella Casalena
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Matthew Durant
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Matthew R Teater
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Jimmy Wilson
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Jude Phillip
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Min Xia
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Shivem Shah
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY; and
| | - Ilkay Us
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Himaly Shinglot
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Ankur Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY; and
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Ari Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
8
|
Anticancer Activity of Lesbicoumestan in Jurkat Cells via Inhibition of Oxidative Stress-Mediated Apoptosis and MALT1 Protease. Molecules 2021; 26:molecules26010185. [PMID: 33401649 PMCID: PMC7794876 DOI: 10.3390/molecules26010185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022] Open
Abstract
This study explores the potential anticancer effects of lesbicoumestan from Lespedeza bicolor against human leukemia cancer cells. Flow cytometry and fluorescence microscopy were used to investigate antiproliferative effects. The degradation of mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) was evaluated using immunoprecipitation, Western blotting, and confocal microscopy. Apoptosis was investigated using three-dimensional (3D) Jurkat cell resistance models. Lesbicoumestan induced potent mitochondrial depolarization on the Jurkat cells via upregulated expression levels of mitochondrial reactive oxygen species. Furthermore, the underlying apoptotic mechanisms of lesbicoumestan through the MALT1/NF-κB pathway were comprehensively elucidated. The analysis showed that lesbicoumestan significantly induced MALT1 degradation, which led to the inhibition of the NF-κB pathway. In addition, molecular docking results illustrate how lesbicoumestan could effectively bind with MALT1 protease at the latter's active pocket. Similar to traditional 2D cultures, apoptosis was markedly induced upon lesbicoumestan treatment in 3D Jurkat cell resistance models. Our data support the hypothesis that lesbicoumestan is a novel inhibitor of MALT1, as it exhibited potent antiapoptotic effects in Jurkat cells.
Collapse
|
9
|
Maurya JP, Ramasastry SSV. Divergent Michael/Aldol Cascades Under Semi-Aqueous Conditions: Synthesis of Cyclopenta- and Cycloheptannulated (Hetero)arenes. J Org Chem 2021; 86:525-537. [PMID: 33395742 DOI: 10.1021/acs.joc.0c02195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of 3-acetoxyindanones and (hetero)arene-fused dihydrotropones was achieved via divergent annulation cascades. Under mild aqueous and basic conditions, α-substituted enone-aldehydes and 1,3-carbonyls undergo a Michael/aldol/hemiketalization/retro-aldol cascade for the formation of 3-acetoxyindanones possessing two contiguous stereogenic centers, one of which is an all-carbon quaternary center. On the other hand, the same enone-aldehydes generate new classes of fused-dihydrotropones upon reaction with 2,4-dioxobutanoates under merely the same reaction conditions via a Michael/aldol/lactonization/decarboxylation cascade.
Collapse
Affiliation(s)
- Jay Prakash Maurya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140 306, India
| | - S S V Ramasastry
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140 306, India
| |
Collapse
|
10
|
Wilson BAP, Thornburg CC, Henrich CJ, Grkovic T, O'Keefe BR. Creating and screening natural product libraries. Nat Prod Rep 2020; 37:893-918. [PMID: 32186299 PMCID: PMC8494140 DOI: 10.1039/c9np00068b] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to 2020The National Cancer Institute of the United States (NCI) has initiated a Cancer Moonshot program entitled the NCI Program for Natural Product Discovery. As part of this effort, the NCI is producing a library of 1 000 000 partially purified natural product fractions which are being plated into 384-well plates and provided to the research community free of charge. As the first 326 000 of these fractions have now been made available, this review seeks to describe the general methods used to collect organisms, extract those organisms, and create a prefractionated library. Importantly, this review also details both cell-based and cell-free bioassay methods and the adaptations necessary to those methods to productively screen natural product libraries. Finally, this review briefly describes post-screen dereplication and compound purification and scale up procedures which can efficiently identify active compounds and produce sufficient quantities of natural products for further pre-clinical development.
Collapse
Affiliation(s)
- Brice A P Wilson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, USA.
| | | | | | | | | |
Collapse
|
11
|
Tran TD, Wilson BAP, Henrich CJ, Wendt KL, King J, Cichewicz RH, Stchigel AM, Miller AN, O'Keefe BR, Gustafson KR. Structure elucidation and absolute configuration of metabolites from the soil-derived fungus Dictyosporium digitatum using spectroscopic and computational methods. PHYTOCHEMISTRY 2020; 173:112278. [PMID: 32078832 PMCID: PMC7124996 DOI: 10.1016/j.phytochem.2020.112278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Following the discovery of a new class of compounds that inhibit the mucosa-associated lymphoid tissue lymphoma translocation 1 (MALT1) protease in a prior study, further chemical investigation of the Dictyosporium digitatum fungus resulted in the identification of 16 additional metabolites, including 12 undescribed compounds (1-12). The constitution and relative configuration of these new molecules were established by comprehensive NMR and HRMS analyses. Their absolute configurations were determined by employing Mosher's ester analysis and TDDFT ECD calculations. Two sesquiterpenes, dictyosporins A (1) and B (2), possess an undescribed eudesmen-type of structural scaffold. The ability of the isolated compounds to inhibit MALT1 proteolytic activity was evaluated, but none of them exhibited significant inhibition.
Collapse
Affiliation(s)
- Trong D Tran
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, United States
| | - Brice A P Wilson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, United States
| | - Curtis J Henrich
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, United States; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702-1201, United States
| | - Karen L Wendt
- Natural Products Discovery Group, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019-5251, United States
| | - Jarrod King
- Natural Products Discovery Group, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019-5251, United States
| | - Robert H Cichewicz
- Natural Products Discovery Group, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019-5251, United States
| | - Alberto M Stchigel
- Mycology Unit, Universitat Rovira i Virgili, C/ Sant Llorenç 21, 43201, Reus, Spain
| | - Andrew N Miller
- University of Illinois, Illinois Natural History Survey, 1816 South Oak Street, Champaign, IL, 61820-6970, United States
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, United States; Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, MD, 21702-1201, United States
| | - Kirk R Gustafson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, United States.
| |
Collapse
|
12
|
Kim CK, Wang D, Bokesch HR, Fuller RW, Smith E, Henrich CJ, Durrant DE, Morrison DK, Bewley CA, Gustafson KR. Swinhopeptolides A and B: Cyclic Depsipeptides from the Sponge Theonella swinhoei That Inhibit Ras/Raf Interaction. JOURNAL OF NATURAL PRODUCTS 2020; 83:1288-1294. [PMID: 32191460 PMCID: PMC7183427 DOI: 10.1021/acs.jnatprod.0c00136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two new cyclic depsipeptides named swinhopeptolides A (1) and B (2) have been isolated from the marine sponge Theonella swinhoei cf. verrucosa, collected from Papua New Guinea. They each contain 11 diverse amino acid residues and 13-carbon polyketide moieties attached at the N-terminus. Compounds 1 and 2 each exist as two conformers in DMSO-d6 due to cis/trans isomerism of the proline residue, and their structures were successfully assigned by extensive NMR analyses complemented by chemical degradation and derivatization studies. Swinhopeptolide B (2) contains a previously undescribed 2,6,8-trimethyldeca-(2E,4E,6E)-trienoic acid moiety N-linked to a terminal serine residue. Swinhopeptolides A (1) and B (2) showed significant inhibition of the Ras/Raf signaling pathway with IC50 values of 5.8 and 8.5 μM, respectively.
Collapse
Affiliation(s)
- Chang-Kwon Kim
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Dongdong Wang
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Heidi R. Bokesch
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Richard W. Fuller
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Emily Smith
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Curtis J. Henrich
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - David E. Durrant
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Deborah K. Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20814, United States
| | - Kirk R. Gustafson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
13
|
Abstract
Many natural products have been used as drugs for the treatment of diverse indications. Although most U.S. pharmaceutical companies have reduced or eliminated their in-house natural-product research over the years, new approaches for compound screening and chemical synthesis are resurrecting interest in exploring the therapeutic value of natural products. The aim of this commentary is to review emerging strategies and techniques that have made natural products a viable strategic choice for inclusion in drug discovery programs. Published 2019. U.S. Government.
Collapse
Affiliation(s)
- John A Beutler
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| |
Collapse
|
14
|
Demeyer A, Skordos I, Driege Y, Kreike M, Hochepied T, Baens M, Staal J, Beyaert R. MALT1 Proteolytic Activity Suppresses Autoimmunity in a T Cell Intrinsic Manner. Front Immunol 2019; 10:1898. [PMID: 31474984 PMCID: PMC6702287 DOI: 10.3389/fimmu.2019.01898] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/26/2019] [Indexed: 01/31/2023] Open
Abstract
MALT1 is a central signaling component in innate and adaptive immunity by regulating NF-κB and other key signaling pathways in different cell types. Activities of MALT1 are mediated by its scaffold and protease functions. Because of its role in lymphocyte activation and proliferation, inhibition of MALT1 proteolytic activity is of high interest for therapeutic targeting in autoimmunity and certain lymphomas. However, recent studies showing that Malt1 protease-dead knock-in (Malt1-PD) mice suffer from autoimmune disease have somewhat tempered the initial enthusiasm. Although it has been proposed that an imbalance between immune suppressive regulatory T cells (Tregs) and activated effector CD4+ T cells plays a key role in the autoimmune phenotype of Malt1-PD mice, the specific contribution of MALT1 proteolytic activity in T cells remains unclear. Using T cell-conditional Malt1 protease-dead knock-in (Malt1-PDT) mice, we here demonstrate that MALT1 has a T cell-intrinsic role in regulating the homeostasis and function of thymic and peripheral T cells. T cell-specific ablation of MALT1 proteolytic activity phenocopies mice in which MALT1 proteolytic activity has been genetically inactivated in all cell types. The Malt1-PDT mice have a reduced number of Tregs in the thymus and periphery, although the effect in the periphery is less pronounced compared to full-body Malt1-PD mice, indicating that also other cell types may promote Treg induction in a MALT1 protease-dependent manner. Despite the difference in peripheral Treg number, both T cell-specific and full-body Malt1-PD mice develop ataxia and multi-organ inflammation to a similar extent. Furthermore, reconstitution of the full-body Malt1-PD mice with T cell-specific expression of wild-type human MALT1 eliminated all signs of autoimmunity. Together, these findings establish an important T cell-intrinsic role of MALT1 proteolytic activity in the suppression of autoimmune responses.
Collapse
Affiliation(s)
- Annelies Demeyer
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ioannis Skordos
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yasmine Driege
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marja Kreike
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tino Hochepied
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mathijs Baens
- Center for Innovation and Stimulation of Drug Discovery (CISTIM), Leuven, Belgium
| | - Jens Staal
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|