1
|
Bakale RD, Phatak PS, Rathod SS, Choudhari PB, Rekha EM, Sriram D, Kulkarni RS, Haval KP. In vitro and in silico exploration of newly synthesized triazolyl- isonicotinohydrazides as potent antitubercular agents. J Biomol Struct Dyn 2025; 43:1372-1391. [PMID: 38079301 DOI: 10.1080/07391102.2023.2291826] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/14/2023] [Indexed: 01/16/2025]
Abstract
In the present study, we have reported the synthesis of novel isoniazid-triazole derivatives (4a-r), via the click chemistry approach. The synthesized isoniazid-triazole derivatives have potent in vitro antitubercular activity against the Mycobacterium tuberculosis (MTB) H37Rv strain. Among these compounds, 4b, 4f, 4g, 4j, 4k, 4m, 4o, 4p, and 4r were found to be the most active ones with a MIC value of 0.78 μg/mL. This activity is better than ciprofloxacin (MIC value = 1.56 μg/mL) and ethambutol (MIC value = 3.12 μg/mL). The compounds, 4a, 4c, 4d, 4e, 4h, 4i, 4l, and 4n have displayed activity equal to ciprofloxacin (MIC value = 1.56 μg/mL). The cytotoxicity of the active isoniazid-triazole derivatives was studied against RAW 264.7 cell line by MTT assay at 25 μg/mL concentration and no toxicity was observed. Moreover, in-vitro results were supported by in-silico studies with the known antitubercular target (PanK). The drug-likeness, density functional study, molecular docking, and molecular dynamics simulation studies of isoniazid-triazole derivatives validated the ability to form a stable complex with Pantothenate kinase (PanK), which will result in inhibiting the Pantothenate kinase (PanK). Therefore, the results obtained indicate that this class of compounds may offer candidates for future development, and positively provide drug alternatives for tuberculosis treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajubai D Bakale
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad, India
| | - Pramod S Phatak
- Late Pushpadevi Patil Arts and Science College, Washim, India
| | - Sanket S Rathod
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | - Prafulla B Choudhari
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | - Estharla Madhu Rekha
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Ravibhushan S Kulkarni
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad, India
| | - Kishan P Haval
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad, India
| |
Collapse
|
2
|
Pakeeraiah K, Chinchilli KK, Dandela R, Paidesetty SK. Exploration of triazole derivatives, SAR profiles, and clinical pipeline against Mycobacterium tuberculosis. Bioorg Chem 2025; 155:108114. [PMID: 39756201 DOI: 10.1016/j.bioorg.2024.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Tuberculosis is a highly infectious disease and it is a global threat in particular affecting people from developing countries. It is thought that nearly one-third of the global population lives with this causative bacterium in its dominant form. The spread of HIV and the development of resistance to both multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) aggravates the spread of the disease and needs novel drugs which combat this disease effectively. Triazole-containing anti-tubercular drugs are promising and need further tuning to develop as a potent scaffold for tuberculosis. In this review, we highlight the structural activity relationships of triazole-containing drugs and detailed understanding for the researchers in the field of medicinal chemistry to further explore these triazole-based compounds as well as synthesize new compounds for antitubercular activity against drug-sensitive and resistant strains.
Collapse
Affiliation(s)
- Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha 751003, India.
| | | | - Rambabu Dandela
- Institute of Chemical Technology-Indian Oil Campus, Bhubaneswar Odisha 751024, India.
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha 751003, India.
| |
Collapse
|
3
|
Guddeti DK, Kolukula A, Siva B, Jadav SS, Tiwari AK, Komati A, Andugulapati SB, Ramalingam V, Katragadda SB. Synthesis of aminomethyl linked (+)-usnic acid derivatives via the Mannich reaction and evaluation of their biological activities. Nat Prod Res 2025; 39:300-306. [PMID: 37812197 DOI: 10.1080/14786419.2023.2263900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
(+)-Usnic acid (UA), a natural dibenzofuran derivative, abundantly produced by lichens and possess wide number of biomedical applications including antibacterial, anti-inflammatory, anti-oxidant and anticancer activities. In the present study, as series of usnic acid derivatives (3a-3i) were synthesised using Mannich reaction assessed for their antioxidant, α-glucosidase, and anticancer activities. The in vitro antioxidant activity showed that compound 3d displayed potent antioxidant activity by scavenging the activities of DPPH and ABTS+. The compounds 3d and 3e showed potent cytotoxic activity against HepG2 cancer cells by arresting the cell cycle at S phase and regulating the Bax/BcL2 expression and subsequently induce the apoptosis. Overall, the results clearly indicated that (+)-usnic acid derivatives bearing secondary amines are useful scaffolds for the development of drug candidates for treatment of oxidative stress mediated cancer and metabolic disorders.
Collapse
Affiliation(s)
- Dileep Kumar Guddeti
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashwini Kolukula
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Bandi Siva
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Surender Singh Jadav
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashok K Tiwari
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anusha Komati
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sai Balaji Andugulapati
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Vaikundamoorthy Ramalingam
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suresh Babu Katragadda
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Zia A, Khalid S, Rasool N, Mohsin N, Imran M, Toma SI, Misarca C, Andreescu O. Pd-, Cu-, and Ni-Catalyzed Reactions: A Comprehensive Review of the Efficient Approaches towards the Synthesis of Antibacterial Molecules. Pharmaceuticals (Basel) 2024; 17:1370. [PMID: 39459010 PMCID: PMC11509998 DOI: 10.3390/ph17101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
A strong synthetic tool for many naturally occurring chemicals, polymers, and pharmaceutical substances is transition metal-catalyzed synthesis. A serious concern to human health is the emergence of bacterial resistance to a broad spectrum of antibacterial medications. The synthesis of chemical molecules that are potential antibacterial candidates is underway. The main contributions to medicine are found to be effective in transition metal catalysis and heterocyclic chemistry. This review underlines the use of heterocycles and certain effective transition metals (Pd, Cu, and Ni) as catalysts in chemical methods for the synthesis of antibacterial compounds. Pharmaceutical chemists might opt for clinical exploration of these techniques due to their potential.
Collapse
Affiliation(s)
- Almeera Zia
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Nayab Mohsin
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Sebastian Ionut Toma
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (C.M.); (O.A.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (C.M.); (O.A.)
| | - Oana Andreescu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (C.M.); (O.A.)
| |
Collapse
|
5
|
Raman APS, Aslam M, Awasthi A, Ansari A, Jain P, Lal K, Bahadur I, Singh P, Kumari K. An updated review on 1,2,3-/1,2,4-triazoles: synthesis and diverse range of biological potential. Mol Divers 2024:10.1007/s11030-024-10858-0. [PMID: 39066993 DOI: 10.1007/s11030-024-10858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/22/2024] [Indexed: 07/30/2024]
Abstract
The synthesis of triazoles has attracted a lot of interest in the field of organic chemistry because of its versatile chemical characteristics and possible biological uses. This review offers an extensive overview of the different pathways used in the production of triazoles. A detailed analysis of recent research indicates that triazole compounds have a potential range of pharmacological activities, including the ability to inhibit enzymes, and have antibacterial, anticancer, and antifungal activities. The integration of computational and experimental methods provides a thorough understanding of the structure-activity connection, promoting sensible drug design and optimization. By including triazoles as essential components in drug discovery, researchers can further explore and innovate in the synthesis, biological assessment, and computational studies of triazoles as drugs, exploring the potential therapeutic significance of triazoles.
Collapse
Affiliation(s)
- Anirudh Pratap Singh Raman
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi, India
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Ghaziabad, Modinagar, India
| | - Mohd Aslam
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi, India
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Ghaziabad, Modinagar, India
| | - Amardeep Awasthi
- Department of Chemistry, North western University, Evanston, IL, USA
| | - Anas Ansari
- Department of Chemistry, North western University, Evanston, IL, USA
| | - Pallavi Jain
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Ghaziabad, Modinagar, India
| | - Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar of Science and Technology, Hisar, India
| | - Indra Bahadur
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Mmabatho, 2745, South Africa
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi, India.
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India.
| |
Collapse
|
6
|
Xie Y, Zhang Z, Zhang B, He N, Peng M, Song S, Wang B, Yu F. Oxidative Free-Radical C(sp 2)-H Bond Chlorination of Enaminones with LiCl: Access to Highly Functionalized α-Chlorinated Enaminones. J Org Chem 2024; 89:8521-8530. [PMID: 38828704 DOI: 10.1021/acs.joc.4c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
An oxidative free-radical C(sp2)-H bond chlorination strategy of enaminones has been developed by using LiCl as a chlorinating reagent and K2S2O8 as an oxidant. This transformation provides a new and straightforward synthetic methodology to afford highly functionalized α-chlorinated enaminones with a Z-configuration in good to excellent yields.
Collapse
Affiliation(s)
- Yunhua Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Zhilai Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Biao Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Nengqin He
- Yunnan Key Laboratory for Pollution Processes and Control of Plateau Lake-Watersheds, Yunnan Academy of Ecological and Environmental Sciences, Kunming 650500, P. R. China
| | - Menglin Peng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Siyu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Baoqu Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
7
|
Kasana S, Nigam V, Singh S, Kurmi BD, Patel P. A New Insight Into The Huisgen Reaction: Heterogeneous Copper Catalyzed Azide-Alkyne Cycloaddition for the Synthesis of 1,4-Disubstituted Triazole (From 2018-2023). Chem Biodivers 2024; 21:e202400109. [PMID: 38640439 DOI: 10.1002/cbdv.202400109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/21/2024]
Abstract
The Huisgen cycloaddition, often referred to as 1,3-Dipolar cycloaddition, is a well-established method for synthesizing 1,4-disubstituted triazoles. Originally conducted under thermal conditions [3+2] cycloaddition reactions were limited by temperature, prolonged reaction time, and regioselectivity. The introduction of copper catalyzed azide-alkyne cycloaddition (CuAAC) revitalized interest, giving rise to the concept of "click chemistry". The CuAAC has emerged as a prominent method for producing 1,2,3-triazole with excellent yields and exceptional regioselectivity even in unfavorable conditions. Copper catalysts conventionally facilitate azide-alkyne cycloadditions, but challenges include instability and recycling issues. In recent years, there has been a growing demand for heterogeneous and porous catalysts in various chemical reactions. Chemists have been more interested in heterogenous catalysts as a result of the difficulties in separating homogenous catalysts from reaction products. These catalysts are favored for their abundant active sites, extensive surface area, easy separation from reaction mixtures, and the ability to be reused. Heterogeneous catalysts have garnered significant attention due to their broad industrial utility, characterized by cost-effectiveness, stability, resistance to thermal degradation, and ease of removal compared to their homogeneous counterparts. The present review covers recent advancements from year 2018 to 2023 in the field of click reactions for obtaining 1,2,3-triazoles through Cu catalyzed 1,3-dipolar azide-alkyne cycloaddition and the properties of the catalyst, reaction conditions such as solvent, temperature, reaction time, and the impact of different heterogeneous copper catalysts on product yield.
Collapse
Affiliation(s)
- Shivani Kasana
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Vaibhav Nigam
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Surbhi Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
8
|
Bollikanda RK, Nagineni D, Pranathi AN, Chirra N, Misra S, Kantevari S. Dihydrobenzothiazole coupled N-piperazinyl acetamides as antimicrobial agents: Design, synthesis, biological evaluation and molecular docking studies. Arch Pharm (Weinheim) 2024; 357:e2300450. [PMID: 38036302 DOI: 10.1002/ardp.202300450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/30/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023]
Abstract
Substituted saturated N-heterocycles have gained momentum as effective scaffolds for the development of new drugs. In this study, we coupled partly saturated benzothiazoles with substituted piperazines and evaluated their antimicrobial activity. Following a three-step reaction sequence from commercially available cyclic 1,3-diones, a series of novel 2-[4-substituted-1-piperazinyl]-N-(7-oxo-4,5,6,7-tetrahydrobenzo[d]thiazol-2-yl)acetamides (7a-af) were synthesised. 2-Amino-5,6-dihydro-benzo[d]thiazol-7(4H)-ones, obtained through the condensation of cyclohexane-1,3-diones with thiourea, were acetylated with chloroacetic chloride and then reacted with N-substituted piperazines 6a-p to give the desired products 7a-af in excellent yields. All 32 new compounds were fully characterised by their 1 H-nuclear magnetic resonance (NMR), 13 C-NMR and high-resolution mass spectrometry spectra. The synthetic compounds 7a-af were tested in vitro for their efficacy as antimicrobials against pathogenic strains of Gram-positive and Gram-negative bacteria, Streptococcus mutans and Salmonella typhi, respectively, as well as against fungal strains, including Candida albicans 3018 and C. albicans 4748. Ciprofloxacin and fluconazole served as the reference drugs. While compounds 7c and 7l showed inhibition against fungal strains with zones of inhibition of 11 and 1 mm, respectively, four analogues (7d, 7l, 7n, and 7r) demonstrated strong antibacterial action (zone of inhibition in the range of 10-15 mm). Three compounds (7j, 7l, and 7w) also exhibited moderate antitubercular activity (MIC: 6.25 µg/mL) against Mycobacterium tuberculosis H37Rv. Molecular docking investigations and the predicted physicochemical and ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties for the potent compounds made this scaffold useful as a pharmacologically active framework for the development of potential antimicrobial hits.
Collapse
Affiliation(s)
- Rakesh K Bollikanda
- Fluoro & Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Devendra Nagineni
- Fluoro & Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abburi Naga Pranathi
- Fluoro & Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nagaraju Chirra
- Fluoro & Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sunil Misra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Srinivas Kantevari
- Fluoro & Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
9
|
Nie WZ, Shen QK, Quan ZS, Guo HY, Li YM. Bioactivities and Structure-Activity Relationships of Usnic Acid Derivatives: A Review. Mini Rev Med Chem 2024; 24:1368-1384. [PMID: 38265368 DOI: 10.2174/0113895575277085231123165546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 01/25/2024]
Abstract
Usnic acid has a variety of biological activities, and has been widely studied in the fields of antibacterial, immune stimulation, antiviral, antifungal, anti-inflammatory and antiparasitic. Based on this, usnic acid is used as the lead compound for structural modification. In order to enhance the biological activity and solubility of usnic acid, scholars have carried out a large number of structural modifications, and found some usnic acid derivatives to be of more potential research value. In this paper, the structural modification, biological activity and structure-activity relationship of usnic acid were reviewed to provide reference for the development of usnic acid derivatives.
Collapse
Affiliation(s)
- Wen-Zhe Nie
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Ya-Mei Li
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| |
Collapse
|
10
|
Farghaly TA, Alosaimy AM, Al-Qurashi NT, Masaret GS, Abdulwahab HG. The most Recent Compilation of Reactions of Enaminone Derivatives with various Amine Derivatives to Generate Biologically Active Compounds. Mini Rev Med Chem 2024; 24:793-843. [PMID: 37711104 DOI: 10.2174/1389557523666230913164038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023]
Abstract
Heterocyclic derivatives serve as the fundamental components of both natural and synthetic drugs. Enaminones play a crucial role as foundational units in the synthesis of numerous bioactive heterocyclic compounds, including pyrazoles, pyridines, oxazoles, isoxazoles, as well as fused heterocyclic structures like indoles, carbazoles, quinolines, acridines, and phenanthridines. These diverse heterocyclic rings are well-known for their various therapeutic activities, encompassing anticancer, anti-inflammatory, antimicrobial, antidepressant, and antiviral properties. By reacting with nitrogenbased nucleophiles, enaminones can generate bioactive azoles, azines, and their fused systems. This study focuses on the recent advancements in enaminone reactions with (a) nitrogen-based nucleophiles, such as aliphatic amines, derivatives of aniline, heterocyclic amines, hydroxylamine, hydrazine derivatives, guanidine derivatives, urea, and thiourea derivatives, and (b) nitrogen-based electrophiles, such as diazonium salts. These reactions have led to the synthesis of a wide range of bioactive fused heterocyclic compounds from 2010 to the end of 2022.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, Saudi Arabia
| | - Amal M Alosaimy
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, Saudi Arabia
| | - Nadia T Al-Qurashi
- Department of Basic Science, University College in Adam, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, Saudi Arabia
| | - Hanan Gaber Abdulwahab
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
11
|
Bagherzadeh N, Amiri M, Sardarian AR. Novel Cu(ii) acidic deep eutectic solvent as an efficient and green multifunctional catalytic solvent system in base-free conditions to synthesize 1,4-disubstituted 1,2,3-triazoles. RSC Adv 2023; 13:36403-36415. [PMID: 38099257 PMCID: PMC10719904 DOI: 10.1039/d3ra06570g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
A novel green Cu(ii)-acidic deep eutectic solvent (Cu(ii)-ADES) bearing copper salt, choline chloride, and gallic acid ([ChCl]4[2GA-Cu(ii)]) was synthesized and thoroughly specified by physicochemical approaches such as FT-IR, EDX, XRD, Mapping, ICP, and UV-Vis analyses and physicochemical properties. After the detection of authentic data, the central composite design (CCD) was utilized to accomplish the pertaining tests and develop the optimum condition, and, in the following, [ChCl]4[2GA-Cu(ii)] was applied as a green multifunctional catalytic solvent system in reducing agent-free and base-free condition for the three-component click reaction from sodium azide, alkyl, allyl, ester, and benzyl halide, and terminal alkyne made from amines and caprolactam as a cyclic amide to furnish a successful new library of 1,4-disubstituted 1,2,3-triazoles with a yield of up to 98%. The Cu(ii)-ADES is stable and can comfortably be recovered and reused without a considerable decline in its acting for seven cycles. This triazole synthesizing methodology is distinguished via its atom economy, operational facility, short reaction times, diverse substrate scope, and high performance for large-scale synthesis of the desired products including: -CN and -NO2 as efficient functional groups.
Collapse
Affiliation(s)
- Nastaran Bagherzadeh
- Chemistry Department, College of Sciences, Shiraz University Shiraz Iran +98 7136460788 +98 7136137107
| | - Mohammad Amiri
- Chemistry Department, College of Sciences, Shiraz University Shiraz Iran +98 7136460788 +98 7136137107
| | - Ali Reza Sardarian
- Chemistry Department, College of Sciences, Shiraz University Shiraz Iran +98 7136460788 +98 7136137107
| |
Collapse
|
12
|
Wu N, Jiang M, Cao A, Huang L, Bo X, Xu Z. Rapid and General Access to α-Haloketones Using Quaternary Ammonium Salts as Halogen Sources. J Org Chem 2023. [PMID: 38019647 DOI: 10.1021/acs.joc.3c02195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
A general, rapid, and scalable method for the preparation of α-halogenated ketones using N-alkenoxypyridinium salts as substrates and quaternary ammonium salts as halogen sources was developed, featuring mild reaction conditions, excellent functional group tolerance, short reaction times, and a wide substrate scope.
Collapse
Affiliation(s)
- Nan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Mengfei Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Ashley Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiumei Bo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhou Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
13
|
Bandyopadhyay M, Bhadra S, Pathak S, Menon AM, Chopra D, Patra S, Escorihuela J, De S, Ganguly D, Bhadra S, Bera MK. An Atom-Economic Method for 1,2,3-Triazole Derivatives via Oxidative [3 + 2] Cycloaddition Harnessing the Power of Electrochemical Oxidation and Click Chemistry. J Org Chem 2023; 88:15772-15782. [PMID: 37924324 DOI: 10.1021/acs.joc.3c01836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
An electrochemical method was developed to accomplish the reagentless synthesis of 4,5-disubstituted triazole derivatives employing secondary propargyl alcohol as C-3 synthon and sodium azide as cycloaddition counterpart. The reaction was conducted at room temperature in an undivided cell with a constant current using a pencil graphite (C) anode and stainless-steel cathode in a MeCN solvent system. The proposed reaction mechanism was convincingly established by carrying out a series of control experiments and further supported by electrochemical and density functional theory (DFT) studies.
Collapse
Affiliation(s)
- Manas Bandyopadhyay
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Sayan Bhadra
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Swastik Pathak
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Anila M Menon
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh India
| | - Deepak Chopra
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh India
| | - Snehangshu Patra
- Sustainable Hydrogen for Valuable Applications (SHYVA), 23 Allee Gilbert Becaud, 34470 Perols, France
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Avda. Vicente Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Souradeep De
- School of Advanced Materials, Green Energy and Sensor Systems, Indian Institute of Engineering Science and Technology (IIEST), P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Debabani Ganguly
- Centre for Health Science and Technology (CHeST), JIS Institute of Advanced Studies and Research Kolkata, Saltlake, Kolkata 700091, West Bengal, India
| | - Suman Bhadra
- Centre for Health Science and Technology (CHeST), JIS Institute of Advanced Studies and Research Kolkata, Saltlake, Kolkata 700091, West Bengal, India
| | - Mrinal K Bera
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| |
Collapse
|
14
|
Duan Y, Zhao Y, Li Z, Liu Z, Wang M, Wang X, Sun M, Song C, Yao Y. Discovery of N-(2-oxoethyl) sulfanilamide-derived inhibitors of KAT6A (MOZ) against leukemia by an isostere strategy. Eur J Med Chem 2023; 260:115770. [PMID: 37651878 DOI: 10.1016/j.ejmech.2023.115770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
KAT6A has been identified as a new target for leukemia treatment. The histone acetyltransferase activity of KAT6A is essential for normal hematopoietic stem cell self-renewal, and mutations or translocations are regarded as one of the major causes of leukemia development. In previous studies, CTX-0124143 has been shown to be a class of KAT6A inhibitors with a sulfonyl hydrazide backbone. However, weak activity, poor selectivity and pharmacokinetic problems have hindered its clinical application. In this work, the N‒N bond in compound CTX-0124143 was replaced by an N-C bond, and the aromatic rings were replaced on both sides. Finally, we obtained Compound 6j. Compared to CTX-0124143, 6j showed a 16-fold stronger inhibition of KAT6A (0.49 μM vs. 0.03 μM) with high selectivity. In addition, 6j exhibited strong antitumor activity on four leukemia cell lines. Moreover, 6j showed significant improvement in metabolic stability and pharmacokinetics in vivo and in vitro. In conclusion, 6j shows excellent potential as a promising anti-leukemia drug candidate.
Collapse
Affiliation(s)
- Yongtao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Yabiao Zhao
- College of Chemistry, and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenzhen Li
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhenling Liu
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Mingzhu Wang
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Xuan Wang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Moran Sun
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Chuanjun Song
- College of Chemistry, and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yongfang Yao
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China; School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
15
|
Esmaili S, Ebadi A, Khazaei A, Ghorbani H, Faramarzi MA, Mojtabavi S, Mahdavi M, Najafi Z. Novel Pyrano[3,2- c]quinoline-1,2,3-triazole Hybrids as Potential Anti-Diabetic Agents: In Vitro α-Glucosidase Inhibition, Kinetic, and Molecular Dynamics Simulation. ACS OMEGA 2023; 8:23412-23424. [PMID: 37426262 PMCID: PMC10324058 DOI: 10.1021/acsomega.3c00133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023]
Abstract
In this study, a novel series of pyrano[3,2-c]quinoline-1,2,3-triazole hybrids 8a-o were synthesized and evaluated against the α-glucosidase enzyme. All compounds showed significant in vitro inhibitory activity (IC50 values of 1.19 ± 0.05 to 20.01 ± 0.02 μM) compared to the standard drug acarbose (IC50 = 750.0 μM). Among them, 2-amino-4-(3-((1-benzyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-5-oxo-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carbonitrile (compound 8k) demonstrated the best inhibitory effect toward α-glucosidase (IC50 = 1.19 ± 0.05 μM) with a competitive pattern of inhibition. Since compound 8k was synthesized as a racemic mixture, molecular docking and dynamics simulations were performed on R- and S-enantiomers of compound 8k. Based on the molecular docking results, both R- and S-enantiomers of compound 8k displayed significant interactions with key residues including catalytic triad (Asp214, Glu276, and Asp349) in the enzyme active site. However, an in silico study indicated that S- and R-enantiomers were inversely located in the enzyme active site. The R-enantiomer formed a more stable complex with a higher binding affinity to the active site of α-glucosidase than that of the S- enantiomer. The benzyl ring in the most stable complex ((R)-compound 8k) was located in the bottom of the binding site and interacted with the enzyme active site, while the pyrano[3,2-c]quinoline moiety occupied the high solvent accessible entrance of the active site. Thus, the synthesized pyrano[3,2-c]quinoline-1,2,3-triazole hybrids seem to be promising scaffolds for the development of novel α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Soheila Esmaili
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Ahmad Ebadi
- Department
of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural
Products Research Center, Hamadan University
of Medical Sciences, Hamadan 6517838678, Iran
| | - Ardeshir Khazaei
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Hamideh Ghorbani
- Department
of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
| | - Mohammad Ali Faramarzi
- Department
of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology
Research Center, Tehran University of Medical
Sciences, Tehran 1417614411, Iran
| | - Somayeh Mojtabavi
- Department
of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology
Research Center, Tehran University of Medical
Sciences, Tehran 1417614411, Iran
| | - Mohammad Mahdavi
- Endocrinology
and Metabolism Research Center, Endocrinology and Metabolism Clinical
Sciences Institute, Tehran University of
Medical Sciences, Tehran 1416753955, Iran
| | - Zahra Najafi
- Department
of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
| |
Collapse
|
16
|
Bouone YO, Bouzina A, Aouf NE, Ibrahim-Ouali M. New efficient synthesis, spectroscopic characterization, and X-ray analysis of novel β-enaminocarboxamide derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-022-04939-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
17
|
Wong KKV, Roney M, Uddin N, Imran S, Gazali AM, Zamri N, Rullah K, Aluwi MFFM. Usnic acid as potential inhibitors of BCL2 and P13K protein through network pharmacology-based analysis, molecular docking and molecular dynamic simulation. J Biomol Struct Dyn 2023; 41:13632-13645. [PMID: 36794726 DOI: 10.1080/07391102.2023.2178506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
Usnic acid (UA) lately piqued the interest of researchers for its extraordinary biological characteristics, including anticancer activity. Here, the mechanism was clarified through network pharmacology,molecular docking and molecular dynamic simulation. Sixteen proteins were selected through network pharmacology study as they are probable to interact with UA. Out of these proteins, 13 were filtered from PPI network analysis based on their significance of interactions (p < 0.05). KEGG pathway analysis has also aided us in determining the three most significant protein targets for UA, which are BCL2, PI3KCA and PI3KCG. Therefore molecular docking and molecular dynamic (MD) simulations throughout 100 ns were performed for usnic acid onto the three proteins mentioned. However, UA's docking score in all proteins is lower than their co-crystalised ligand, especially for BCL2 (-36.5158 kcal/mol) and PI3KCA (-44.5995 kcal/mol) proteins. The only exception is PI3KCG which has comparable results with the co-crystallised ligand with (-41.9351 kcal/mol). Furthermore, MD simulation has also revealed that usnic acid does not stay fit in the protein throughout the simulation trajectory for PI3KCA protein evident from RMSF and RMSD plots. Nevertheless, it still poses good ability in inhibiting BCL2 and PI3KCG protein in MD simulation. In the end, usnic acid has exhibited good potential in the inhibition of PI3KCG proteins, rather than the other proteins mentioned. Thus further study on structural modification of usnic acid could enhance the ability of usnic acid in the inhibition of PI3KCG as anti-colorectal and anti-small cell lung cancer drug candidate.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- K K V Wong
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Pahang, Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Pahang, Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery, UiTM Selangor, Kampus Puncak Alam, Bandar Puncak Alam, Malaysia
| | - Ahmad Mahfuz Gazali
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Pahang, Malaysia
| | - Normaiza Zamri
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Pahang, Malaysia
| | - Kamal Rullah
- Drug Discovery and Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Pahang, Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| |
Collapse
|
18
|
Vanillin allied 1,2,3- triazole as a selective sensor for detection of Al3+ ions: A potent inhibitor against Entamoeba histolytica. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Deng C, Yan H, Wang J, Liu K, Liu BS, Shi YM. 1,2,3-Triazole-containing hybrids with potential antibacterial activity against ESKAPE pathogens. Eur J Med Chem 2022; 244:114888. [DOI: 10.1016/j.ejmech.2022.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 12/01/2022]
|
20
|
Redjemia R, Bouzina A, Bouone YO, Mansouri A, Bahadi R, Berredjem M. Copper (I) bromide (CuBr): a highly efficient catalyst for the synthesis of β-enaminone derivatives using ultrasound irradiation under solvent-free conditions. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04853-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Dutta A, Trivedi P, Gehlot PS, Gogoi D, Hazarika R, Chetia P, Kumar A, Chaliha AK, Chaturvedi V, Sarma D. Design and Synthesis of Quinazolinone-Triazole Hybrids as Potent Anti-Tubercular Agents. ACS APPLIED BIO MATERIALS 2022; 5:4413-4424. [PMID: 36053225 DOI: 10.1021/acsabm.2c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A straightforward and convenient methodology has been developed for the reaction of 2-aminobenzamide and carbonyls affording 2,3-dihydroquinazolin-4(1H)-ones using aqueous solution of [C12Py][FeCl3Br]. The developed methodology was applied for the synthesis of 25 quinazolinone-triazole hybrids followed by evaluation of their in vitro anti-tubercular (TB) activity. The results revealed that 8 quinazolinone-triazole hybrids displayed promising activity having MIC values of 0.78-12.5 μg/mL. The compound 3if with MIC 0.78 μg/mL was found to be the lead nominee among the series, better than Ethambutol, a first line anti-TB drug and comparable with Rifampicin. The active compounds with MIC values ≤ 6.25 μg/mL were subjected to in vitro cytotoxicity and found nontoxic. In drug-drug interaction, compounds 3ia and 3ii interacted synergistically with all the three anti-TB drugs, INH, RFM, and EMB. Other 3 compounds interacted either in synergistic or additive manners. Important information on the binding interaction of the target compounds with the active sites of 1DQY Antigen 85C from Mycobacterium tuberculosis and Enoyl acyl carrier protein reductase (InhA) enzymes was obtained from molecular docking studies. Screening of the drug-likeness properties and bioactivity score indicates that synthesized molecules could be projected as potential drug candidates. Based on the current study, quinazolinone-triazole hybrids framework can be useful in drug development for TB.
Collapse
Affiliation(s)
- Apurba Dutta
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Priyanka Trivedi
- Biochemistry Division, Central Drug Research Institute, CSIR, Lucknow 226001, India
| | - Praveen Singh Gehlot
- AcSIR, Salt and Marine Chemicals Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Dipshikha Gogoi
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Roktopol Hazarika
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Pankaj Chetia
- Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Arvind Kumar
- AcSIR, Salt and Marine Chemicals Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Amrita Kashyap Chaliha
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Vinita Chaturvedi
- Biochemistry Division, Central Drug Research Institute, CSIR, Lucknow 226001, India
| | - Diganta Sarma
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| |
Collapse
|
22
|
Li YL, Shi Z, Shen T, Ye KY. Electrochemical vicinal oxyazidation of α-arylvinyl acetates. Beilstein J Org Chem 2022; 18:1026-1031. [PMID: 36051561 PMCID: PMC9379640 DOI: 10.3762/bjoc.18.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
α-Azidoketones are valuable and versatile building blocks in the synthesis of various bioactive small molecules. Herein, we describe an environmentally friendly and efficient electrochemical vicinal oxyazidation protocol of α-arylvinyl acetates to afford diverse α-azidoketones in good yields without the use of a stoichiometric amount of chemical oxidant. A range of functionality is shown to be compatible with this transformation, and further applications are demonstrated.
Collapse
Affiliation(s)
- Yi-Lun Li
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhaojiang Shi
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Tao Shen
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ke-Yin Ye
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
23
|
Synthetic Access to Aromatic α-Haloketones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113583. [PMID: 35684526 PMCID: PMC9182500 DOI: 10.3390/molecules27113583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022]
Abstract
α-Haloketones play an essential role in the synthesis of complex N-, S-, O-heterocycles; of which some exhibit a remarkable biological activity. Research further illustrated that α-bromo-, α-chloro-, and α-iodoketones are key precursors for blockbuster pharmacological compounds. Over the past twenty years, substantial advances have been made in the synthesis of these industrially relevant building blocks. Efforts have focused on rendering the synthetic protocols greener, more effective and versatile. In this survey, we summarised and thoroughly evaluated the progress of the field, established in the past two decades, in terms of generality, efficacy and sustainability.
Collapse
|
24
|
Bangalore PK, Pedapati RK, Pranathi AN, Batchu UR, Misra S, Estharala M, Sriram D, Kantevari S. Aryl-n-hexanamide linked enaminones of usnic acid as promising antimicrobial agents. Mol Divers 2022; 27:811-836. [PMID: 35608808 DOI: 10.1007/s11030-022-10456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
Lichen secondary metabolites are well explored medicinal agents with diverse pharmacological properties. One of the important antibiotic lichen secondary metabolites is usnic acid. Its diverse medicinal profiles prompted us to explore it as a potential antitubercular molecule. Towards this direction, continuing our efforts on the discovery and development of new analogs with potent antitubercular properties we designed, synthesized, and evaluated a set of 37 usnic acid enaminone-coupled aryl-n-hexanamides (3-39). The study yielded a 3,4-dimethoxyphenyl compound (13, 5.3 µM) as the most active anti-TB molecule. The docking studies were performed on 7 different enzymes to better understand the binding modes, where it was observed that compound 13 bound strongly with glucose dehydrogenase (Gscore: - 9.03). Further antibacterial investigations revealed compound 2 with potent inhibition on Salmonella typhi and Bacillus subtilis (MIC 3 µM) and MIC values of 7 and 14 µM on Streptococcus mutans and Escherichia coli respectively. Compound 19 (3-F-5-CF3-phenyl) displayed encouraging antibacterial profiles against E. coli, S. typhi and S. mutans with MIC values of 10 µM respectively. Interestingly, compound 20 (2,6-difluorophenyl) also displayed good antibacterial activity against E. coli with an MIC value of 6 µM. These encouraging pharmacological results will help for better designing and developing usnic acid-based semi-synthetic derivatives as potential antimicrobial agents. A set of 37 new usnic acid enaminone-coupled aryl-n-hexanamides were synthesized and evaluated as potential antimicrobial agents. Compound 13 was identified as the most active antitubercular molecule. 13 was further docked against 7 different enzymes of tuberculosis. The molecule displayed maximum binding energy with the enzyme Glucose dehydrogenase (Gscore: - 9.03), indicating that these hexanamides possibly act by inhibiting the glucose metabolic pathway of the bacterium. Surprisingly, the intermediate hexanoic acid 2 was identified as potent antibacterial agent, acting on both gram-positive and gram-negative bacterial strains (3-14 μM). The active compounds may be subjected to structural iterations to develop further leads.
Collapse
Affiliation(s)
- Pavan Kumar Bangalore
- Fluoro and Agrochemicals Division, CSIR- Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India. .,Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA.
| | - Ravi Kumar Pedapati
- Fluoro and Agrochemicals Division, CSIR- Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Abburi Naga Pranathi
- Fluoro and Agrochemicals Division, CSIR- Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Uma Rajeswari Batchu
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Sunil Misra
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Madhurekha Estharala
- Medicinal Chemistry and Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India
| | - Dharmarajan Sriram
- Medicinal Chemistry and Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India
| | - Srinivas Kantevari
- Fluoro and Agrochemicals Division, CSIR- Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
25
|
Emerging impact of triazoles as anti-tubercular agent. Eur J Med Chem 2022; 238:114454. [PMID: 35597009 DOI: 10.1016/j.ejmech.2022.114454] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 01/08/2023]
Abstract
Tuberculosis, a disease of poverty is a communicable infection with a reasonably high mortality rate worldwide. 10 Million new cases of TB were reported with approx 1.4 million deaths in the year 2019. Due to the growing number of drug-sensitive and drug-resistant tuberculosis cases, there is a vital need to develop new and effective candidates useful to combat this deadly disease. Despite tremendous efforts to identify a mechanism-based novel antitubercular agent, only a few have entered into clinical trials in the last six decades. In recent years, triazoles have been well explored as the most valuable scaffolds in drug discovery and development. Triazole framework possesses favorable properties like hydrogen bonding, moderate dipole moment, enhanced water solubility, and also the ability to bind effectively with biomolecular targets of M. tuberculosis and therefore this scaffold displayed excellent potency against TB. This review is an endeavor to summarize an up-to-date innovation of triazole-appended hybrids during the last 10 years having potential in vitro and in vivo antitubercular activity with structure activity relationship analysis. This review may help medicinal chemists to explore the triazole scaffolds for the rational design of potent drug candidates having better efficacy, improved selectivity and minimal toxicity so that these hybrid NCEs can effectively be explored as potential lead to fight against M. tuberculosis.
Collapse
|
26
|
Zhang Y, Luo M, Zhang Y, Cheng K, Li Y, Qi C, Shen R, Wang H. CuCl 2·2H 2O/TBHP mediated synthesis of β-enaminones via coupling reaction of vinyl azides with aldehydes. Org Biomol Chem 2022; 20:1952-1957. [PMID: 35170603 DOI: 10.1039/d1ob02479e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and efficient oxidative functionalization of vinyl azides with aldehydes furnishing a diverse array of β-acylated enaminones was developed. The cross coupling was accomplished in the presence of CuCl2·2H2O/TBHP and produced the desired β-acylated enaminones in a (Z)-stereo-selective and atom-economic manner, which make this protocol particularly attractive. In the transformation, the new C-C and C-N bonds were formed via a one-pot strategy including the process of radical addition and recombination.
Collapse
Affiliation(s)
- Yaohong Zhang
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China.
| | - Mengqiang Luo
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China. .,School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China
| | - Yichan Zhang
- Department of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, P. R. China
| | - Kai Cheng
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China.
| | - Yong Li
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China.
| | - Chenze Qi
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China.
| | - Runpu Shen
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China
| | - Hai Wang
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China.
| |
Collapse
|
27
|
Chalcone Appended Organosilanes and their Silica Nanoparticles Based UV-vis and Fluorometric Probes for Co2+ ions Detection. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Pei S, Yang J, Wang J, Yuan K, Li Z. Ultrasound-assisted synthesis of β-enaminone derivatives via Tin(Ⅳ)-catalyzed addition reaction from β-dicarbonyl compounds with nitriles. LETT ORG CHEM 2021. [DOI: 10.2174/1570178619666211221141854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
An efficient and eco-friendly approach for the synthesis of β-enaminone derivatives is described, which is through the addition of nitriles with β-dicarbonyl compounds under ultrasound irradiation condition at room temperature. The scope and limitation of this strategy are also discussed. A variety of substituted amides can be obtained in moderate to good yields. We hope that this protocol for the efficient synthesis of β-enaminones will offer insights in further investigations.
Collapse
Affiliation(s)
- Shuchen Pei
- Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology, Chongqing, China
| | - Jinhua Yang
- Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology, Chongqing, China
| | - Jieyu Wang
- Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology, Chongqing, China
| | - Kangyao Yuan
- Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology, Chongqing, China
| | - Ziqiang Li
- Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology, Chongqing, China
| |
Collapse
|
29
|
Guo HY, Chen ZA, Shen QK, Quan ZS. Application of triazoles in the structural modification of natural products. J Enzyme Inhib Med Chem 2021; 36:1115-1144. [PMID: 34167422 PMCID: PMC8231395 DOI: 10.1080/14756366.2021.1890066] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Nature products have been extensively used in the discovery and development of new drugs, as the most important source of drugs. The triazole ring is one of main pharmacophore of the nitrogen-containing heterocycles. Thus, a new class of triazole-containing natural product conjugates has been synthesised. These compounds reportedly exert anticancer, anti-inflammatory, antimicrobial, antiparasitic, antiviral, antioxidant, anti-Alzheimer, and enzyme inhibitory effects. This review summarises the research progress of triazole-containing natural product derivatives involved in medicinal chemistry in the past six years. This review provides insights and perspectives that will help scientists in the fields of organic synthesis, medicinal chemistry, phytochemistry, and pharmacology.
Collapse
Affiliation(s)
- Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Zheng-Ai Chen
- Department of Pharmacology, Medical School of Yanbian University, Yanji, Jilin, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Zhe-Shan Quan
- Department of Pharmacology, Medical School of Yanbian University, Yanji, Jilin, China
| |
Collapse
|
30
|
Zhang X, Zhang S, Zhao S, Wang X, Liu B, Xu H. Click Chemistry in Natural Product Modification. Front Chem 2021; 9:774977. [PMID: 34869223 PMCID: PMC8635925 DOI: 10.3389/fchem.2021.774977] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
Click chemistry is perhaps the most powerful synthetic toolbox that can efficiently access the molecular diversity and unique functions of complex natural products up to now. It enables the ready synthesis of diverse sets of natural product derivatives either for the optimization of their drawbacks or for the construction of natural product-like drug screening libraries. This paper showcases the state-of-the-art development of click chemistry in natural product modification and summarizes the pharmacological activities of the active derivatives as well as the mechanism of action. The aim of this paper is to gain a deep understanding of the fruitful achievements and to provide perspectives, trends, and directions regarding further research in natural product medicinal chemistry.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Songfeng Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xuan Wang
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Liu
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
31
|
Suresh S, Bhimrao Patil P, Yu P, Fang C, Weng Y, Kavala V, Yao C. A Study of the Reactions of 3‐Bromopropenals with Anilines for the Synthesis of α‐Bromo Enaminones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sundaram Suresh
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Prakash Bhimrao Patil
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Pao‐Hsing Yu
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Chia‐Chi Fang
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Yin‐Zhi Weng
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Veerababurao Kavala
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Ching‐Fa Yao
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| |
Collapse
|
32
|
Hu B, Chen G, Zhao J, Xue L, Jiang Y, Zhang X, Fan X. Synthesis of Succinimide Spiro-Fused Sultams from the Reaction of N-(Phenylsulfonyl)acetamides with Maleimides via C(sp 2)-H Activation. J Org Chem 2021; 86:10330-10342. [PMID: 34288686 DOI: 10.1021/acs.joc.1c01048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Presented herein is an effective preparation of succinimide spiro-fused sultams through the coupling reaction of N-(phenylsulfonyl)acetamides with maleimides. It is deduced that this reaction should proceed through a cascade process including Rh(III)-catalyzed C(sp2)-H bond cleavage of N-(phenylsulfonyl)acetamide, maleimide double bond insertion into the C-Rh bond, β-hydride elimination, reductive elimination, and intramolecular aza-Michael addition. Notably, this cascade procedure features simultaneous annulation and spirocyclization through traceless fusion of the directing group into target product by using air as an economical oxidant to assist the regeneration of the active Rh(III) catalyst. This new method has several advantages including readily accessible starting materials with broad scope, significantly reduced synthetic steps, redox-neutral conditions, high atom-economy, and sustainability.
Collapse
Affiliation(s)
- Bing Hu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guang Chen
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jie Zhao
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lian Xue
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuqin Jiang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
33
|
Kumar S, Malakar CC, Singh V. Cu(II)‐Catalysed Azide‐Alkyne Cycloaddition Reaction towards Synthesis of β‐Carboline C1‐Tethered 1,2,3‐Triazole Derivatives. ChemistrySelect 2021. [DOI: 10.1002/slct.202100002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sunit Kumar
- Department of Chemistry Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar 144011 Punjab India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology (NIT) Manipur Imphal 795004 India
| | - Virender Singh
- Department of Chemistry Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar 144011 Punjab India
- Department of Chemistry Central University of Punjab, Bathinda 151401 Punjab India
| |
Collapse
|
34
|
Huang X, Liu HW, Long ZQ, Li ZX, Zhu JJ, Wang PY, Qi PY, Liu LW, Yang S. Rational Optimization of 1,2,3-Triazole-Tailored Carbazoles As Prospective Antibacterial Alternatives with Significant In Vivo Control Efficiency and Unique Mode of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4615-4627. [PMID: 33855856 DOI: 10.1021/acs.jafc.1c00707] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plant bacterial diseases can potentially damage agricultural products around the world, and few effective bactericides can manage these infections. Herein, to sequentially explore highly effective antibacterial alternatives, 1,2,3-triazole-tailored carbazoles were rationally fabricated. These compounds could suppress the growth of three main intractable pathogens including Xanthomonas oryzae pv oryzae (Xoo), X. axonopodis pv citri (Xac), and Pseudomonas syringae pv actinidiae (Psa) with lower EC50 values of 3.36 (3p), 2.87 (3p), and 4.57 μg/mL (3r), respectively. Pot experiments revealed that compound 3p could control the rice bacterial blight with protective and curative efficiencies of 53.23% and 50.78% at 200 μg/mL, respectively. Interestingly, the addition of 0.1% auxiliaries such as organic silicon and orange oil could significantly enhance the surface wettability of compound 3p toward rice leaves, resulting in improved control effectiveness of 65.50% and 61.38%, respectively. Meanwhile, compound 3r could clearly reduce the white pyogenic exudates triggered by Psa infection and afforded excellent control efficiencies of 79.42% (protective activity) and 78.74% (curative activity) at 200 μg/mL, which were quite better than those of commercial pesticide thiodiazole copper. Additionally, a plausible apoptosis mechanism for the antibacterial behavior of target compounds was proposed by flow cytometry, reactive oxygen species detection, and defensive enzyme (e.g., catalase and superoxide dismutase) activity assays. The current work can promote the development of 1,2,3-triazole-tailored carbazoles as prospective antibacterial alternatives bearing an intriguing mode of action.
Collapse
Affiliation(s)
- Xing Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Hong-Wu Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Zhou-Qing Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Zhen-Xing Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Jian-Jun Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Pu-Ying Qi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
35
|
Qin Q, Xu G, Liu Y, Ma J. Resorcin[4]arene‐based Cu(I) binuclear and mononuclear complexes as efficient catalysts for azide‐alkyne cycloaddition reactions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qian Qin
- Key Lab of Polyoxometalate Science, Department of Chemistry Northeast Normal University Changchun China
| | - Guo‐Hai Xu
- Key Laboratory of Jiangxi University for Functional Materials Chemistry, School of Chemistry and Chemical Engineering Gannan Normal University Ganzhou China
| | - Ying‐Ying Liu
- Key Lab of Polyoxometalate Science, Department of Chemistry Northeast Normal University Changchun China
| | - Jian‐Fang Ma
- Key Lab of Polyoxometalate Science, Department of Chemistry Northeast Normal University Changchun China
| |
Collapse
|
36
|
Amaye IJ, Haywood RD, Mandzo EM, Wirick JJ, Jackson-Ayotunde PL. Enaminones as building blocks in drug development: Recent advances in their chemistry, synthesis, and biological properties. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131984] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Triazole-containing hybrids with anti- Mycobacterium tuberculosis potential - Part I: 1,2,3-Triazole. Future Med Chem 2021; 13:643-662. [PMID: 33619989 DOI: 10.4155/fmc-2020-0301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tuberculosis regimens currently applied in clinical practice require months of multidrug therapy, which imposes a major challenge of patient compliance and drug resistance development. Moreover, because of the increasing emergence of hard-to-treat tuberculosis, this disease continues to be a significant threat to the human population. 1,2,3-triazole as a privileged structure has been widely used as an effective template for drug discovery, and 1,2,3-triazole-containing hybrids that can simultaneously act on dual or multiple targets in Mycobacterium tuberculosis have the potential to circumvent drug resistance, enhance efficacy, reduce side effects and improve pharmacokinetic as well as pharmacodynamic profiles. Thus, 1,2,3-triazole-containing hybrids are useful scaffolds for the development of antitubercular agents. This review aims to highlight recent advances of 1,2,3-triazole-containing hybrids with potential activity against various forms of M. tuberculosis, covering articles published between 2015 and 2020. The structure-activity relationship and the mechanism of action are also discussed to facilitate further rational design of more effective drug candidates.
Collapse
|
38
|
Garg A, Borah D, Trivedi P, Gogoi D, Chaliha AK, Ali AA, Chetia D, Chaturvedi V, Sarma D. A Simple Work-Up-free, Solvent-free Approach to Novel Amino Acid Linked 1,4-Disubstituted 1,2,3-Triazoles as Potent Antituberculosis Agents. ACS OMEGA 2020; 5:29830-29837. [PMID: 33251417 PMCID: PMC7689670 DOI: 10.1021/acsomega.0c03862] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
An efficient, green strategy for synthesis of 1,4-disubstituted-1,2,3-triazole has been developed using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) acetate ionic liquid (200 μL) under a solvent- and external base-free condition. This protocol is further applied for the synthesis of novel amino acid containing 1,2,3-triazole molecules, which were then evaluated for potential antitubercular and antibacterial activities. Cytotoxicity assay of the compounds was also performed. In silico analysis of the promising compounds selected through experimental analysis was thereafter performed for visualizing molecular interactions and predicting binding affinities between our synthesized molecules, which exhibited good activity in experimental studies and the DprE1 target protein of Mycobacterium tuberculosis. Durg-likeness studies also show potential of the synthesized molecules as drug candidates.
Collapse
Affiliation(s)
- Anirban Garg
- Department
of Chemistry, Dibrugarh University, Dibrugarh, 786004 Assam, India
| | - Debajit Borah
- Department
of Biotechnology, Royal Global University, Guwahati, Assam 395 781035, India
| | - Priyanka Trivedi
- Biochemistry
Division, Central Drug Research Institute,
CSIR, Lucknow 226001, India
| | - Dipshikha Gogoi
- Centre
for Biotechnology and Bioinformatics, Dibrugarh
University, Dibrugarh, 786004 Assam, India
| | - Amrita Kashyap Chaliha
- Centre
for Biotechnology and Bioinformatics, Dibrugarh
University, Dibrugarh, 786004 Assam, India
| | - Abdul Aziz Ali
- Department
of Chemistry, Dibrugarh University, Dibrugarh, 786004 Assam, India
- Material
Science & Technology Division, CSIR-NEIST, Jorhat, 785006 Assam, India
| | - Dipak Chetia
- Department
of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004 Assam, India
| | - Vinita Chaturvedi
- Biochemistry
Division, Central Drug Research Institute,
CSIR, Lucknow 226001, India
| | - Diganta Sarma
- Department
of Chemistry, Dibrugarh University, Dibrugarh, 786004 Assam, India
| |
Collapse
|
39
|
Emami M, Bikas R, Noshiranzadeh N, Kozakiewicz A, Lis T. Cu(II)-Hydrazide Coordination Compound Supported on Silica Gel as an Efficient and Recyclable Heterogeneous Catalyst for Green Click Synthesis of β-Hydroxy-1,2,3-triazoles in Water. ACS OMEGA 2020; 5:13344-13357. [PMID: 32548521 PMCID: PMC7288712 DOI: 10.1021/acsomega.0c01491] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/12/2020] [Indexed: 05/02/2023]
Abstract
A hydrazone ligand, (E)-6-(2-((2-hydroxynaphthalen-1-yl)methylene)hydrazinyl)nicotinohydrazide (H2L), was synthesized and characterized by spectroscopic methods. The reaction of H2L with CuCl2·2H2O in methanol gave Cu(II) coordination compound, [Cu(HL')(Cl)]·CH3OH (1), which was characterized by elemental analysis and spectroscopic methods (Fourier transform infrared (FT-IR) and UV-vis). The structure of 1 was also determined by single-crystal X-ray analysis. Structural studies confirmed the formation of esteric group during the synthesis of 1. Compound 1 was immobilized on 3-aminopropyltriethoxysilane (APTS)-functionalized silica gel through the amidification reaction and the obtained heterogeneous coordination compound was utilized as a catalyst for the three-component azide-epoxide-alkyne cycloaddition reaction in water as a green solvent. The structural properties of the heterogeneous catalyst were characterized by a combination of FT-IR, UV-vis, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS) analyses. The effect of the amount of catalyst and temperature on the cycloaddition reaction was studied, and the obtained 1,2,3-triazoles were characterized by spectroscopic studies and single-crystal X-ray analysis. The catalytic investigations revealed that this catalytic system has high activity in the synthesis of β-hydroxy-1,2,3-triazoles. It was also found that the aromatic and aliphatic substituents on the alkyne and epoxide together with the reaction temperature have considerable effects on the activity and regioselectivity of this catalytic system.
Collapse
Affiliation(s)
- Marzieh Emami
- Department
of Chemistry, Faculty of Science, University
of Zanjan, 45371-38791 Zanjan, Iran
| | - Rahman Bikas
- Department
of Chemistry, Faculty of Science, Imam Khomeini
International University, 34148-96818 Qazvin, Iran
- ,
| | - Nader Noshiranzadeh
- Department
of Chemistry, Faculty of Science, University
of Zanjan, 45371-38791 Zanjan, Iran
| | - Anna Kozakiewicz
- Faculty
of Chemistry, Nicolaus Copernicus University
in Toruń, 87-100 Toruń, Poland
| | - Tadeusz Lis
- Faculty
of Chemistry, University of Wroclaw, Joliot-Curie 14, Wroclaw 50-383, Poland
| |
Collapse
|